Rigidity results for Riemannian spin® manifolds
with foliated boundary
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Abstract

Given a Riemannian spin® manifold whose boundary is endowed with a
Riemannian flow, we show that any solution of the basic Dirac equation
satisfies an integral inequality depending on geometric quantities, such
as the mean curvature and the O’Neill tensor. We then characterize the
equality case of the inequality when the ambient manifold is a domain of
a Kéhler-Einstein manifold or a Riemannian product of a K&hler-Einstein
manifold with R (or with the circle S*).
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1 Introduction

The spectral properties of the Dirac operator on a Riemannian spin manifold
have led to several geometric and rigidity results. For example, spinorial tech-
niques have been used to give simple proofs of some classical results, as the
Alexandrov theorem [I8] [T5].

On a compact spin manifold N™*2 with boundary M satisfying some curvature
assumptions, O. Hijazi and S. Montiel [I3] proved that there exists a one-to-
one correspondence between Killing spinors on M and parallel spinors on N. In
particular, the boundary has to be connected and totally umbilical. This result
has led to the following characterization of the round sphere as the boundary of
the disk by: A complete Ricci-flat Riemannian manifold of dimension at least
3 whose mean-convex boundary is isometric to the round sphere is a flat disk
[13, Cor. 6]. In a more general setting, S. Raulot showed in [26] that the cor-
respondence occurs between parallel spinors on N and solutions of the Dirac
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equation on M, i.e. a spinor field ¢ satisfying Dy, = "T'HHOQO for some partic-
ular function Hy with Hy < H where H denotes the mean curvature of M. As an
application, he proved the following rigidity result [26, Cor. 4]: If N has vanish-
ing sectional curvature along the boundary (assumed to be simply connected),
it has to be flat.

In a different geometric context, the authors in [4] established rigidity results
for spin manifolds whose boundary carries a Riemannian flow [30]. That means
the boundary is foliated by the integral curves of some unit vector field, say £, in
a way that the metric on M stays constant along those curves. We will refer to
the word basic to characterize those objects that are constant along the curves
(called also leaves). The idea is to check whether solutions of the so-called basic
Dirac equation on the boundary, that is, a spinor field ¢ satisfying the equation

n+1
9 HOQDa (1)

are in correspondence with parallel spinors on the whole manifold N. Here, D,
is the basic Dirac operator (see [9,[10]) and Hj is a basic function defined on the
boundary. It turns out that, under some assumption relating the mean curvature
to the O’Neill tensor of the flow [25], this correspondence is valid. In particular,
this characterizes the Riemannian product S x S" as the boundary of S' x B,
where B is the flat unit disk in R"*! [4, Cor. 4.7].

DbQD =

The aim of this paper is to get similar rigidity results for manifolds endowed with
spin® structures. Recall that those structures are the complex analogue to spin
structures. They have got really important since the announcement of Seiberg-
Witten theory [7] (see references therein) whose applications to 4-dimensional
geometry and topology are already notorious. From an intrinsic point of view,
spin, almost complex, complex, Kéahler and Sasaki manifolds have a canonical
spin® structure. From an extrinsic point of view, the restriction of spin® spinors
is an effective tool to study the geometry and the topology of submanifolds
[16]. When shifting from spin to spin® geometry, the situation becomes more
general since the Dirac operator will not only depend on the geometry of the
manifold but also on the connection of the auxiliary line bundle associated with
the spin® structure. Thus, new examples have appeared in several classification
results [20, [TT], where less geometric and topological restrictions are imposed on
the manifold and more flexibility is offered on the choice of a connection (and
hence on the curvature 2-form) on the auxiliary line bundle defining the spin®
structure.

Throughout this paper, we will consider spin® manifolds with foliated boundary.
We will look at the solutions of the basic Dirac equation on the boundary, i.e.,
Equation , where D is now the spin® basic Dirac operator. First, we start
by restricting the spin® structure on N to the boundary M and define a spin®
structure on the normal bundle @ of the flow by taking the same auxiliary bundle
as the one on M. Then, we define a connection 1-form on @ by modifying the
one on M in a way to get a basic connection. It turns out that the parameter
chosen to make the connection 1-form basic is related to the curvature FM of
the auxiliary bundle of M via Equation @ Second, we show that solutions
of the basic Dirac equation satisfy a spin® integral inequality derived from [14]
Prop. 9]. Indeed, if we denote by F'V the curvature 2-form on the auxiliary line
bundle defining the spin® structure on N, we have:



Theorem 1.1 Let (N"*2 g) be a compact spin® manifold with boundary. As-
sume that the scalar curvature Scal™ of N satisfies Scal™ > 2["7'*'2]% |FN|, that
the boundary M of N carries a minimal Riemannian flow given by a unit vector
field € and that the mean curvature H is positive. Assume also that the connec-
tion on the normal bundle Q is basic, i.e. @ is fulfilled for some basic function 0,
as well as the existence of a basic section ¢ of XM such that Dyp = %g@

for some nonnegative basic function Hy on M. Then the following inequality
holds:

1
0< [ g (e 0P - B2 ol (@ -i0)eP)dvy, (2
v H M
where € is the 2-form associated to the O’Neill tensor field.

We mention that spin manifolds correspond to the case where the function 6
vanishes everywhere and therefore Inequality is analogous to that in [4]
Thm. 3.1]. The equality case of Inequality is characterized by the existence
of two parallel spinors on N that project (through some orthogonal pointwise
projection, see Proposition to the solution . Therefore and according to
A. Moroianu classification of spin® manifolds with parallel spinors [20], it turns
out that, besides spin manifolds, two natural categories of manifolds occur in
the limiting case: Either N is a domain in some Kéahler-Einstein manifold of
nonnegative scalar curvature (n is even) or in some Riemannian product of a
Kihler-Einstein manifold with R (n is odd) (see Proposition [3.3).

In the even dimensional case, i.e. IV is a Kéahler manifold endowed with its
canonical spin® structure, the limiting case of (2)) is characterized in the following
theorem:

Theorem 1.2 Under the assumptions ofTheorem let furthermore (N, g, J)
be Kdahler, endowed with its canonical spin® structure. Then (N,g) is Einstein
with nonnegative scalar curvature and Inequality 1s satisfied by p. Moreover,
is an equality for some nonzero o if and only if the following properties hold:

1. Up to changing £ into —& and hence 0 into —0, we have £ = —Jv. In
particular, [J, W|Q] = 0 and the vector field £ is a pointwise eigenvector
for the Weingarten map W, that is, W& = X, for some A € C*°(M,R).

2. The function 6 is constant and equal to \ + %tr (W|Q).

If those properties are fulfilled, then the spinor field ¢ is the restriction of a
parallel spinor of N and is itself transversally parallel, in particular Hy = 0.
Furthermore, §(\) = & (tr (W|Q)) =0.

In particular when N is a domain in either CP"%* or (CH"TM, then the equality
holds in if and only if M is a tube around a totally geodesic CP* (0 <
k< ”T_Q) or a tube around a totally geodesic CH* (where 0 < k < 5), see
Proposition On the other hand and under some assumption relating H,

Hy, Q and 0, we show that the equality in is realized and in this case, the



flow is transversally Einstein-Kéahler and the manifold M is n-Einstein Sasakian
manifold (see Corollary [5.4)).

In the odd dimensional case, i.e. when IV is a domain in the Riemannian product
Ni; x R or Ny x S! where N; is a closed Kéhler-Einstein manifold, we obtain
the following result:

Theorem 1.3 Under the assumptions of Theorem assume furthermore N
to be a domain in the Riemannian product Ny x R or Ny x S' where N is a
closed Kdihler-Finstein manifold. Then the equality case is realized in if and
only if N is isometric to the Riemannian product A x S' with & = +0, where
A is a domain in Ny. If those conditions are satisfied, then ¢ is some pointwise
projection of a parallel spinor on N1, 8 =0 and Hy = H.

Note in particular that equality can only occur if N lies in N; x S', the case
where N C N; x R leading to the noncompactness of M, see proof of Lemma
[.6] The proof of Theorem [I.3]is splitted into several steps. First, we prove that
N is isometric to the product A x S' for some compact domain A with boundary
M; (see Lemma . Second, we show after some technical computations that
the vector field ¢ defines a Riemannian flow on M; by some vector field &;. In
this case, the normal bundle @, (of even rank) of the flow is a subbundle of Q.
After restricting the spin¢ structure on N to the bundle @)1, we prove that the
spinor ¢ defines another spinor field ¢ which is a solution of the basic Dirac
equation on M; and realizes the equality case in for the even dimensional
case (see Lemma . This last part is proved with the help of Theorem |1.2
Finally, we show that this leads to £ = +£0; and H = H,.

