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Abstract. We give a new extrinsic upper bound for the smallest eigenvalues
of the Dirac operator of a hypersurface. If the ambient manifold is the hy-
perbolic space, we show that its limiting case is achieved only for geodesic
spheres.
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Let (M, g) be anm-dimensional compact Riemannian manifold isomet-
rically immersed in one of the three space-forms̃M = R

m+1, Sm+1 or
H
m+1. Consider the problem of finding sharp upper bounds for the smallest

eigenvalueλ1 of the Dirac operator ofM .

Such a problem has been examined by different authors (see [2],[5],[8],[3]).
Recently, C. B̈ar gave upper bounds involving theL2-norm of the mean
curvatureH of the immersion as well as the ambient scalar curvature. More
precisely, he showed that ([3], Theorem 4.1):

λ2
1 ≤ m2

4Vol(M)

∫
M

H2vg , if M̃ = R
m+1, and

λ2
1 ≤ m2

4Vol(M)

∫
M

(H2 + 1)vg , if M̃ = Sm+1,

with equality achieved for geodesic spheres. However, ifM is immersed in
H
m+1, C. Bär proved that ([3], Theorem 4.4):

|λ1| ≤ m

2
(1 + ||H||∞),
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which is not sharp: for geodesic spheres of radiusr, the inequality is
strict, and we have ([3], p. 590)lim

r→0

2|λ1|
m(1+||H||∞) = 1. Another estimate

in terms of theL2-norm of the mean curvature and the extrinsic radius
of the hypersurface was given by the same author ([3], p.587), but the
limiting-case could not be achieved.
In this paper, we investigate this case and prove the fo llowing:

Theorem 1 Assume thatM is isometrically immersed inHm+1, seen as the
upper half-sphere carrying the metricg = e2ug0 conformal to the standard
metricg0 onSm+1. Then

λ2
1 ≤ m2

4Vol(M)

∫
M

(H2 − 1)vg +
1

4Vol(M)
||du||2L2(M),

wheredu := d(u|M ). Besides, if equality is achieved, then the functionu is
constant onM , and thereforeM is a geodesic sphere.

In Sect. 1, we recall basic facts regarding restricted spinor bundles. Then,
applying the Min-Max principle, we first prove in Sect. 2 a general estimate
when the ambient manifold admits a real Killing spinor for a conformal
change of the metric. Choosing this spinor as test-spinor in the Rayleigh
quotient constitutes the key-point of the paper: real Killing spinors play the
same role for the Dirac operator as coordinate functions do for the scalar
Laplacian, they are the most suitable test-sections for our problem. The
three problems can be uniformly treated, since the three space-forms can
be conformally embedded inSm+1, which admits real Killing spinors. The
approach El Soufi and Ilias used for the scalar Laplacian in [9] can therefore
be extended to the fundamental Dirac operator.

Acknowledgements.I thank Helga Baum, Oussama Hijazi and Sebastián Montiel for their
support during the preparation of this paper. I also thank Bertrand Morel and Emmanuel
Humbert for fruitful discussions and their careful reading of the paper.

1 Spinors and Dirac operators on an oriented hypersurface

For preliminaries on spinors and Dirac operators, we refer to [13], [7], [10],
[6], and [15]. For a recent review of the topic, see [14]. Letι : M −→
(M̃, g) be an immersion from a connected and oriented hypersurfaceM

into a Riemannian spin manifold(M̃, g). We shall always assume that the
dimensionm of M is greater than or equal to2. Letν : M −→ NM be the
unitary section of the normal bundleNM such that, for every positively-
oriented basis(X1, . . . , Xm) of TM , the basis(X1, . . . , Xm, ν) of TM̃ |M



Reilly-type spinorial inequalities

is positively-oriented. LetB be the shape-operator of the immersionι, seen
as a field of symmetric endomorphisms ofTM . We equipM with the
induced metric and denote it byg, with the associated norm| · |, the volume
elementvg and the total volumeVol(M). We respectively denote by∇ and
∇̃ the Levi-Civita connections of(M, g) and(M̃, g).

