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Abstract. We give a new extrinsic upper bound for the smallest eigenvalues
of the Dirac operator of a hypersurface. If the ambient manifold is the hy-

perbolic space, we show that its limiting case is achieved only for geodesic
spheres.

Mathematics Subject Classificatiod3C27, 53C40, 53C80, 58G25

Let (M, g) be anm-dimensional compact Riemannian manifold isomet-

rically immersed in one of the three space-foris = R™+1, §m+1 or
H™*!. Consider the problem of finding sharp upper bounds for the smallest
eigenvalue\; of the Dirac operator of\/.

Such a problem has been examined by different authors (see [2],[5],[8].[3]).
Recently, C. Br gave upper bounds involving tH&-norm of the mean

curvatureH of the immersion as well as the ambient scalar curvature. More
precisely, he showed that ([3], Theorem 4.1):

H? if M =R™! and
Al < 4V01 M / Vg ' ’

2 e a1 am+l
)\1_4V01( )/M(H F i)y, i M = S™H,

with equality achieved for geodesic spheres. Howevér] it immersed in
H™*+!, C. Bar proved that ([3], Theorem 4.4):

m
Ml < 2+ [ Hlloo),
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which is not sharp: for geodesic spheres of radiughe inequality is

. 2|\ _ i
strict, and we have ([3], p. 59(1)3% AT = 1. Another estimate

in terms of theL?-norm of the mean curvature and the extrinsic radius
of the hypersurface was given by the same author ([3], p.587), but the
limiting-case could not be achieved.

In this paper, we investigate this case and prove the fo llowing:

Theorem 1 Assume thabd/ is isometrically immersed iIH™ !, seen as the
upper half-sphere carrying the metric= ¢?“g, conformal to the standard
metricgo on S+, Then

m2

1
M<——— [ (H?* -1 dul|7
1 = 4V01(M) /M( )Ug+ 4VO](M)|| uHLQ(]\/[)’

wheredu := d(u,, ). Besides, if equality is achieved, then the functias
constant onM, and thereforeV/ is a geodesic sphere.

In Sect. 1, we recall basic facts regarding restricted spinor bundles. Then,
applying the Min-Max principle, we first prove in Se2ta general estimate
when the ambient manifold admits a real Killing spinor for a conformal
change of the metric. Choosing this spinor as test-spinor in the Rayleigh
quotient constitutes the key-point of the paper: real Killing spinors play the
same role for the Dirac operator as coordinate functions do for the scalar
Laplacian, they are the most suitable test-sections for our problem. The
three problems can be uniformly treated, since the three space-forms can
be conformally embedded isi™*!, which admits real Killing spinors. The
approach El Soufi and llias used for the scalar Laplacian in [9] can therefore
be extended to the fundamental Dirac operator.

Acknowledgementd. thank Helga Baum, Oussama Hijazi and Sel@ashontiel for their
support during the preparation of this paper. | also thank Bertrand Morel and Emmanuel
Humbert for fruitful discussions and their careful reading of the paper.

1 Spinors and Dirac operators on an oriented hypersurface

For preliminaries on spinors and Dirac operators, we refer to [13], [7], [10],
[6], and [15]. For a recent review of the topic, see [14]. Let M —

(]\7, g) be an immersion from a connected and oriented hypersufface
into a Riemannian spin manifo(dT/f, g). We shall always assume that the
dimensionm of M is greater than or equal o Letr : M — N M be the
unitary section of the normal bundl€ M such that, for every positively-
oriented basi¢X, ..., X,,) of TM, the basi§ X1, . .., Xm,v) of TM |y,
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is positively-oriented. LeB be the shape-operator of the immersipseen
as a field of symmetric endomorphisms Bi\/. We equipM with the
induced metric and denote it lgy with the associated norm|, the volume
element, and the total volum&ol(A/). We respectively denote By and

V the Levi-Civita connections dfM, ¢) and(M, g).
The normal bundle being trivialized by, the manifold(), g) admits

an induced spin-structure. We denotey/ (resp.X’M) the vector bundle
of spinors of(M, g) (resp. of(M, g)). We set

XM if m is even
| 2OM @ XM if mis odd,

where, form odd and;j € {0,1}, X7 M is the vector bundle of spinors on
M on which the complex volume form acts by1)’1d. We denote by]\}’

(resp. *") the Clifford multiplication onX’ (resp. onEM\M).