2 Preliminaries on Riemannian flows and man-
ifolds with boundary

In this section, we recall some preliminaries on spin® Riemannian flows (see [30],
[12]) and the geometry of manifolds with boundary. For more details, we refer
to [19, [7], [8] and [3].

2.1 Spin® Riemannian flows

Let (M™*1, g) be a Riemannian manifold endowed with a Riemannian flow given
by a unit vector field £. That is, the Lie derivative of the metric with respect to
§ satisfies Leg),, = 0 (see [27]). It is now well-known that, if that condition is
fulfilled, then there exists a metric connection V on the normal bundle Q = &+

which is called transversal Levi-Civita connection and which is defined, for any
section Y € T'(Q), by

lX,Y] if X =¢,
VXy = (3)
n(VMY) if X L¢,



where m: TM — @ denotes the orthogonal projection [30]. The transversal
Levi-Civita connection is related to the usual Levi-Civita connection via the
following Gauss-type formulas [12]: for all sections Y, Z in T'(Q), we have

VM7 =VyZ — g(hY, Z)¢,

(4)
VMZ =VeZ +hZ — w(2)E,

where h := VM¢ is the O'Neill tensor and & := h¢ is the mean curvature of the
flow.

From now on, we assume that M is a spin® manifold. That means, there exist
a Spin;,  ;-principal bundle Spin®(M) and a U(1)-principle bundle Py, M over
M (called the auziliary line bundle of the spin® structure) together with a
double covering n : Spin°(M) — SOM x Py, M such that n(ua) = n(u)ne(a),
for every u € Spin®M and a € Spin{, ; where 79: Spinj, ,; — SO,41 x St is the
2-fold covering. Here, SOM denotes the SO,,1-principal bundle of orthonormal
direct frames on T'M. As for the spin case, the decomposition of the tangent
bundle of M into TM = RE @ @ allows to induce the spin® structure on M
to a spin® structure on the normal bundle @ (see [2 4] for details). The spin®
structure on @ is given by the pull-back of the one on M via the inclusion map
SOQ — SOM, where SOQ denotes the SO,,-principal bundle of orthonormal
direct frames on ). The auxiliary line bundle of the spin® structure of @ is
chosen to be the same one as on M.

Choice of connections: We choose a connection 1-form A on the auxiliary
line bundle Py, M — M and define a connection 1-form on the auxiliary line
bundle of the spin® structure of @@ by modifying the connection 1-form on the
auxiliary line bundle of the spin® structure of M: Pick any real 1-form on M,
say «, and define a new connection 1-form on Py, M — M by

AQ =AM _jq, (5)

This makes sense since the difference of any two connections 1-forms on a Uj-
bundle is given by an imaginary-valued form on the base M. Since, we need to
have an F-bundle Py, M in the sense of [5, [6] (in order to define later the basic
Dirac operator), we wish the connection A? to be basic, which is equivalent to
the condition £1F? = 0 on M, where F? € Q?(M,iR) is the curvature 2-form
associated to A9, see e.g. [5, p.328]. This last identity means that

EFM =i da.
For the sake of simplicity, we assume « to be proportional to £°, that is, that
a = a(é) - €. Setting 0 := a(¢) € C°(M,R), the condition to be fulfilled for
A@ to be basic becomes equivalent to

EFM = —idf + ik +iE(0)€ (6)

on M. Namely, E.FM (¢) = 0 = (—idf + i0x" +i£(0)€”) (€) (we have g(k, &) =0



because of g(£,£) = 1) and, for any X € I'(Q),
(i62d) (X) = ida(g, X)

i €(a(X)) — X (a(§)) —a (¢ X])
——

0
i{=X(0) — g([&, X],£)a(8)}
= i{-X(0) +9(X,V)0},

which implies (@

Coming back to spin® structures, the spinor bundle XM is canonically identified
with the spinor bundle of @, denoted by (@, for n even and with the direct
sum XQ ¢ XQ for n odd. In the same way, one can also identify the Clifford
multiplications “M” in XM and “é” in 3@ as follows: For any section Z € T'(Q)

and ¢ € T'(XM), we have

ZMgo:Zégo, for n even
fMZMcp:(ZQ@fZQ)ga, for n odd.

The Levi-Civita connections on XM and 2@ satisfy the formulas [12] eq. (2.4.7)]

M _ 1 1 16
Végo —Vg(P‘FEQM(,O‘FngHJLIQO‘F%SD

M 1 (7)
VZQO ZVZQO+§§A'/[hZA-/ILp,

where  is the 2-form associated to the tensor h defined for all Y, Z € I'(Q) by
(Y, 2) = g(hY, 2).

Next, we define the basic Dirac operator (see [9] and [10]) as being

n
1
Dy=>Y ¢ - Ve, — 5k -,

where {e;}i=1,... n is a local orthonormal frame of I'(Q). Here and in the follow-
ing, we assume the mean curvature to be basic (otherwise, we might work with
its basic projection [28]), i.e. Vek = 0. Recall that the basic Dirac operator D
is defined on the set of basic sections (sections of the spinor bundle ¥.Q) satis-
fying Ve = 0) and it preserves that set. It is also a transversally elliptic and
essentially self-adjoint operator, if M is compact. Therefore, it has a discrete
spectrum by the spectral theory of transversal elliptic operators [B] [@].

As a direct consequence of Equations , the transversal Levi-Civita connection
commutes with the Clifford action of £. In particular, this allows to prove the
following identities for the basic Dirac operator. For n even (resp. n odd) and
for any basic spinor field ¢, we have

Dy (¢ Iy @) =—¢ M Dy (resp. Dy(§ ¥ p)=¢ V Dyp). (8)



Finally, we recall the relation existing between the Dirac operator on M and
the basic Dirac operator:

DM:Db_%gMQM +%§ i for n even

(9)
Dy=—¢ - (Dy®—Dy) — 3¢ AL +5¢ 4o fornodd.

2.2 Manifolds with boundary

We review some well-known facts about spin® manifolds with boundary (see
[13] (17, 18] for the spin case). Let (N"*2, g) be a Riemannian spin® manifold of
dimension n + 2 with smooth boundary M = ON. As before, the existence of
the (inward) unit vector field ¥ normal to the boundary allows to define a spin®
structure on M by taking the pull back. We can define two spinor bundles on
the boundary, the intrinsic bundle XM and the extrinsic one S = X N),,. The
data of the extrinsic bundle is related to the one on N by:

Xé@ = X-v-p
1
Vie = V§(¢+§WX~S@ (10)
n+1
Dsp = ——Hp—v-Dyg -V,

“on

where is the Clifford multiplication on NV, the tensor W is the Weingarten
map given for all X € I'(TM) by WX = —V ¥, the spinor field  is a section in

Sand H = %HTrace(W) is the mean curvature of M. The operator Dg, called

. . . . 1
the extrinsic Dirac operator, acts on sections on S as Dg = ?:1 € s Vfi,

where {e, -+ ,e,41} is a local orthonomal frame of T'M.

On the other hand, the extrinsic spinor bundle can be identified with the intrinsic
one in a canonical way depending on the dimension of N. Namely, if n is odd, the
tuple (S, “-g”, VS, Dg) can be identified with (XM, ¢ " " VM Dy) whereas
for n even it can be identified with (XM @ XM, ¢ Iy O— " " VMo VM Dy @
—Dyr). Moreover, using the first two equations in and the Gauss formula,
one can prove that the following relations hold for all X,Y € T'(T'M)

VS(Y) =V¥Y - +Y - VS,
(11)
V() = vV
and that,
Ds(l/') = —U- Ds. (12)

Equality means that the spectrum of Dg is symmetric with respect to zero
and if n is even the Dirac operator on M commutes with the action of v, that
is,

DM(Z/-CI)):V-D]W(I) (13)

for any spinor field ® € I'(XM).



We define the operators Py as being the pointwise orthogonal projections from
S onto the +1-eigenspaces corresponding to the +1-eigenvalues of the operator
iv-on S, i.e. Py := 1 (Id & iv-). They satisfy

P.(X)=X-Pr and Py(v)=v-Py,
for all X € T'(T'M). This implies that DgPy = P+Ds.

3 An integral inequality on manifolds with
boundary

In [I4], O. Hijazi and S. Montiel prove an integral inequality relating the Dirac
operator on the boundary M of a spin manifold N applied to a spinor field to
the norm of that spinor. In the following, we will state a similar inequality for
spin® manifolds.