The normal bundle being trivialized byν, the manifold(M, g) admits
an induced spin-structure. We denote byΣM (resp.ΣM̃ ) the vector bundle
of spinors of(M, g) (resp. of(M̃, g)). We set

Σ :=

{
ΣM if m is even

Σ0M ⊕ Σ1M if m is odd,

where, form odd andj ∈ {0, 1}, ΣjM is the vector bundle of spinors on
M on which the complex volume form acts by(−1)jId. We denote by ‘·

M
’

(resp. ‘·’) the Clifford multiplication onΣ (resp. onΣM̃ |M ).
The vector bundleΣ can be endowed with a Hermitian inner product, de-
noted by< · , · >, and a covariant derivative∇, which satisfy the following
properties, for all vector fieldsX andY onM and sectionsψ andφ of Σ:

– < X ·
M

ψ , φ >= − < ψ , X ·
M

φ >

– X (< ψ , φ >) =< ∇Xψ , φ > + < ψ , ∇Xφ >

– ∇X

(
Y ·

M
ψ

)
= ∇XY ·

M
ψ + Y ·

M
∇Xψ.

The vector bundleΣM̃ (and thereforeΣM̃ |M ) can also be endowed with
a covariant derivativẽ∇ and a Hermitian inner product satisfying the same
properties.

Now there exists an isomorphism betweenΣ andΣM̃ |M ,

Σ −→ ΣM̃ |M (1)

ψ �−→ Ψ,

which satisfies, for every vector fieldX onM and for every sectionψ of Σ:

– X ·
M

ψ is mapped ontoX · ν · Ψ .

– ψ �−→ Ψ is a unitary isomorphism w.r.t. the respective Hermitian inner
products

– w.r.t. the respective covariant derivatives∇ and∇̃:

∇̃XΨ = ∇Xψ +
1
2
B(X) · ν · Ψ. (2)
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The Hermitian inner products onΣ andΣM̃ |M will hence be denoted by
the same symbol, with associated norm ‘| · |’. Note however that this isomor-
phism is not unique, and that it doesn’t preserve the covariant derivatives as
can be seen in (2).

The isomorphism (1) can also be chosen so that the action ofiν onΣM̃ |M
induces an endomorphism onΣ, denoted byA, defined for everyψ in Σ
by:

iν · Ψ =: A(ψ).

The endomorphismA satisfies, for every vector fieldX on M and every
sectionψ of Σ: 

A2 = Id

|A(ψ)| = |ψ|
A(X · ψ) = −X · A(ψ)

∇X(A(ψ)) = A(∇Xψ)

If m is even, the vector bundleΣ splits under the action of the complex
volume form intoΣ = Σ+ ⊕ Σ−, andA is given by:

A(ψ+ + ψ−) = ψ+ − ψ−, whereψ± ∈ Σ±.

If m is odd, and ifτ : Σ0M −→ Σ1M is the isomorphism given by the
equivalence of the spin representations, then

A =
(

0 τ−1

τ 0

)
.

In a local orthonormal basis(Xj)1≤j≤m ofTM , letD andD̃ be the operators
defined by:

D :=
m∑
j=1

Xj ·
M

∇Xj , D̃ :=
m∑
j=1

Xj · ∇̃Xj .

The operatorD̃ is calledthe Dirac-Witten operator(Cf [16]). These two
operators, acting respectively on sections ofΣ andΣM̃ |M , are related by

∀ψ ∈ Γ (Σ), D̃Ψ = ν ·
(
Dψ − mH

2
Ψ

)
,

whereH = 1
m

∑m
j=1 g(B(Xj) , Xj) is the mean curvature of the immer-

sionι.

Note 1 If m is even, the operatorD coincides with the Dirac operator
DM of the manifold(M, g). However, ifm is odd, via the isomorphism
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Σ0M
τ−→ Σ1M , callingDM the Dirac operator of(M, g) acting on the

sections ofΣ0M ,
D = DM ⊕ −DM ,

that is to say

∀φ0, ψ0 ∈ Γ (Σ0M), D
(
φ0 ⊕ τ(ψ0)

)
= DMφ0 ⊕ −τ(DMψ0).

WhenM is compact, if(·, ·) :=
∫
M < · , · > vg, with associated norm

|| · ||, the operatorD is formally self-adjoint with respect to(·, ·):
∀ψ, φ ∈ Γ (Σ), (Dψ, φ) = (ψ,Dφ).

The eigenvalues ofD are therefore real.

Lemma 1 The spectrum ofD is symmetric with respect to zero.

Proof. Just note that, for every sectionφ of Σ,

D (A(φ)) = −A (Dφ) ,

so if φ is an eigenspinor ofD for the eigenvalueλ, thenA(φ) is an eigen-
spinor ofD for the eigenvalue−λ. 
�
Note 2 If m is odd, every eigenvalue ofDM is an eigenvalue ofD. Nev-
ertheless, ifλ is an eigenvalue ofD, thenλ or −λ is an eigenvalue of
DM .