The vector bundleZ' can be endowed with a Hermitian inner product, de-
noted by< -, - >, and a covariant derivativé, which satisfy the following
properties, for all vector fieldX andY on M and sectiong) and¢ of X

- <X]\'/[’¢,¢>—*<1/J,XM¢)>

— X(<¢,0>)=<Vx¥, 9>+ <9, Vxo>

- Vx (YM'L/J) ZVXY]\-/[I/J—i-Y]\-/[Vxlb.

The vector bundleZ M (and thereforeSM|M) can also be endowed with

a covariant derivativd’ and a Hermitian inner product satisfying the same
properties.

Now there exists an isomorphism betweErandEMW,

Y — XMy @
Yr— Y,

which satisfies, for every vector field on M and for every sectiotp of X

- X o Y is mapped ontdX - v - V.

— 1 —> ¥ is a unitary isomorphism w.r.t. the respective Hermitian inner
products _

— w.r.t. the respective covariant derivativésandV:

V¥ =Vt + %B(X) v )
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The Hermitian inner products ab and2M|M will hence be denoted by

the same symbol, with associated nota’: Note however that this isomor-
phism is not unique, and that it doesn’t preserve the covariant derivatives as
can be seenin (2).

The isomorphism (1) can also be chosen so that the actibnai EJ\AJ]M
induces an endomorphism an, denoted byA, defined for every in X

by:
iv-W=:A().

The endomorphisni satisfies, for every vector field on M and every
sectiony of X
A% =1d

A@W)| = 9
A(X -4) = -X - A(¥)
Vx(A®)) = A(Vx¥)

If m is even, the vector bundl& splits under the action of the complex
volume form intoX) = X+ @ X, andA is given by:

AT +9¢7) =yt — ¢, wherey® e £+,

If m is odd, and ifr : X°M — X1M is the isomorphism given by the
equivalence of the spin representations, then

071
A_<TO ) |

Inalocal orthonormal basis\; )1<;<m of T'M, letD andD be the operators
defined by:

m m
D::;XJ‘MVXJ-, Dizlej'VXj.
J= J=

The operatorf) is calledthe Dirac-Witten operato(Cf [16]). These two
operators, acting respectively on sectionslodnd X’ M |,,, are related by

Yy eI(5), D¥=v- (Dw ”fw) ,

whereH = 1 > i21 9(B(X;), X;) is the mean curvature of the immer-
sion..

Note 1 If m is even, the operatab coincides with the Dirac operator
D) of the manifold(, g). However, ifm is odd, via the isomorphism
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YOM = XM, calling D, the Dirac operator of M, ¢) acting on the
sections oS’ M,
D =Dy & —Dyy,

that is to say
ve®, v’ e D(Z°M), D (¢°@7(y°)) = D¢’ & —m(Dary”).

When M is compact, if(-,-) := fM < -, - > vy, With associated norm
|| - ||, the operatoD is formally self-adjoint with respect tp, -):

Vi, ¢ € I(X), (D, 9) = (¢, D).

The eigenvalues ab are therefore real.

Lemma 1 The spectrum ab is symmetric with respect to zero.

Proof. Just note that, for every sectignof 3,
D (A(¢)) = —A(D9),

so if ¢ is an eigenspinor o for the eigenvalué\, thenA(¢) is an eigen-
spinor of D for the eigenvalue-\. O

Note 2 If m is odd, every eigenvalue dp,, is an eigenvalue ob. Nev-
ertheless, ifA is an eigenvalue oD, then A or —\ is an eigenvalue of
D]\/[.