Proposition 3.1 Let (N"*2 g) be a compact spin® manifold with boundary
such that Scal™ > Cnaa| FN|, where FN is the curvature of the auxziliary line

bundle and cp49 = 2[%”2]%. If the mean curvature H of the boundary M is
positive, then any spinor field p € T'(S) satisfies the inequality
1 n+ 1)
0< [ (5 Dsel? - gl (1)
M

where dvg is the volume element on M. Moreover, the equality holds in
if and only if there exist two parallel spinor fields ¥, € T(XN) such that
Py = Py and P_p = P_9 on the boundary. In that case, the scalar curvature
of N is equal to ¢,y o|FN|, in particular is nonnegative.

Proof: The proof of the inequality is based on the spinorial Reilly formula estab-
lished in [22] p.142] and an appropriate boundary value problem. We will prove
the inequality for n odd and will use the different identifications according to
Subsection 2.2l The same can be done for n even.

For any spinor field ¢ € I'(XN), one has [22], p.142]

n+1 1
| (D) = sy = g [ Sl epualFY DI,
M N

n+1 9
— D . 15
n | 1owub, (15)

Equality holds in if and only if ) is a twistor spinor and

PNy = ~ 2| PNy, (16)
Recall here that a twistor spinor 1 is a section of the spinor bundle of N sat-
isfying the differential equation V{1 = —n%_QX - Dy for any X € T'(TN). In

the following, we will follow the same proof as in [I4, p.11]. For this, consider
for any spinor field ¢ € I'(S), the following boundary value problem:

Dy =0 on N,

Py =P,p on M.



The uniqueness and the smoothness of the solution of the boundary problem is
shown e.g. in [I4] Prop. 6]. By inserting the solution ¢ into Inequality , we
get after using Scal™ > ¢, 1o FN| that

[ (Darbiw) = T2 HIR)s, 2 0 a7)
M

Here, we notice that the equality in is realized if and only if the spinor ¢ is
parallel since it is a twistor-spinor lying in the kernel of the Dirac operator Dy
of N. In that case, Equality is automatically satisfied as a consequence of
the Schrédinger-Lichnerowicz formula.

Now by decomposing the spinor field ¢ into ¢ = P+21ZJ + P_1 and using the

> 0, Inequality be-

pointwise inequality ‘ 7\/% Dy Piop — 71-2&-1 HP_4)
comes ’

1 n+ 1)
| Gioupael = P2 P g)s, 2 0 (18)

Finally, considering a boundary problem for Dy where we replace the condition
boundary P, by P_, we get a similar equation as with the minus sign.
Summing the two equations, we deduce the desired inequality. O

As we have seen, the limiting case of is characterized by the existence of
parallel spinors on the ambient manifold. Recall that the boundaryless complete
Riemannian spin® manifolds carrying parallel spinors were classified by A. Mo-
roianu in [20, Thm. 1.1]: The universal cover of such a manifold is isometric to
the Riemannian product of a simply connected Ké&hler manifold with a simply
connected spin manifold carrying parallel spinors; the classification remains true
even locally. In the following, we will determine which family of such products
satisfies the condition Scal®™ > ¢, 9| F| required for Proposition We begin
with examining that condition on K&hler manifolds:

Proposition 3.2 Let (N"*2,g,J) be a Kdihler manifold endowed with its
canonical spin® structure, in particular FN = —iRicy o J is the complexified
Ricci form of N. If Scal™ > ¢, 5| FN| holds, where ¢, o = 2[%]%, then that
inequality is an equality and N is Einstein with nonnegative scalar curvature.

Proof: Choose a local orthonormal basis (ej)1<j<n+2 of T'N made out of point-
wise eigenvectors for the Ricci tensor of N, that is, Ricy(e;) = u; - €; for some
real eigenvalue p; and all j € {1,...,n + 2}. Then Scaly = 2?212 w; and we
have

Cn+2 - ‘FN| =




so that the assumption Scaly > ¢, 12| F| becomes

n+2 n+2
IESCE=ID W
Jj=1 j=1

But, by the Cauchy-Schwarz inequality, Z?;Z pi < Vn+2- ,/Z?;Q (3.

Therefore, we necessarily have the equality Z?LQ i = Vn+2- 1/2?212 13
and therefore all 1; are equal and nonnegative. This means precisely that the
Einstein condition is satisfied and that the Einstein constant is nonnegative. [

Using this result, we deduce:

Proposition 3.3 Let (N™,g) be a Riemannian spin® manifold carrying a par-
allel spinor such that Scal™ > cm|FN| where FN is the curvature of the auxil-
iary line bundle of the spin® structure. Then N is locally isometric to either a
spin manifold with parallel spinors, a Kdahler-Einstein manifold of nonnegative
scalar curvature or the Riemannian product of a Kdhler-FEinstein manifold of
nonnegative scalar curvature with R.

Proof: Since all requirements are of algebraic type, we may assume that N is
simply connected. As mentioned before, we know that N is locally isometric
to the Riemannian product Ny x Ny where N; is Kahler and N, is a spin
manifold carrying parallel spinors (and which is in particular Ricci flat). Assume
that N7 is not a point, otherwise we are reduced to the spin case. Then the
condition Scaly > ¢,,|FV| can be written in terms of the data of N;. Namely,
Scaly = Scaly, and |FV| = |FN1|. Hence if we denote by n; the dimension of
Ny, we get
Scaly, > | FN| > ¢, |FN.

Since N; is Kéhler, we deduce from Proposition [3.2] that N; is Einstein-Kéhler
and also the fact that c¢,, = ¢,,. Mainly, that means either m = n; orm = n;+1.
Therefore, N is locally Kahler or the product of a Kéhler manifold with R. O

4 Hypersurfaces of Kahler-Einstein manifolds

In this section, we consider real hypersurfaces in any Kahler manifold. We first
characterize the condition for the naturally induced flow-structure to be Rie-
mannian and minimal and then study the n-umbilicity condition on the hyper-
surface.

Proposition 4.1 Let M™! be any immersed real oriented hypersurface in a
Kdhler manifold (N"*2,g,.J). Denote by v the unit normal inducing the orien-
tation along M, by & the tangent vector field —Jv on M and by Q := ¢+ C TM
the horizontal distribution on M. Then the following holds:

10



1. For every X € TM, we have V¢ = JWX — g(WE, X)v. In particular,
(M, g,€) is a minimal Riemannian flow if and only if [J7 W|Q} =0 and
M is Hopf, that is, that there is a function A\ on M such that W& = A\
on M, where W := —VNv is the Weingarten map of M.

2. If (M, g,§) is a minimal Riemannian flow, then the complex structure J
induces a Kdhler structure on the normal bundle Q of the flow with respect
to the transversal Levi-Civita connection defined by .

3. If (M,g,§) is a minimal Riemannian flow and N is Einstein, then

¢ (tr (W) = 0.
Proof:

1. First note that ¢ has unit length, in particular A := VM¢ induces an
endomorphism field of Q. For every X € I'(T'M),

VY E=VRE—gWX, Qv = —J(VXv)—g(WE X))y = JWX—g(WE, X )v.

In particular, Vé\/f & = 0 if and only if W¢ is pointwise proportional to &,
that is, if M is Hopf. Furthermore, h is pointwise skew-symmetric if and
only if (JW)* = —JW on Q, where (-)* denotes the pointwise g-adjoint;
but (JW)* = W*J* = —WJ on @, which implies the first statement.

2. Since ¢ = —Jv, the complex structure J maps the normal bundle @ to
itself. To prove that J defines a Kéhler structure, it is sufficient to show
that it is parallel with respect to the transversal connection V. But for
any section X € I'(Q),

(VeJ)(X)

Ve(JX) = J(VeX)

VM (IX) = h(JX) = J(V¥X) + J(hX)
VE(IX) = gWE TX )y = J(VEX) - g(WE, X)E
(VET)(X) = Ag(&, TX)v — Ag(€, X)¢

= 0.

=

The next to last equality comes from the Gauss formula and the first
statement. Now, for Y, Z € I'(Q)), we compute in the same way

(VyJ)(2)

Vy(JZ) = J(VyZ)

VM IZ 4+ g(hY, 2)¢ — J(V¥ Z) — g(hY, Z)v
VYIZ — gWY,JZ)v + g(hY, JZ)¢ — J(VY Z)
—g(WY, Z)§ — g(hY, Z)v

0,

=

from which VJ = 0 follows.