WhenM is compact, the operatorD being elliptic, its eigenvalues form
an increasing unbounded sequence. The sequence(λk)k≥1 of eigenvalues
of DM (counted with their multiplicities) will thereby be ordered with in-
creasing absolute value:

0 ≤ |λ1| ≤ |λ2| ≤ . . . ≤ |λk| ≤ |λk+1| ≤ . . . .

2 Upper eigenvalue bounds
when the ambient manifold admits a twistor-spinor

We assumeM to be compact. In order to obtain upper bounds for the small-
est eigenvalues ofD, we shall use the following well-known proposition:

Proposition 1 (Min-Max principle) For each positive integerk,

λ2
k = Min

Ek⊂Γ (Σ)

{
Max

ψ∈Ek\{0}

{
(D2ψ,ψ)

||ψ||2
}}

,

where the minimum is taken over all thek-dimensional vector subspaces
Ek of Γ (Σ).
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We need, to apply the Min-Max principle, to pick a subspaceEk of sec-
tions (called test-sections) ofΣ on which will be computed the Rayleigh-

quotient (D2ψ,ψ)
||ψ||2 . The three model-spaces carry particular spinor fields

whose restrictions toM form natural candidates to be test-spinors, namely
Killing spinors. Recall that, given a complex constantα, anα-Killing spinor
on (M̃, g) is a non-zero sectionΨ of ΣM̃ satisfying, for every vector field
Z onM̃ ,

∇̃ZΨ = αZ · Ψ.

If such a section exists, it can be shown thatα must be real or purely
imaginary, and the manifold(M̃, g) must be Einstein with constant scalar
curvature equal to4m(m + 1)α2 ([6], [10]). A Killing spinor has no zero
since it is a parallel section for the covariant derivativeZ �→ ∇̃Z−αZ·. There
are however big differences between real and imaginary Killing spinors,
particularly concerning the length-function|Ψ |of such a spinor: this function
is constant oñM whenα is real, whereas it cannot be constant whenα
is imaginary. This is the first reason why we would be more interested
in computing the Rayleigh-quotient on real Killing spinors rather than on
imaginary ones.

Both the Euclidean space and the round sphere admit real Killing spinors;
these are parallel spinors onR

m+1 (i.e.α = 0), and±1
2 -Killing spinors on

Sm+1. By computing the Rayleigh-quotient with such test-spinors C. Bär
obtained his sharp upper bounds for hypersurfaces ofR

m+1 or Sm+1 ([3],
corollaries 4.2 and 4.3).

Conversely, the hyperbolic space admits± i
2 -Killing spinors. How can

one then choose a real Killing spinor as test-spinor? The idea is as follow:
embedHm+1 in Sm+1, compare the spinors for two conformal metrics, and
use the restriction of a real Killing spinor on the sphere to the hypersurface
M ↪→ H

m+1 as test-spinor.

We first recall basic facts about spinors and conformal metrics (see
[13],[7],[4],[12] or [11]). Letg = e2ug be a conformal change of the metric
on M̃ , whereu is a smooth function onM . The manifold(M̃, g) being
spin, letΣgM̃ be its vector bundle of spinors, and denote by “· ” Clifford
multiplication onΣgM̃ . There exists a unitary isomorphism,

ΣM̃ −→ ΣgM̃

Φ �−→ Φ

satisfying, for every vector fieldZ onM̃ and every sectionΦ in ΣM̃ ,

Z · Φ = e−uZ ·Φ.
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Such an isometry exists as well fromΣ ontoΣg, which will be denoted
similarly.

With respect to the covariant derivatives∇ and∇g onΣ andΣg respec-
tively, the following relation holds:

∇g
Xφ = ∇Xφ − 1

2
X ·

M
du ·

M
φ − 1

2
du(X)φ,

for every vector fieldX on M and every sectionφ of Σ. An analogous
relation holds for the covariant derivatives̃∇ and∇̃g: for every vector field
X onM , and every sectionΦ of ΣM̃ |M ,

∇̃g
XΦ = ∇̃XΦ − 1

2
X · du · Φ − ν(u)

2
X · ν · Φ − 1

2
du(X)Φ (3)

(remember thatdu = d(u|M )).