WhenM is compact, the operatd? being elliptic, its eigenvalues form
an increasing unbounded sequence. The sequenge-; of eigenvalues
of Djs (counted with their multiplicities) will thereby be ordered with in-
creasing absolute value:

2 Upper eigenvalue bounds
when the ambient manifold admits a twistor-spinor

We assum@/ to be compact. In order to obtain upper bounds for the small-
est eigenvalues ab, we shall use the following well-known proposition:

Proposition 1 (Min-Max principle) For each positive integek,

2
)\i: Min { Mazx {W}},
Bcr(®) \ves\{oy | [|¢]|

where the minimum is taken over all tkedimensional vector subspaces
E; OfF(E).
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We need, to apply the Min-Max principle, to pick a subspagef sec-
tions (called test-sections) af on which will be computed the Rayleigh-

guotient (ﬁ HQ) The three model-spaces carry particular spinor fields

whose restrictions t@/ form natural candidates to be test-spinors, namely
Killing spinors. Recall that, given a complex constanana-Killing spinor

on (M g) is a non-zero sectio# of M satisfying, for every vector field

Z on M

VW =aZ- U

If such a section exists, it can be shown thamnust be real or purely
imaginary, and the manifold\/, g) must be Einstein with constant scalar
curvature equal tdm(m + 1)a? ([6], [10]). A Killing spinor has no zero
sinceitis a parallel section for the covariant derivafive> Vz—aZ-. There
are however big differences between real and imaginary Killing spinors,
particularly concerning the length-functigh| of such a spinor: this function
is constant om\/ whena is real, whereas it cannot be constant when
is imaginary. This is the first reason why we would be more interested
in computing the Rayleigh-quotient on real Killing spinors rather than on
imaginary ones.

Both the Euclidean space and the round sphere admit real Killing spinors;
these are parallel spinors &' *! (i.e.o = 0), andi -Killing spinors on
S™m+1. By computing the Rayleigh-quotient with such test-spinors &. B
obtained his sharp upper bounds for hypersurfac&of! or S™+1 ([3],
corollaries 4.2 and 4.3).

Conversely, the hyperbolic space admiig'—KiIIing spinors. How can
one then choose a real Killing spinor as test-spinor? The idea is as follow:
embedd™*+! in S+, compare the spinors for two conformal metrics, and
use the restriction of a real Killing spinor on the sphere to the hypersurface
M — H™ ! as test-spinor.

We first recall basic facts about spinors and conformal metrics (see
[13],[7],[4],[12] or [11]). Letg = e?*g be a conformal change of the metric

on M, whereu is a smooth function o/. The manlfold(M g) being
spin, Iet2gM be its vector bundle of spinors, and denote by Clifford
multiplication onX3 /. There exists a unitary isomorphism,

M — XM
d— P
satisfying, for every vector field on M and every sectiom in >M,

Z - b=e"Z .
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Such an isometry exists as well from onto X3, which will be denoted
similarly.

With respect to the covariant derivativeésandV¥¢ on X’ and X5 respec-
tively, the following relation holds:

__ 1 1 _
g = , -
Vio=Vxo 2XMdu M¢ 2du(X)¢,

for every vector fieldX on M and every sectiog of 2. An analogous
relation holds for the covariant derivativesandV7: for every vector field
X on M, and every sectio® of X’ M|y,

~ = 1 . — 1 —
vg(qszvxcp2X-du-¢”(2wx-y-¢2du()()q§ ®)

(remember thatlu = d(uy,,)).

2.1 Main result

When the ambient manifold/ carries anN-dimensional vector space of
«-Killing spinors for a certain metric, define

N if m is even
u(N) =

[2EL] if mis odd

(where[-] is the integer part).

Theorem 2 Assume that, for a conformal change of the megrie e?tg,
the manifold( M/, g) admits anV-dimensional vector space of real Killing
spinors. Then, fot < k& < u(N),

m2

1
2 < 2 L 9
M= Nol(a1) /M (74 R) vo + qggap 14ellizon, @)

where, in a local orthonormal basisX )<<, of T'M,

LY R(x X)),

R) = —
mim=1) | e

and K denotes the sectional curvature(oiif? . q).

Proof. Let ¥ be ana-Killing spinor on (M, g) (v is assumed to beeal).

2
Compute the Rayleigh-quotie Wzﬂ’f) ,where, asin Sect. 4 is the preim-

age of? through the isomorphism (1). For this purpose, we need first to
compare the squares 6fand D, then relate the Dirac-Witten operatdps
and Dy for metricsg andg respectively.
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Lemma 2 For every sectiow of X, we have:

1. D*¢ = D%~ 3dH -v- & — ™[0

2. 5§5 =e (ﬁ@ + 2 Ldu - &+ Zy(u) - @).