3. We make use of the following well-known formula, valid as soon as the
ambient manifold is Einstein:

SW = —(n+ 1)dH, (19)

11



where W = Zn+1(VMW)( ;) for any local orthonormal basis
(ej)lngnJrl of TM. Choosmg thls local orthonormal basis such that
ent+1 = &, we have

n+1
SWe = =3 g(VIWEe)

jl:—l n+1
= —Zg (VEW)©),e5) = D_g(W(Vei€).e)

n+1 n
= —Zg((vﬁfwxej),f) g(W (Ve ¢ Zg (hej), e))
= (OW)(&) = Mg(VEE € —g (W, h)

0 0

= (W)

= —(n+1)&(H) by (19)
= =) =& (tr (W)
On the other hand,

s(We) = 5(A)
= —E(\)+X-0¢

n+1

= )= a(Vlee)

Jj=1
:—/\—/\-nh,]/\- v,
30 Z:: €jr€5) =A-g(Ve &€)

0

Comparing both identities, we obtain
EN) =€) + ¢ (tr (W),
from which & (tr (W| Q)) = 0 follows.

O

Next we look at conditions for certain real hypersurfaces in Kahler manifolds to
have constant principal curvatures:

Proposition 4.2 Under the assumptions of Proposition[L.1], let N be Einstein,
the flow induced by & := —Jv be a minimal Riemannian flow and 6 be constant
and equal to A+ 3tr (W|Q). If W), = pldq for some p € C>°(M,R), then unless
n = 2 both A and p are constant. In the case where N has constant holomorphic
sectional curvature, the same conclusion holds even in the case where n = 2.

Proof: We compute W using and choosing (e;)i1<j<nt1 with We; = pu-e;
for all 1 < j < n and e,41 = &, so that We,y1 = A - enp1. Note that, for
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any 1 < j < n, the (local) vector field Vé\fej is transversal: for g(VéVj[ej,{) =
—g(Vé‘;If, ej) = 0 since h is skew-symmetric. We compute, also using the fact
that x = 0:

ow = -

I

(V¥ (- e5) = W(Tej)) = TH () + W (V)

J

I
-

<€j(u)€j +uVile; — Mvé\fey‘) —&(N)E
1

<.
Il

— &€

Comparing with , we obtain the following identity:

|
QL
=
)

ndp +d\ = dp, + (M€,
Putting X = ¢, we first deduce that £(u) = 0, so that the last identity becomes
(n—1)dp+dx —E£(N)E = 0.

But, since we have assumed 6 = A-"4* to be constant, we also have §du-+d\ = 0,
from which we deduce that £(A\) = 0 and (n—2)du = 0. If n # 2, we can conclude
that dp =0 = d\.

In the case where IV has constant holomorphic sectional curvature 4c with ¢ > 0,
its curvature tensor is given by the following identity [23, Theorem 1.1]:

RYyZ=—4c(X NY + JX AJY +29(JX,Y)J) Z, (20)
where (XAY)Z = g(X, Z)Y —g(Y, Z) X. Now we compute, for any X,Y € I'(Q),
(VEW)(Y) = VX (WY)-W(VYY)

= V¥uy)-w(v¥y) where VY = VxY — g(hX,Y)¢

= XY +u(VxY —g(hX,Y)§) - W(VxY — g(hX,Y)§)

(1)
(WY +pu(VxY — pg(JX,Y)E) — nVxY + Aug(JX,Y)E
()Y + pA —p)g(JX, Y)E,

M
X
M
X

X
= X
where we used that h = JW and W¢ = A. Hence, we deduce that for any
XY eT(Q),

(VIW)(Y) = (V¥ W)(X) = X(0)Y =Y (1) X +2u(A — p)g(JX, Y)E.

By Codazzi identity (Vi W)(Y)—(V{W)(X) = —RY y v, therefore yields,
for any X, Y € I'(Q),

X(w)Y =Y ()X +2p(A — p)g(JX,Y)E = —=RY yv = =8cg(JX, Y )¢,

from which X () = 0 follows (choosing X,Y € I'(Q) pointwise linearly inde-
pendent, which is always possible if n > 2). We can conclude that p and hence
also A are constant on M. O

The condition 6 be constant and equal to A+ %tr (W‘ Q) comes from Proposition

BTl below.
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Proposition 4.3 Under the assumptions of Proposition let the flow in-
duced by § := —Jv be a minimal Riemannian flow. If W), = p-1dq for some

w € R*, then (M, % “0c D gQ,u§> 18 a Sasakian manifold.

Proof: Recall that a Riemannian flow is Sasaki if and only if it is minimal and
h = VM¢ is a transversal Kéhler structure on @, that is, h? = —Idg and
Vh = 0. Recall also that, for any ¢ € R*, the triple (M, g; := t2g¢ ® gq, 1) is
a Riemannian flow with h; = th, k; = k and V! = V on Q. In our situation, if
W), = p-Idg for some p € R*, then h = JW|, = pJ with VJ = 0, so that
%h = J defines a transversal Kéhler structure on ). This concludes the proof
of Proposition O

5 Spin‘ manifolds with foliated boundary

In this section, we consider a compact Riemannian spin® manifold (N"*2, g)
with nonempty boundary M = ON and assume that M is endowed with a
Riemannian flow induced by a unit vector field £ on M. After restricting the
spin® structure to the normal bundle of the flow, we will consider solutions of
the basic Dirac equation and will show that they satisfy an integral inequality
coming from . Then, we will study the limiting case of this inequality and
characterize the geometry of the manifold N and its boundary M based on the
results in Section [l

We have seen that the limiting case of Inequality is characterized by the
existence of parallel spinors on the whole manifold N. In view of Proposition [3.3]
we will consider two families: Kéhler-Einstein domains and domains in products
of Kiahler-Einstein manifolds with R or S!. Therefore, we will split our study
into two cases: The even- and odd-dimensional case. The even-dimensional case
will correspond to the first family of manifolds while the odd-dimensional one
will correspond to the second.

5.1 The even-dimensional case

As mentioned before, we will consider in this subsection the case where the
ambient manifold is Ké&hler-Einstein and is endowed with its canonical spin®
structure. First, we need to characterize the condition (@ for an F-bundle in
this setting.

Proposition 5.1 Let M™' be any connected immersed hypersurface in a
Kdihler-Einstein manifold (N"2 g, J). Let N carry its canonical spin® struc-
ture, M carry the spin® structure induced by the inner unit normal v and
Q = (Jv)* N TM in turn carry the spin® structure induced by & := —Jv.
Assume (M, g,&) to be a minimal Riemannian flow. Choose a connection 1-
form on the line bundle K1§1|M = Py, M — M associated to the spin® structure
of Q with the help of a basic function 8 € C>°(M,R) as given in .

Then the following holds:

14



1. The induced connection 1-form on Py, M is basic if and only if 6 is con-
stant on M.

2. The connection 1-form A% given in is induced by the transversal Levi-
Civita connection V of Q if and only if 0 = A+ %tr (VV‘Q), where W& = A\
on M. This is also equivalent to the restriction of a parallel section 1 €
D(XoN) to M being basic, which is also equivalent to it being transversally
parallel.

3. If0 = N+ %tr (MQ) and is constant on M, then the transversal Ricci
tensor of the flow satisfies Ric¥ = Ric" + 20W. In particular, if & = 0
or W\, = pldg for some p € R, then the flow is transversally Einstein-
Kahler.

4. If0 = /\—i-%tr (VV‘Q) and is constant on M, the curvature of the line bundle

of Q is equal to —iRicY o . Mainly, that means the induced spin® structure
on Q from N is the canonical spin® structure on Q (the one induced by

).

Proof- The statements follow from elementary computations. Note before com-
puting anything that the existence of a Riemannian flow on M implies that
complex structure J is transversally Kéhler as shown in Proposition [41]

1. Since the line bundle of the canonical spin® structure on N is Kg,l and
the connection is the Levi-Civita one, its curvature form is given by FV =
—iRicy o J and hence £ JFM = ¢ ,FN = —iRic" (v) = 0 along M because
of the Einstein condition on N. By @, the connection 1-form on @ is
basic if and only if 0 = —df + £(0)&°, that is, df = 0 since @ is assumed to
be basic here.

2. First note that we can express AV and then A® with the help of a lo-
cal Hermitian orthonormal basis of TN. Namely let (-,-) := g(-,-) —
ig(J-,-) be the Hermitian metric associated to g, let (61,...,6%4—2)
be any local (-,-)-orthonormal basis of TN, or equivalently, such that
(el,Jel,...,e#,Je#) is a local g-orthonormal basis of TN, then

si=€jA.. ./\e*;# is a local section of K ' and hence, for any X € T(TN),

n+2

N N
Vys = (Vxei ef) e“{/\.../\eigz
j=1

N‘

N

nt2
2

(V¥ej,ei) | er AL A ehas
2

I
=

N

2
Zg(v)]\([(Jej),ej) efNA...A e’;%,
j=1

:
(

n+

2
so that —iAN (s.X) = 3.2, g(VX(Je;), ;). Restricting to M and choos-

ing for instance entz = ¢ and hence J@nTH = v, we obtain, still picking a
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. —1
local section s of Ky |,,,

S

9(VX(Jej), e5) + g(VE,€)

1)

—iAM (s, X) =
1

<.
Il

9(V¥ (Jej),e5) — g(WE X).