2.1 Main result

When the ambient manifold̃M carries anN -dimensional vector space of
α-Killing spinors for a certain metric, define

µ(N) :=

{
N if m is even[
N+1

2

]
if m is odd

(where[·] is the integer part).

Theorem 2 Assume that, for a conformal change of the metricg = e2ug,
the manifold(M̃, g) admits anN -dimensional vector space of real Killing
spinors. Then, for1 ≤ k ≤ µ(N),

λ2
k ≤ m2

4Vol(M)

∫
M

(
H2 + R(ι)

)
vg +

1
4Vol(M)

||du||2L2(M), (4)

where, in a local orthonormal basis(Xj)1≤j≤m of TM ,

R(ι) :=
1

m(m − 1)

∑
1≤i
=j≤m

K̃(Xi, Xj),

andK̃ denotes the sectional curvature of(M̃, g).

Proof. Let Ψ be anα-Killing spinor on(M̃, g) (α is assumed to bereal).

Compute the Rayleigh-quotient
(D2ψ,ψ)

||ψ||2 , where, as in Sect. 1,ψ is the preim-
age ofΨ through the isomorphism (1). For this purpose, we need first to
compare the squares ofD andD̃, then relate the Dirac-Witten operators̃D

andD̃g for metricsg andg respectively.
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Lemma 2 For every sectionφ ofΣ, we have:

1. D̃2Φ = D2φ − m
2 dH · ν · Φ − m2H2

4 Φ

2. D̃g Φ = e−u
(
D̃Φ + m−1

2 du · Φ + m
2 ν(u)ν · Φ

)
.

Proof. For every sectionφ inΣ, and in a local orthonormal basis(Xj)1≤j≤m
of TM ,

D̃(ν · Φ) =
m∑
j=1

Xj · ∇̃Xjν · Φ + Xj · ν · ∇̃XjΦ

= mHΦ − ν · D̃Φ.

FromD̃Φ = ν · (Dφ − mH
2 Φ

)
and this identity, we deduce that:

D̃2Φ = mH

(
Dφ − mH

2
Φ

)
− ν · D̃

(
Dφ − mH

2
Φ

)
= mH

(
Dφ − mH

2
Φ

)
−ν · ν ·

(
D2φ − m

2
D(Hφ) − mH

2
Dφ +

m2H2

4
Φ

)
= mH

(
Dφ − mH

2
Φ

)
+ D2φ − m

2
dH · ν · Φ

−mH

2
Dφ − mH

2
Dφ +

m2H2

4
Φ

= D2φ − m

2
dH · ν · Φ − m2H2

4
Φ.

For the second point of Lemma 2, we apply formula (3) and use the fact that,
if (Xj)1≤j≤m is a localg-orthonormal basis ofTM , then(e−uXj)1≤j≤m
is a localg-orthonormal basis ofTM :

D̃gΦ =
m∑
j=1

e−2uXj · ∇̃g
Xj

Φ

= e−u
(

m∑
j=1

Xj · ∇̃XjΦ − 1
2
Xj · Xj · du · Φ

−ν(u)
2

Xj · Xj · ν · Φ +
1
2
du(Xj)Xj · Φ

)

= e−u
(
D̃Φ +

m − 1
2

du · Φ +
mν(u)

2
ν · Φ

)
. ✷
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We deduce from the second part of Lemma 2 that

D̃Ψ = −mαeuΨ − m − 1
2

du · Ψ − m

2
ν(u)ν · Ψ.

Now computeD̃2Ψ :

D̃(euΨ) = d(eu) · Ψ + euD̃Ψ

= −mαe2uΨ − m − 3
2

eudu · Ψ − m

2
euν(u)ν · Ψ.

On the other hand, calling� the scalar Laplacian on(M, g),

D̃(du · Ψ) =
m∑
j=1

Xj · ∇̃Xjdu · Ψ +
m∑
j=1

Xj · du · ∇̃XjΨ

=
m∑
j=1

Xj · ∇Xjdu · Ψ +
m∑
j=1

g(B(du), Xj)Xj · ν · Ψ

−du ·
m∑
j=1

Xj · ∇̃XjΨ − 2
m∑
j=1

du(Xj)∇̃XjΨ

= (�u)Ψ + B(du) · ν · Ψ − du · D̃Ψ − 2∇̃duΨ.