Proof. For every sectios in X, and in alocal orthonormal basi&’; ) 1 < j<m
of TM,

m
D -®)=> X; Vxv &+ X; v-Vx,&
j=1

=mH® — v D.
FromD® = v - (D¢ — ™) and this identity, we deduce that:

D2 = mH <D¢>— ”f@) —v-D (qu)—”;H@)
— mH <D¢ ”;Hqs)

9 m mH m2H?
—V~V~<D ¢_5D(H¢)_TD¢+ 1 @)

H
:mH<D¢—m2q5>+D2¢—7§dH-u-<P

H H 2H?

5 D= 5Det =0
27172
:D2¢f%dH'y-q§fm4H .

For the second point of Lemma 2, we apply formula (3) and use the fact that,
if (X;)1<j<m is alocalg-orthonormal basis df'M, then(e X )1<j<m
is a localg-orthonormal basis of M:

m
5@5 = Z 6_2UX]' - 6%]6
=1

m - = ]_—
—e“<ZXj-vXj¢—2Xj.Xj.du-cp
j=1

v(u 1
—(2>Xj . Xj s V- @—F §du(Xj)XJ . @)

=— m-1-— —
:e“<D€15+m2du-€15+mV2(u)y~d5>. O
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We deduce from the second part of Lemma 2 that

- —1
DV = —mae"W — gy v — %V(u)y .
Now computeD?2¥
D(e"W) = d(e") - W + e“DW¥

m—3

= —maoae

e'du - — %e“y(u)u '

On the other hand, calling. the scalar Laplacian of\//, g),

j—l

-V, du - W+Zg du), X;)X;-v- ¥
j=1

D(du - ¥) —ix<-%xjdu-w+§:xj-duﬁxjw
7=1
2

~du - ZX Vx, L[/—ZZdu )V, ¥
= (Au)@ + B(du) - v - ¥ — du - D¥ — 2V 4, V.
But, from (3),
. 1
Vil = aetdu - + izj(u)du v,
hence
D(du - W) = (Au)W + B(du) - v - ¥ + (m — 2)aedu - ¥

. )
m m v(u)du-v-W.

Besides,
D(v(uw)v - W) =d(v(u)) - v ¥ +mHv(u)¥ — v(u)y - D¥
=d(v(u)) v -¥+mHv(u)¥ + maev(u)y - ¥

m2—1 (w)du - v - W — —v(u)W.

SE

We then have:

1 2
D> = m2a?e®" W—aedu - Q/fTB(du) V!7+u|du|2w

SN

m—1 m
5 v(u)du-v- ¥ — Ed(l/(u)) 74
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The first part of Lemma 2 yields:

2 —1)?
D%y = mj (H? — 2Hv(u) + v(u)® + 4a’e*) ¥ + (m4)du|2w

1
— (D) + X VYo v O,

where X, andYj are the tangent vector fields di defined by:

X = —ae"du
m—1

Yo i= 2 (v(u)du — B(du)) + %d (H - v(w).

Note that, if 5 is the mean curvature of the immersionM —; (M, g),
then

H? - 2Hv(u) + v(u)? = (H — v(u))?
- €2UH§2.

According to A. El Soufiand S. llias ([9], Proposition 2),
_ -2 2
e (HZ+R() = H? + R() = —|duf’ + ~Lu,  (5)

with R(:) := R(1,9).
But, if (M, g) is Einstein with scalar curvature equal gpthenR(:) =

m. Hence, in our case}(1) = 4a?, and relation (5) yields:
2 m’ 2 1 2 1
D* = —- (H +R(L))L.U+Z|du| W+§(AU)W+X0'L[/+Y0-V-W. (6)

Since? has constant length all, the spinony) is also of constant length
on M, which we assume to be equal to 1. Taking the Hermitian product of
equality (6) with¥ gives:
m?
4
1
+§Au+<X0-W,LP>+<Y0-V~W,W>.