<
I
—

Il
'Mw\:

As for A9, we first have, for any X € I'(Q),

—iA9(5.X) = —iAM(s.X) =) g(V¥(Jej),e;) — Ag(€, X)
j=1 0

‘Mw\:

[
'Mm\:

9(Vx(Jej), ).

j=1

For X = &, we have by using h = JW = W J,
—iA%(s.) = —iAM(s.8) - a(€)

- Zg(vg/[(Jej), ej) —g(Wg &) —0

n

= Zg(Vqu), ej)+g(h(Jej),ej) —A—0

n

= ) 9(Ve(Jej),e5) —g(Wej,e5) = A — 0
j=1

n

= ig(V§(J€j),€j) — %tr (W|Q) —A—=0.

j=1

This shows that A? is associated to V if and only if § = A + 1tr (W), ).
As for the second equivalence, note that 1 € I'(3¢Q): because of ¢ €
I'(X0N) and hence £ - v - 1 = —i1), we have

QQ-wzﬂNw—f-u-w:—i(”%Z)www:—igw,

where Q% and QY are the 2-forms associated to J on @ and N respectively.
For any X € I'(Q), using that JY -9 =Y -9 for any Y € I'(T'N) because
of p € T(XoN), we write

1
Vxtp = V)]‘?z,/}—§£~hX~1/) with b = JW

= V%ﬂ’—}WX-V-I/J—EﬁJWX-w with v = J¢
—<— 2 2
0
i i
= —§WX'§-’¢—§§-WX-L/J
= 0 since W¢ = A&,
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so that Vx4 = 0. In particular, 1 is transversally parallel if and only if
Ve = 0, that is, if and only if ¢ is basic. On the other hand, we can
make use of the following formula to relate V¢t with Vév P:

1 1 0
Ve = VNG—WE-v-9—=Q = =g with WE=A¢
N . 2 2 2
0
i(A—0) 1
= —ZQ.
—y— S99,
so that V¢o = 0 if and only if Q-4 = i(\ — 6)1). But we can compute the
action of 2 in another way, using h = JW|,, as well as 1) € T'(¥oN): choose
(€j)1<j<n to be any local orthonormal basis of ¢ made out of eigenvectors
for W, where We; = p e;, then

Qpv = g he Y

I
o
RS
&
g
<
o
<=

with Jej I\'/I’(/):iej Mw

2
= SO =t DH)Y,

so that £ (A — (n+ 1)H) = i(A — ), which yields A\ — 26 = —(n+1)H and
this is equivalent to 8 = X\ + %tr (VV‘Q).
. Let ¥ be any parallel spinor on N which is then a transversal parallel

spinor on ). Using the spin® Ricci identity on the normal bundle, we
write for any Y € I'(Q)

n

(YIF?) ov= D PRV en)er oY

k=1

RicVY -
o (0

I
M=

FN(Y, ex)er o Y —ifdE(Y, ex ey, o (]

E
Il
-

[
NE

FN(y, ) — 2i0hY - 1.
( €k)€kQ1/) U Q%/J

™~
Il
-

Therefore by the fact that (Y FY)(¢) = (YFN)(v) = 0 and since 9 is
parallel on N, we deduce that

RicVY -9 = RicVY - —20Jh(Y) -
RicNY - 4p + 20WY -4,
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and the proof follows.

4. Using the previous computation for the Ricci curvature, one can evaluate
the curvature of the auxiliary line bundle of @) as follows

FQY,Z) = FN(Y,Z)+2i0g9(hZ,Y)
= —iRicN(JY, Z) + 2i0g(hZ,Y)
= —iRicY(JY, Z) + 2i0g(W (JY), Z) + 2i0g(hZ,Y)
= —iRicY(JY, Z).

This concludes the proof of the proposition. |
Before we state our main estimate, we need the following lemma:

Lemma 5.2 Let (N™*2 g) be a spin® manifold. Assume that n is even and the
boundary M of N carries a minimal Riemannian flow given by a unit vector
field &. Then, for any basic spinor field ¢, one has
1 i0
DM(ﬁ'SD):—f'DbSO+§V'Q'<P—§V'<P-

Proof: Since the manifold NV is spin®, the manifold M and the normal bundle @
of the flow are also spin®. Because n is even, the spinor bundle of @ is identified
with the one of M, which is also identified with one subbundle of XN, say =T N.
Therefore we can think of any ¢ € I'(XQ) as a section in one subbundle of S,
say ST. We compute

Du(€¢) = Dulv-&-v-9)=Dulv- (€ )
= V'DM(EM‘P)
B e o -ge 0 € 0 Se (€ )
2 V-(-&MDwﬂL%QM@—%sO)
= —f-Dbgo—i—%l/'Q'cp—gy-go.
This finishes the proof of the lemma. O

Now, we can prove Theorem for n even.

Proof of Theorem [I.1] for n even: As in Lemma [5.2] we will think of any ¢ €
I'(XQ) as a section in the subbundle ST of S. Using Equation @, we compute

n+1 1 10
Ds@ZDM@:THO 90*551\'49M<P+55M90~

Hence, by taking the norm of Dgy, we get

27(”+1)2221.2§27
Ds¢l” = ———Hlol" + 72 - ¢" + ol

n+1
2

Holp,€ - Q- ¢)

n+1 . 0 .
+TH09<<P7Z§ P §<Q 1 2 1P)-
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On the other hand, using Lemma [5.2] we have

1 i
Ds(§-9)=—-Du(€-p) = §~Dbgo—§u'§2'ga+§91/'g0
n+1 1 )
= HoE-0—~v-Q. Z0v - .
5 Hol p—gv-Q-p+50v-¢
As before, the norm is equal to
R (U Y e THNC I 31 SRS G E S o a.
Ds(§ )" = 1 Holel™ + 718 - el™ + lol” + ——Holp,€ | Q- )
n+1

. 0 .
9 H09<(P,'L£ M 50> - §<Q M ‘Pa“ﬁ>-

Thus, by applying Inequality to the spinors ¢ and £ - ¢, we find the desired
result after summing both inequalities. O

Proof of Theorem We know from Proposition that if is an equality,
there exist parallel spinor fields 1, ¢, ¥, ® on N such that Pyp = Py, P_p =
P_¢, Pi(§-p) =PV and P_(£- ) = P_® on M. Note that ¢ € T'(XoN) and
that all other parallel spinors are multiple scalars of 1, since the manifold N is
assumed to be Kéhler. But Py = %(1/1 + i - ); since ¢ € T'(X4N), we have
w1 € I'(X_N). The same holds for ¢ (always true for n even). We can thus
deduce from Pyp = P, that ¢ = on M.

Of course, we also have ¢ = ¢ from P_p = P_¢. The identity P ({ ) = P,V
yields in the same way & - ¢ = iv - ¥ and hence iv - £ - ¢ = U. Letting ¥ = b
for some b € C, we have b = £1 because of (iv-&£-)? = 1. Up to changing ¢ into
—¢ (and hence 6 into —0), we can assume that iv - & - ¢ = —tp = —p. Notice
now that, if X and Y are two real vectors in T, N for some point z € N with
(X 414Y) - ¢ = 0 for some nonzero ¢y € YyN,, then Y = JX: just combine
the identity with (X + ¢JX) -4 = 0, which holds true because of ¢ € XyN.
Therefore, i€ - v - p = p being equivalent to (v —if) -4 = 0, we can conclude that
& = —Jv. The last identity P_(£-¢) = P_® does not bring any new information.

Since by assumption (M, g,& = —Jv) is a minimal Riemannian flow, Proposi-
tionimplies that [J, W] = 0, that W& = A{ on M for some A € C°(M,R)
and that J defines a transversal Kéhler structure on the normal bundle of
the flow. Furthermore, £ (tr (W),)) = 0 because N is Einstein by Proposition
The connection 1-form A® on Py, M — M being assumed to be basic,
the basic function # must be constant by Proposition [5.1} Because ¢ is the
restriction of a parallel spinor field on N and is assumed to be basic, Proposition
also implies that ¢ is transversally parallel, which is also equivalent to
0=X+5tr (W,).