But, from (3),

∇̃duΨ = αeudu · Ψ +
1
2
ν(u)du · ν · Ψ,

hence

D̃(du · Ψ) = (�u)Ψ + B(du) · ν · Ψ + (m − 2)αeudu · Ψ
−m − 1

2
|du|2Ψ +

m − 2
2

ν(u)du · ν · Ψ.

Besides,

D̃(ν(u)ν · Ψ) = d(ν(u)) · ν · Ψ + mHν(u)Ψ − ν(u)ν · D̃Ψ

= d(ν(u)) · ν · Ψ + mHν(u)Ψ + mαeuν(u)ν · Ψ
− m − 1

2
ν(u)du · ν · Ψ − m

2
ν(u)2Ψ.

We then have:

D̃2Ψ = m2α2e2uΨ−αeudu · Ψ−m − 1
2

B(du)·ν·Ψ+
(m − 1)2

4
|du|2Ψ

− m − 1
2

(�u)Ψ +
m − 1

2
ν(u)du · ν · Ψ − m

2
d(ν(u)) · ν · Ψ

− m2H

2
ν(u)Ψ +

m2ν(u)2

4
Ψ.
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The first part of Lemma 2 yields:

D2ψ =
m2

4
(
H2 − 2Hν(u) + ν(u)2 + 4α2e2u)Ψ +

(m − 1)2

4
|du|2Ψ

− m − 1
2

(�u)Ψ + X0 · Ψ + Y0 · ν · Ψ,

whereX0 andY0 are the tangent vector fields onM defined by:

X0 := −αeudu

Y0 :=
m − 1

2
(ν(u)du − B(du)) +

m

2
d (H − ν(u)) .

Note that, ifHg is the mean curvature of the immersionι : M −→ (M̃, g),
then

H2 − 2Hν(u) + ν(u)2 = (H − ν(u))2

= e2uH2
g .

According to A. El Soufi and S. Ilias ([9], Proposition 2),

e2u (H2
g + R(ι)

)
= H2 + R(ι) − m − 2

m
|du|2 +

2
m

�u, (5)

with R(ι) := R(ι, g).
But, if (M̃, g) is Einstein with scalar curvature equal toρ, thenR(ι) =

ρ
m(m+1) . Hence, in our case,R(ι) = 4α2, and relation (5) yields:

D2ψ =
m2

4
(
H2 + R(ι)

)
Ψ+

1
4
|du|2Ψ+

1
2
(�u)Ψ+X0 ·Ψ+Y0 ·ν ·Ψ. (6)

SinceΨ has constant length oñM , the spinorψ is also of constant length
onM , which we assume to be equal to 1. Taking the Hermitian product of
equality (6) withΨ gives:

< D2ψ , ψ > =
m2

4
(
H2 + R(ι)

)
+

1
4
|du|2

+
1
2
�u+ < X0 · Ψ , Ψ > + < Y0 · ν · Ψ , Ψ > .

SinceX0 andY0 are tangent vector fields onM , the last two terms are
purely imaginary. As the operatorD is formally self-adjoint, we therefore
don’t need these terms to compute the Rayleigh-quotient. Integrating over
M , we obtain:(

D2ψ,ψ
)

(ψ,ψ)
=

m2

4Vol(M)

∫
M

(
H2 + R(ι)

)
vg +

1
4Vol(M)

∫
M

|du|2vg.
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This holds for everyα-Killing spinorΨ on(M̃, g). The Min-Max principle
thus yields the result. 
�
Notes

1. If the functionu is constant oñM , i.e. if the manifold(M̃, g) itself
admitsα-Killing spinors with realα, the inequality (4) is just the one C.
Bär proved in [3] (Theorem 4.1), since in this caseR(ι) = 4α2.

2. In casem = 2, the integral
∫
M

(
H2 + R(ι)

)
vg is the so-calledWillmore

integral. This integral is invariant under conformal changes of the metric
onM̃ .

3. When the ambient manifold̃M is simply connected, the spin structure of
(M̃, g) is preserved under the action of orientation-preserving conformal
diffeomorphisms. We can therefore improve the inequality (4): fork ∈
{1, . . . , µ(N)},

λ2
k ≤ m2

4Vol(M)

∫
M

(
H2 + R(ι)

)
vg +

1
4Vol(M)

inf
{

||dv||2
}
,

where the infimum is taken overall conformal diffeomorphismsγ of
(M̃, g) and functionsv are given by:e2vg = γ∗g. From the Gauß equa-
tion, this inequality is equivalent to

λ2
k ≤ m

4(m − 1)Vol(M)

∫
M

S vg +
m

4(m − 1)Vol(M)
||τ(ι)||2

+
1

4Vol(M)
inf
{

||dv||2
}
.