<D*,¢p>=— (H*+R(1)) + %|du|2

Since Xy andY, are tangent vector fields ol/, the last two terms are
purely imaginary. As the operatd is formally self-adjoint, we therefore
don’t need these terms to compute the Rayleigh-quotient. Integrating over
M, we obtain:

(D¢, ¢) _ m? .
(,9) — 4Vol(M) /M (H2+R(L))09+W/M|du|2vg.
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This holds for everyy-Killing spinor & on (]\7, 7). The Min-Max principle
thus yields the result. O

Notes

1. If the functionu is constant onZ, i.e. if the manifold(]T/f, g) itself
admitsa-Killing spinors with realy, the inequality (4) is just the one C.
Bar proved in [3] (Theorem 4.1), since in this cds@) = 4a°.

2. Incasen = 2,theintegralf,, (H* + R()) v, is the so-calledVillmore
integral. This integral is invariant under conformal changes of the metric
on M. .

3. When the ambient manifolty is simply connected, the spin structure of
(M, g)ispreserved under the action of orientation-preserving conformal
diffeomorphisms. We can therefore improve the inequality (4)%fer
{L....u(N)},

2 m?

1
A < W/M (H2 —I—R(L)) vg + Winf{”deQ},

where the infimum is taken ovel conformal diffeomorphisms of
(M, g) and functions are given byz?Vg = v*g. From the GauR equa-
tion, this inequality is equivalent to

m

2
<
Ak < 4(m —1)Vol(M) [y,

SV 1 = 1)\Vol(M) Ir@IF

1
sy )
* o Bl
Compare this result to a similar one obtained by I. Agricola and T.

Friedrich whenn = 2 (see [1], Theorem 2).

Now we examine the limiting-case in (4) for the eigenvalye

Theorem 3 If (]\7, g) carries amaximal number of reabn-paralleKilling
spinors, then the limiting-case in (4) is achieved for the smallest eigenvalue

. . 2 . A2
A1 ifand only ifdu = 0 and H* + R(:) is constant equal télm—;.

Proof. If equality is achieved in (4) foky, then forevery real Killing spinor
¥ on (M, g), we haveD?y = \24). But identity (6) yields
2
2 _ M2 L4 L
M= (H? + R(v)) + 4\du| + 2Au,

from which we deduce

XO'SP—F}/()‘V‘EP:O.
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If there exists a maximal number afKilling spinors on(]\7 g) (ie.N =
e l), thenX andYo vanish identically onV/. Indeed, fix a pomhs in

M and letd be in X M\M There exists a Killing spina? on (M g)such

that?, = @. The preceding identity says therefore thatx) - & + Yy (x) -

v, - @ = 0is valid for every® in EIMW. The representatiofil,,,11 —

C (21" of the complex Clifford algebr@l,,, , ; being injective, we deduce

thatXo(z)+Yo(z) v, = 0, fromwhichiitfollows thatX(z) = Yy(x) = 0.

Furthermore, itx # 0, thendu = 0 from the very definition ofXj. O

Note If o # 0, then in the limiting-case\; # 0 and cannot bean
eigenspinor forD.

Example Let (H™*!, ¢) be them + 1-dimensional hyperbolic space (of
constant sectional curvaturel). Consider it as the upper half-sphere

{z=(21,...,Zm+2) € Rm+2, x3 + ...+ a2 =1andz,, o > 0},

carrying the metrigy = 2290, whereg is the standard metric on the

round spheres™+1, Slnce(SmH, go) carries a maximal number of real
non-parallel Killing spinors, we can apply Theorem 2 and obtainifer
k< ol%],

m? 1
)\i < ZNOI(]W)/M (H2 - 1) Vg + 4\/,01(]\4)/ 90( Cm+2> m—l—?)vga

whereeﬁJr2 is the orthogonal projection of vectey, 2 = (0,...,0,1) in
R™*+2 onto the tangent space bf. Besides, if the limiting-case is achieved
in this inequality, then, from Theorem 3, the functiep ., is constant on
M,i.e.M is ageodesic sphere centeredat ,. Theorem 1 is hence proved.

Note that, because the group of isometriedif 1, ¢) acts transitively
onH™*!, every geodesic sphere satisfies:

2m2

/\1:T(H2—1).
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