Conversely, if § = —Jv, [J,W|,] = 0, W = X for some A and 6 is con-
stant equal to A + 3tr (W),), then Hy = 0 and, as we computed in the
proof of Proposition — and this computation holds true in general —
Q = LA = (n+1)H)p = —Ltr (W) ¢. Therefore,
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(n+1)? (HF — H?) > +1Q - of* +0%|of” = 2i0{p, Q - ) =

1 1 :
- (>‘ +tr (VV\Q))2 ol + itr (W\@)z lof? + (A + itr (WQ)> |0l
1
i (A Ty (W|Q)> tr (W) l¢l* =0,

and thus is an equality. This concludes the proof of the proposition. O

Note that the compactness assumption on N is actually no more necessary for
the case where is an equality since that equality case actually holds point-
wise. In particular, we may look for examples in non-compact Kéahler-Einstein
manifolds such as complex hyperbolic space.

In the case where N has non-zero constant holomorphic sectional curvature, it
already follows from a well-known result (see e.g. [23, Theorem 2.1]) that any
Hopf hypersurface must have constant principal curvature A — and hence also p
—if W), = pldg and 6 = A+ 3tr(W),) is constant.

Theorem implies that the list of possible examples where is an equali-
ty cannot be long since the geometric conditions are restrictive. Actually, the
list is relatively short, at least in Kéhler manifolds with constant holomorphic
sectional curvature: by [23, Theorem 4.1] — which summarizes [24, Theorem
4.3] (based on [29]) for hypersurfaces in complex projective space and [21] for
hypersurfaces in complex hyperbolic space — every real hypersurface in a Kéhler
manifold with constant nonvanishing holomorphic sectional curvature for which
M is Hopf and where [W, J),] = 0 holds must be an open subset of a so-called
hypersurface of type A. Since hypersurfaces of type A in complex projective and
hyperbolic spaces are completely classified (see e.g. [23], Theorems 3.7, 3.8, 3.9,
3.13 & 3.14] and references therein), we can conclude with the following:

Corollary 5.3 Let (N"*2 g, J) be a domain with smooth nonempty connected
boundary M in either CP*2" or CH"2" . Assume (M, g) carries a Riemannian
flow given by a unit vector field . Let N carry its canonical spin® structure, M
carry the spin structure induced by the inner unit normal v and Q := &+ NTM
in turn carry the spin® structure induced by £. Choose a connection 1-form on
the line bundle K;,lm = Py,M — M associated to the spin® structure of Q)
with the help of a basic 8 € C*°(M,R) as above. Assume moreover that:

1. the Riemannian flow (M, g,&) is minimal,

2. there exists a section ¢ of XM such that Ve = 0 and Dyp = %(p
for some nonnegative basic function Hy on M.

Then (n+1)? (H — H?) |]* + (€ o —if)p|? = 0 holds pointwise on M if and
only if M is either

e q tube around a totally geodesic CP*, where 0 < k < ”T*Q, i case N lies
n+2

in CP =2, or
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e a tube around a totally geodesic CH*, where 0 < k < 5, in case N lies in
n+2
CH =

Examples include geodesic hyperspheres (case where k = 0). Note that all hy-
persurfaces of type A have two or three distinct principal curvatures.

Corollary 5.4 Let (N"*2,g,.J) (for n > 2) be any compact Kdhler manifold
such that Scaly > cpyo| FN|, where FN is the curvature form of the canonical
spin® structure. Assume that the boundary M of N is connected of positive mean
curvature H and carries a minimal Riemannian flow given by a unit vector
field &. Assume moreover that there exists a basic section ¢ of XM such that
Dyp = %gp, where Hy is a monnegative basic function on M satisfying
the condition HZ + (2(ﬁ1)|9\ + ﬁm)z < H?. Then equality case in is
realized and moreover W), = pld for some real number . Mainly that means the
flow is transversally Finstein-Kdhler and the manifold M is n-FEinstein Sasakian
manifold (up to some rescaling on the metric).

Proof. We estimate the two terms |Q i ©|? and 6(Q 2 ¢) in Inequality (2).
We have

1 n
. 2 < ,5 . . 2
|QM80‘ > 4|‘_161Mh61M(p|
n 2 _ gy 2 22
< P Ches - o2=" = Z|QL¢|?.
< 7 E lei j, hei ;@™ = L IhFlel” = S ¢

Recall here that we use the formula |Q2[*> = 1|h|?. For the second term, we
compute

. Vvn 9
. < . < -— .
W - p0) <0112 - ol el < 1] ﬁIQI ]
Therefore, Inequality reduces to the estimate
1 n vn
og/ ~<n+1 2 (H? — H? +92+92+200> o|?dv. (21
(0 (=) ) 1101 ) lelPav. (21
2
Since the condition HZ + (2(T\/f1)|9| + %ﬂ\ﬂ) < H? is fulfilled, we get the
equality case in both and . That means all above inequalities are sharp.
In particular, one gets
v

Q- p=—iY_|0lp.
0 ? \/§| |

Combining the last relation with the equality 2 0¥ = i(A = 0)p, one deduces
that /i /i /i
1 n n n
——t =A—0=—"%|Q|=—"—h| = —"— .
(W) 210] =~ =~ W
That is, |W),| = ﬁtr(W\Q) which is the equality in the Cauchy-Schwarz in-
equality. That yields to W|g = pld for some function p. With the help of
Proposition one deduces that both p and X are constant. In view of Propo-
sition the manifold M is a Sasakian n-Einstein manifold from the fact that
the transversal metric remains invariant. (]
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5.2 The odd-dimensional case

In this section, we look at the case where the normal bundle has odd rank.
As a consequence of Proposition we can restrict ourselves to the family
of manifolds N that are domains in Riemannian products of Kéahler-Einstein
manifolds N; with R or S'.

Let M be the boundary of any domain N in N; x R or N; x S! and carry a
Riemannian flow. Since the rank of the normal bundle @ is odd, we have the
identification

YQOXQ ~XM ~S8S,

where in the first isomorphism, we use the following identifications for the Clif-
ford multiplications

(7 8-2 )T=¢. 7.7,

for any Z € T'(Q) and T € S = X N|ps. For the second isomorphism, we have
X - YT =X v 7. Now the action of iv on S is determined by the action

M
of the complex volume form w of ¥M, that is for any spinor T on S, we have
iw-T =w-T =7, where T = T, —T_ with T, are eigensections of w
corresponding to the eigenvalues +1. Thus, from the definition of the projections

Py, we deduce that PLY =T 4.

Proof of Theorem@for n odd: Let us define the spinor field T = ¢ + & o

where ¢ is considered as a section in ¥Q ~ YT M, i.e. P¢ = . Using @D, we
have

DsY =DyY = DM<P+DM(5M<P)
= —nle(J€M¢—%€MQM<P+%95M@
6 Dy(E L 9) 30 oty
S S I LI
- oo+ %Q - W%@. (22)

It is easy to check from ¢ € T'(X1TM) that the identities (£ o Q 2 ©)=0
and (£ 2 ¢) = 0 hold. Hence by taking the norm of the spinor field |DgT|?,
we find that it is equal to

2_(”+1)2 2 2, 1 2 972 2 _ )
IDsT|" = ———Hlol" + 1@ . ol" + S lpl" —ib{p, Q@ - ).

Inequality applied to the spinor field Y finishes the proof by plugging the
last equality and using the fact that |T]? = 2|¢|%. O

The proof of Theorem is technical and will be splitted into several lemmas

(Lemmas [.12). First, we have
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Lemma 5.5 If the equality case is realized in , then

1 b 1
—hX - — VWX - o= g(WX -
h M@+(% 2) 0¥ bﬁ € - @,

for(all X )621"(TM) and for some b € C. In particular, we get (4 — 5)*|W¢|? =
-9 W§a€ .

Proof: Assume that the equality is realized in (2]) and recall that T = p+¢& 2

then by Proposition [3.1] there exists two parallel spinors ¢ and ¥ in ¥N such
that P,T =p =19, and P_T =¢ g P ¥_. Since the dimension of the space

of parallel spinors on N; x S! is one (those are identified with parallel spinors
on Nj corresponding to the canonical spin® structure), we deduce that ¢ = by
for some b € C. Now differentiating the equation & 0¥ = bi_ in the direction

of any vector field X € I'(T'M), we get that

1 b

Here, we used the fact that V¢, = —1WX i Y+, since 1 is parallel on N.