Compare this result to a similar one obtained by I. Agricola and T.
Friedrich whenm = 2 (see [1], Theorem 2).

Now we examine the limiting-case in (4) for the eigenvalueλ1.

Theorem 3 If (M̃, g)carriesamaximal numberof realnon-parallelKilling
spinors, then the limiting-case in (4) is achieved for the smallest eigenvalue

λ1 if and only ifdu = 0 andH2 + R(ι) is constant equal to4λ
2
1

m2 .

Proof. If equality is achieved in (4) forλ1, then forevery real Killing spinor
Ψ on (M̃, g), we haveD2ψ = λ2

1ψ. But identity (6) yields

λ2
1 =

m2

4
(
H2 + R(ι)

)
+

1
4
|du|2 +

1
2
�u,

from which we deduce

X0 · Ψ + Y0 · ν · Ψ = 0.
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If there exists a maximal number ofα-Killing spinors on(M̃, g) (i.e.N =
2[m+1

2 ]), thenX0 andY0 vanish identically onM . Indeed, fix a pointx in
M , and letΦ be inΣxM̃ |M . There exists a Killing spinorΨ on(M̃, g) such
thatΨx = Φ. The preceding identity says therefore thatX0(x) ·Φ+Y0(x) ·
νx · Φ = 0 is valid for everyΦ in ΣxM̃ |M . The representationClm+1 −→
C(2[m+1

2 ])of the complex Clifford algebraClm+1 being injective, we deduce
thatX0(x)+Y0(x)·νx = 0, from which it follows thatX0(x) = Y0(x) = 0.
Furthermore, ifα �= 0, thendu = 0 from the very definition ofX0. 
�
Note If α �= 0, then in the limiting-caseλ1 �= 0 andψ cannot bean
eigenspinor forD.

Example Let (Hm+1, g) be them + 1-dimensional hyperbolic space (of
constant sectional curvature−1). Consider it as the upper half-sphere

{x = (x1, . . . , xm+2) ∈ R
m+2, x2

1 + . . . + x2
m+2 = 1 andxm+2 > 0},

carrying the metricg = 1
x2

m+2
g0, whereg0 is the standard metric on the

round sphereSm+1. Since(Sm+1, g0) carries a maximal number of real
non-parallel Killing spinors, we can apply Theorem 2 and obtain: for1 ≤
k ≤ 2[m

2 ],

λ2
k ≤ m2

4Vol(M)

∫
M

(
H2 − 1

)
vg +

1
4Vol(M)

∫
M

g0(eTm+2 , e
T
m+2)vg,

whereeTm+2 is the orthogonal projection of vectorem+2 = (0, . . . , 0, 1) in
R
m+2 onto the tangent space ofM . Besides, if the limiting-case is achieved

in this inequality, then, from Theorem 3, the functionxm+2 is constant on
M , i.e.M is a geodesic sphere centered atem+2. Theorem 1 is hence proved.

Note that, because the group of isometries of(Hm+1, g) acts transitively
onH

m+1, every geodesic sphere satisfies:

λ2
1 =

m2

4
(
H2 − 1

)
.
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9. A. El Soufi S. Ilias, Une ińegalit́e de type Reilly pour les sous-variét́es de l’espace
hyperbolique, Comment. Math. Helv. 672 (1992), 167–181

10. T. Friedrich, Dirac-Operatoren in der Riemannschen Geometrie, Adv. Lect. Math.,
1997

11. O. Hijazi, Spectral properties of the Dirac operator and geometrical structures, Pro-
ceedings of the summer school on geometric methods in quantum field theory, July
12–30, 1999 (Villa de Leyva, Colombia), World Scientific, Physics, 2001

12. N. Hitchin, Harmonic spinors, Adv. in Math.14 (1974), 1–55
13. H.B. Lawson M.L. Michelsohn, Spin Geometry, Princeton University Press, 1989
14. B. Morel, Eigenvalue Estimates for the Dirac-Schrödinger Operators, J. Geom. Phys.

38 (2001), 57–74
15. A. Trautman, The Dirac operator on hypersurfaces, Acta Phys. Polon.6 (1995), 1283–

1310
16. X. Zhang, Lower bounds for eigenvalues of hypersurface Dirac operator, Math. Res.

Letters5 (1998), 199–210