Replacing now ¥_ by %f 0 ® the above equation reduces to
hX + L WX 1 (WX, &)¢ (23)
m T 22 p E T IS g @

To prove the second part of the lemma, we take X = £ in and use the fact
that the mean curvature xk = Véw ¢ vanishes to deduce that

(35-3) We ;0= 5900 ;v (24)
By taking the Clifford multiplication of by & and applying the rule & "
W¢ 0 —W¢ o £ o —2g(W¢E,€), we get that
(35-3) W€ € 5, v = aWEOp. (25)
20 2 M> M

Now if g(W¢,£) = 0, then either (57 — ) = 0 or W¢ = 0 from which the relation
in the lemma is proved. If g(W¢, €) is different from zero, we use again Equation
divided by the term %g(W{,f) to replace & o ? by its value in . The

result then follows. O

Lemma 5.6 If the equality case is realized in and M is connected, then
g(v,0:) = 0,|b] = 1. Moreover, there exists a smooth compact domain A with
boundary M; in N1 such that N = A x S', in particular M = M; x S'.

Proof: As in the previous lemma, we know that ¢ = 9, and & g by_,

where 1 is a parallel spinor of norm assumed to be equal to 1. Therefore, we
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deduce that |p]? = |¢4]? = “,"Z% and that [o_|? = IbPﬁ' Hence, we get that
, 2 2 PP
<ZV w7w> - |¢+| |¢—| - |b|2 + 1

Now, for every X € TN = TN; @ RO;, we may split X = X7 + g(X,0;)0;,
where X7 is pointwise tangent to the N;-factor. In particular X - = X7 -4 +
9(X, 0;)0;-1; but because of ¢ € ¥gN; pointwise, we have X7 -1p = —iJ(XT)-1p,
so that, using also i0; - ©» = ¥ (because of 1) € T'(X 1 Ny) pointwise), we get

X =—iJ(XT) - —ig(X,0)p. (26)

As a consequence, (iX - ¥,v) = (J(XT) -, ¢) + g(X,d;)[v|*; but since both
(iX b, 1) and g(X, 9;)|1|? are real whereas (J(XT)-1), 1) is purely imaginary, we
deduce that in fact (J(X7T)-9, 1) = 0 and (iX -1, ) = g(X, 0)||? = g(X, 0).
This implies first that g(v,d;) = g(v, 9)|¥|? = (iv -, ) = 12‘;;, in particular
g(v,0¢) is constant on M. Now if M is connected, then we may apply the
divergence theorem and obtain for the parallel vector field J; on N

0= [ 8%@dn == [ gw00du,
N M

from which g(v, 9;) = 0 follows. In particular, |b| = 1.

It remains to show the existence of a domain A of N such that N = A x S!
(and hence M = M; x S, where M; := JA). For this, we show that, for any
t € R, the flow ¢; of 9; preserves N, that is, that ¢;(IN) = N. First consider the
case where N C Ny x R. We may assume that 0 € ¢(N) and identify N; with
Ny x {0} C Ny x R, so that N; becomes the preimage of the regular value 0 for
the function ¢ on Ny x R. Since 0; is parallel on N; x R and V; is assumed to
be complete, so is N1 x R and the flow ¢ of J; is defined on Ny x R; actually, ¢
is the identity map on N7 x R. Moreover, because the restriction of d; onto M
is tangent to M, the flow ¢4 preserves M for all s € R, that is, ¢s(M) = M. Let
x € N, then either z € 9N = M and then ¢;(x) € M C N as we have just seen;

or 6]?7, but then ¢;(z) can lie neither on M (otherwise x = ¢_y(ds(x)) € M)
nor outside N (otherwise the integral curve s — ¢(z) linking = with ¢.(x)

must cross M and thus lie in M for all time), therefore ¢(z) € NC N. On both
cases, ¢(x) € N. Therefore ¢.(N) C N; changing t into —t gives N C ¢(N)
and hence N = ¢;(N).

Now because ¢; preserves N for all ¢t € R, we may set A :=¢"*({0}) NN C N,
which is a smooth domain with boundary M; = ¢=*({0}) N M in Ny x R (it is
smooth up to the boundary because of g(v, 9;) = 0). Because 9, is parallel on N,
the flow ¢ induces an isometry A x R — N, in particular A must be connected.
Since ¢ is the identity on Ny x R, we have actually shown that N = A x R.
Note that this case cannot happen here since N is assumed to be compact.

In case where N C Ny x St, we may lift NV to a smooth manifold with boundary
N in N; xR via the covering map N; xR — N; x S! — which is not the universal
cover of N; x S', unless N; itself is simply-connected. Since that covering map
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preserves O;, that parallel vector field is tangent to M = ON and therefore
N = A x R for some smooth domain A in N; by the above argument. Now
because the Z-group action on N; x R underlying the covering map is trivial
on Np (it only acts on the R-factor), we can conclude that N = A x S!. This
concludes the proof. O

The computation in the sequel will be devoted to show that in the equality case
of , the vector field ¢ defining the flow will be equal to +0;. The main idea
is to show that the T'M;-component of £ corresponding to the decomposition
TM = TM; ® RO; (according to Lemma defines a Riemannian flow on
M; and the solution ¢ of the basic Dirac equation defines as well a solution of
the basic Dirac equation corresponding to that flow (which has even-dimensional
normal bundle). It turns out that such a solution realizes the equality case of the
integral inequality established in the previous section. We begin with a remark
of algebraic nature:

Lemma 5.7 Let Z,7' € TN be such that (Z +1iZ') - ¢ = 0, where ¥ comes
from a nonzero constant section of 3gNy. Then

ZT + J(2'7) — g(Z,0y)v — g(Z',0,) T (v) = 0,

where (-)T is the orthogonal projection onto TNy .

Proof: Because of 1) € ¥gN; and hence id; - ) = 9, we have X - ¢ = X1 . ¢) +
9(X,00)0; - = XT - 9p —ig(X,0;)9 for every X € TN. As a consequence, we

can write

1

Zpy = S(Z-Y+Z-iv-y)

o= N

ZT oy —ig(Z, 000 +iZ - v 4 g(v,0,) Z -
0

(2" 4 —ig(Z,000 +iZ" V" 4 +ig(Z,00)0; - v" - )

N = N =

(Z7 - —ig(Z,0,)p +iZ" v op — g(Z, 00" - 1),
which yields

(Z+iZ) by = 5 (20— ig( 2,000 +iZ" T b~ 92,000 )
1
2
= (@ vizmyy—igz iz, o

+- (2" —ig(Z 0 +iZ" VT — g(Z', 0 )T )

Fi(ZT iz Ty T — g(Z+iZ T - 1/)),

where g has been extended as a complex bilinear form on TN ® C. Now we can
make use of identity , that uses specifically 1 € XgNy: for every X € T'N,
X 9y = —iJ(XT) -y —ig(X,0:)9. Since (Z +iZ") -y = 0 if and only if
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Oy (Z+1iZ') -y =0, we obtain that (Z +14Z’) - ¢4 = 0 is equivalent to
0 = 8- ZT+iZ'"y A —ig(Z+iZ',0,)0; -
+i0y - (ZT +iZ') N, v N, 0 —g(Z +iZ',0,)0; - vT -
€EXL M
= —(Z"+iZ") Ny b — g(Z 442 0 + (ZT +iZ'T) Ny v N )
+9(Z +iZ',0,)vT N, W
= —(Z"+J(Z7") b~ g(Z+iZ' 0 + (2T +iZT) v Y
+9(Z,00v" N, ¥+ 9(Z',00) T (") -, ¥
Identifying the terms of degree 1 on both sides and using ¥ # 0, we obtain

0=—ZT+J(Z7)) + g(Z,0,)vT + g(Z',8,)J(vT), which by v = v7T is the
result. ]

Lemma 5.8 If g(v,0;) = 0, then (£ + bd;) - ¢ = 0, from which follow that
9(&,0;) = —Re(b) and
T = 3m(b)Jv. (27)

In particular, hX = —3m(b)J(WX)TM for all X € TM.

Proof: Since v is orthogonal to 0, one can easily check that i0, - P11 belongs to
¥_ M (here ¥_ M denotes the eigenspace of the action of iv corresponding to the
eigenvalue —1). Hence, by using the fact that i9; -1 = ¢ and the decomposition
¥ = Py 4+ P_1), where Py = ¢ and P_1) = %f o e deduce that

1
0= *gf'% (28)

which gives the first identity. Setting Z := & + Re(b)9; and Z’ := Sm(b)o,
this identity becomes (Z +iZ') -1, = 0, so that Z7 + J(Z'") — g(Z,0;)v —
9(Z',0¢)Jv =0 by Lemma Because of ZT = ¢ and Z'T = 0, this identity
is equivalent to &7 — (g(&,0;) + Re(b))v — Im(b)Jv = 0, which itself is equiv-
alent to g(§,0;) = —Re(b) (thing we can anyway read off the real part of the
inner product of (€ + bd;) - ¢ = 0 with o) and ¢7' = Sm(b)Jv, which is (27).
As an immediate consequence, for every X € TM, hX = V¢ = VMl =
Sm(b) VY (Jv) = =Sm(b) J(WX)TM, O

Lemma 5.9 Assume that the equality in is realized, then by writing b = e'?
for some B € R, there exists an € € {£1} such that

Welsing = eg(We, &) and 0 = —%((n + 1) Hsing + £[We|).

Moreover, cosfl = —%.

Proof: Because of |b| = 1, we have Sm(b)2|W¢|2 = g(WE,€)? by Lemma SO
that there is an e € {£1} such that |W¢|sing = eg(W¢E,§).

By tracing over an orthonormal frame on I'(T'M), we get that

—QQMgo—I—z(n—i-l)HSlnﬁ%O— gWgMgM“p'
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But by 7 %Wf o 13 g P 1e|W¢|p (this holds true whether W¢ vanishes or

not), so that
i
QMQD: 5((n+1)H%m(b)fs|W§|)gp. (29)
In order to compute 6, we use the first equation in and the fact that ¢ is a
basic spinor. In fact,

gw = V- %Q Y
&) _lwg . i 1 (n+ DHSm(b) — e[ We)) o
_ We € ¢_i((n+1)H\cm( ) —elWeD
(25) _7|W§|<p _ 1 ((n+ L)HSm(b) — e|W¢|) ¢
_ i ((n + 1)HSm(b) + e|W¢E|)

4

which gives the expression of 8. To compute the real part of b, we use the second
relation in @[) between the extrinsic Dirac operator of M and the basic Dirac
operator and the fact that Dyp = ("+1) 2. Indeed,

D D = —7H - =

sp=Dypp = 5 05 ® 2§M M‘P+ 5 2

But recall that ¢ = P4 on M where # is parallel on N. Therefore, the extrinsic
Dirac operator applied to ¢ is equal to

n+1 n—l—l

Dsy = Dg(P¢) = P_(Dst) = HP_+ =

H&so

Hence by comparing the above two equalities, we deduce that (n + 1)(Hp +
Re(b)H) = 0, from which Re(b) = —Zo follows. O

Lemma 5.10 If holds, then 0 is constant on M.

Proof: Using @ along any vector field: for any X € T'(TM)

Scal™

n+1

Mg, X) = FY (6, X) = —iRic™ (J¢", X) = —i g(J(€"), X),

s0 that £, FM = — Sl j(¢T)TM — ( by ([@7). 0

It is important to notice here that, computing the integrand on the r.h.s. of
and using what we already know about 6, Q, Hy and H, we find

(n+ 1)(H ~ H)eP +| @~ 10) . o

(n+1)*(cos(8)? = H?[¢|* + (n + 1)° H? sin® () ||
0,
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in particular is an equality. However, this does not suffice to conclude. We
shall indeed show that, if Sm(b) # 0, then we are led to a contradiction.

From now on we assume that Sm(b) # 0, that is, that b # +1. By Lemma
5.8 if Sm(b) # 0, then 0 = h&é = —Im(b)J(WE)TM implies that W¢ = WeT

is proportional to £”'. More precisely, W¢ = EQ;VngT. Mainly, that means the
vector field & := &7 is an eigenvector of W corresponding to the eigenvalue

A= 5'5‘?;?. Moreover, the vector field & is of constant norm equal to |sinf]

and defines a minimal Riemannian flow on the manifold M7, isometric to the
product, with O’Neill tensor

Sy 1 ou
o) = g ¢

hl = VMl(

The manifold M; is clearly spin® with a connection form AM: = AM|,, . Hence
as mentioned in Section [2] the normal bundle @y carries also a spin€ structure
with the same line bundle as for M;. Now, we choose a connection 1-form on

Q1 as
&1

[STX
where 0, := Iéill' The relation @ is clearly satisfied on M, since

A9 =AM g,

0

&1 £

=) FM = (220 FM = —id(—) = —idb;.
G = ber e =1
Also, one can check by choosing sing < 0 that é—i‘ = —Jv and from the expres-
sion of # in Lemma [5.9] that
A1 — 260, = 5|W§| . (elW¢|+ (n+ 1)HsinB) = —(n+1)H = —nH;
sin8  sinf ’

where H; is the mean curvature of M; into N;. Taking into account those
observations, we get the following lemma:

Lemma 5.11 Assume that the equality in 1s realized and b # +1, then the
equality case of the Inequality on My is realized.

Proof. According to Theorem in Subsection it is sufficient to prove the
existence of a solution of the basic Dirac equation on M;. Let us denote by
p1(x) := p(x,1) for x € My, where ¢ is the solution of the basic Dirac equation
on M realizing the equality case in . In the following, we aim to show that
1 is basic with respect to the flow on M; and is a solution of the basic Dirac
equation. For this, we use the first equation in @ to compute

1 i6;
v = VM o - Q. - =
(lsll)sm (\5511)901 9 M; P1 9 ¥1
1 1 0
= —(V¥p1— 20 - o1 — —p1)=0.
|§1|( ! 9 M<P1 2901)
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Here, we used the fact that ¢; is basic on M and constant along 9;. We also
mention that for an orthonormal frame {e}}izl,... n—1 of Q1 C Q, we have

1
Ql My P11 = 5 Z ezl "My h1(6l1> My P1

1 n
= €; - hel- .
2|51| Z ar

= Q 801
|§ |

where {e;}i—1 ... ,, is an orthonormal basis of @ defined by {Z, e} }i—1,... n—1 and
Z is a linear combination of &; and 0y, which gives hZ = 0.

The last part would be to compute the basic Dirac operator Dg to 1. Using
Equation @, we write

—— &1 2, Q ary 01 — =1 My 1

Dyp1 Dy o1 +

2|§|
_9 - D
5’tM MP1+

2|§ |

—& o, Qo o1 — & My P1

2\5 | 2I£ |

n—|—1 160
Ho0 - §'<P1+*3t'§'9'901—55t'§'s01

=

291
PR e = A

n+1 b 100
5 Hob<P1+ 01—

I

1
50T Gamzp & 00 B
i0

v 39, - O, -
952 (§ 4 cosBO;) - O0; - 1
n+1 b6 0 10cosf
b —5-t -3
2 2 2bsin B 2sin“f

b 1 cosf
+( s+ - Q-
(2 2bsin® 3 2511126) 71

Then, using ([29), we get

+1 b0 0 ifcosf
Dipy = (g2 - + >
b1 ( 2 0 2 2bsin?f  2sin?p
b 1 cosf3
= 1)H —e|W
+ (2 + 2bsin® 3 251n26> g+ DHsing —[Wel)en

By writing b = cosf + isinf and using the fact that —e|W¢| = 20 + (n +
1)Hsing and that cosf = —% from Lemma we find after a straightforward
computation that D}¢; = 0. O

Now, we deduce with the following lemma:

Lemma 5.12 Assume that the equality in 1s realized, then b = +1.
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Proof: Assume that b # +1, then from Lemma the manifold M is a limiting
manifold for the even case. As a consequence the spinor field ¢ is the restriction
of a parallel spinor on Ny and that zé—i‘ ‘M, ©1 = 1. Then, we write i(§ +
cos(0;) Iy Oy A= —sinBy. That gives the following identity £-9; - 1 = bys.
Now combining the last relation with Equation (£+b0;)-¢ = 0 gives that b% = 1.
O

Proof of Theorem As b= =£1 from Lemma [5.12] we deduce from Equation
(€ +b0:) - ¢ = 0 that £ = +0;. In particular, the first equation in implies
that @ = 0 and the computation in Lemma [5.9] gives that Hy = H.

For the converse, assume that N is isometric to A x S' where A is a Kéahler-
Einstein manifold with boundary M; and let £ = 0; be the parallel vector field
that defines the Riemannian flow on the boundary M = M; xS! (that is, h = 0).
Consider a parallel spinor field ¢ on A (which is then a constant section of ¥gA)
and let ¢ := P1. Then, the Dirac operator of M associated to ¢ is equal to

n+1
2

The normal bundle @) of the flow is just the tangent space of M; and the
connection A® is the connection AM |y, i.e. @ = 0. Since the spinor ¢ is clearly
basic (it is constant along the S'-fibers), we deduce that Dyp = ”T'HHat o P_4.

But using the fact that i0; - ¥ = 1, we have that

Dy =DsPryp = P_Dgtyp =

HP_v.

O Pb=0, v Pab= 0 (Y—iv )= Py =g

Therefore ¢ is a solution of the basic Dirac equation with Hy = H and the
equality in is realized. (Il
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