N. Ginoux, G. Habib and S. Raulot | A Poincaré formula for differential forms and applications | SIGMA 19 (2023), 088, 17 pages |
N. Drago, N. Ginoux and S. Murro | On the Cauchy problem for the Faraday tensor on globally hyperbolic manifolds with timelike boundary | Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 34 (2023), no. 4, pp. 809-829 |
N. Ginoux and G. Habib | A generalised Ricci-Hessian equation on Riemannian manifolds | submitted |
F. El Chami, N. Ginoux, G. Habib and O. Makhoul | Biharmonic Steklov operator on differential forms | to appear in Ann. Math. Blaise Pascal |
N. Drago, N. Ginoux and S. Murro | Møller operators and Hadamard states for Dirac fields with MIT boundary conditions | Documenta Math. 27 (2022), 1693-1737 |
N. Ginoux and S. Murro | On the Cauchy problem for Friedrichs systems on globally hyperbolic manifolds with timelike boundary | Adv. Differ. Equ. 27 (2022), no. 7-8, 497-542 |
N. Ginoux, G. Habib and I. Kath | Skew Killing spinors in four dimensions | Ann. Global Anal. Geom. 59 (2021), no. 4, 501-535 |
N. Ginoux, G. Habib, M. Pilca and U. Semmelmann | An Obata-type characterisation of Calabi metrics on line bundles | North-West. Eur. J. Math. 6 (2020), 119-136 |
N. Ginoux, G. Habib, M. Pilca and U. Semmelmann | An Obata-type characterization of doubly-warped product Kähler manifolds | Münster J. Math. 14 (2021), no. 2, 295-321 |
F. El Chami, N. Ginoux and G. Habib | New eigenvalue estimates involving Bessel functions | Publ. Mat. 65 (2021), 681-726 |
B. Ammann and N. Ginoux | Some examples of Dirac-harmonic maps | Lett. Math. Phys. 109 (2019), no. 5, 1205-1218 |
N. Ginoux, G. Habib and I. Kath | A splitting theorem for Riemannian manifolds of generalised Ricci-Hessian type | preprint |
M. Becker, N. Ginoux, S. Martin and Zs. Róka | Tire Noise Optimization Problem: a Mixed Integer Linear Program Approach | RAIRO - Operations Research 55 (2021), no. 5, 3073-3085 |
N. Ginoux and O. Müller | Global solvability of massless Dirac-Maxwell systems | Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 6, 1645-1654 |
F. El Chami, N. Ginoux, G. Habib and R. Nakad | Rigidity results for Riemannian spinc manifolds with foliated boundary | Results in Math. 72 (2017), no. 4, 1773-1806 |
F. El Chami, N. Ginoux, G. Habib and R. Nakad | Rigidity results for spin manifolds with foliated boundary | J. Geom. 107 (2016), no. 3, 533-555 |
N. Ginoux | About the Lorentzian Yamabe problem | Geom. Dedicata 174 (2015), 287-309 |
N. Ginoux, G. Habib and S. Raulot | A new upper bound for the Dirac operator on hypersurfaces | Pacific J. Math. 278 (2015), no. 1, 79-101 |
B. Ammann and N. Ginoux | Dirac-harmonic maps from index theory | Calc. Var. Part. Diff. Eq. 47 (2013), no. 3-4, 739-762 |
C. Bär and N. Ginoux | Classical and quantum fields on Lorentzian manifolds | in: C. Bär et al. (eds): "Global Differential Geometry", Springer Proceedings in Mathematics 17 (2012), no. 2, 359-400 |
N. Ginoux and U. Semmelmann | Imaginary Kählerian Killing spinors I | Ann. Glob. Anal. Geom. 40 (2011), no. 4, 467-495 |
N. Ginoux and G. Habib | The spectrum of the twisted Dirac operator on Kähler submanifolds of the complex projective space | manuscripta math. 137 (2012), no. 1-2, 215-231 |
N. Ginoux and J.-F. Grosjean | Almost harmonic spinors | C. R. Math. Acad. Sci. Paris 348 (2010), no. 13-14, 811-814 |
N. Ginoux and G. Habib | A spectral estimate for the Dirac operator on Riemannian flows | Cent. Eur. J. Math. 8 (2010), no. 5, 950-965 |
N. Ginoux and G. Habib | Remarks on transversal Killing spinors | C. R. Math. Acad. Sci. Paris 346 (2008), no. 11-12, 657-659 |
N. Ginoux and G. Habib | Geometric aspects of transversal Killing spinors on Riemannian flows | Abh. Math. Sem. Univ. Hamburg 78 (2008), 69-90 |
N. Ginoux | The spectrum of the Dirac operator on $\raise{0.5ex}{\mathrm{SU}_2}\!/\!\raise{-0.5ex}{\mathrm{Q}_8}$ | manuscripta math. 125 (2008), no. 3, 383-409 |
F. Belgun, N. Ginoux and H.-B. Rademacher | A singularity theorem for twistor-spinors | Ann. Inst. Fourier 57 (2007), no. 4, 1135-1159 |
N. Ginoux | Dirac operators on Lagrangian submanifolds | J. Geom. Phys. 52 (2004), no. 4, 480-498 |
N. Ginoux | Remarques sur le spectre de l'opérateur de Dirac | C. R. Acad. Sci. Paris Sér. I 337 (2003), no. 1, 53-56 |
N. Ginoux | Une nouvelle estimation extrinsèque du spectre de l'opérateur de Dirac | C. R. Acad. Sci. Paris Sér. I 336 (2003), no. 10, 829-832 |
N. Ginoux | Reilly-type spinorial inequalities | Math. Z. 241 (2002), no. 3, 513-525 |
N. Ginoux and B. Morel | On eigenvalue estimates for the submanifold Dirac operator | Int. J. Math. 13 (2002), no. 5, 533-548 |
N. Ginoux | The Dirac spectrum | Lecture Notes in Mathematics 1976 (2009), Springer |
C. Bär, N. Ginoux and F. Pfäffle | Wave equations on Lorentzian manifolds and quantization | ESI Lectures in Mathematics and Physics, EMS Publishing House (2007) |
M. Becker, N. Ginoux, S. Martin and Zs. Róka | Optimization of Tire Noise by Solving an Integer Linear Program (ILP) | 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), October 9-12, 2016, Budapest |
C. Bär and N. Ginoux | CCR- versus CAR-quantization on curved spacetimes | in: F. Finster et al. (eds.): ''Quantum Field Theory and Gravity'', Birkhäuser, 183-206, 2012 |
N. Ginoux | Linear wave equations | in: C. Bär et K. Fredenhagen (eds.): ''Quantum field theory on curved spacetimes'', Lecture Notes in Physics 786 (2009), 59-84, Springer |
N. Ginoux | Reilly-type spinorial inequalities | in: J.-P. Bourguignon et al. (eds.): ''Dirac operators: Yesterday and Today'', 263-269, International Press, 2005 |
N. Ginoux | Analysis on Kähler and Lorentzian manifolds | Habilitation, Universität Regensburg, 2014 |
N. Ginoux | Opérateurs de Dirac sur les sous-variétés | Thèse de doctorat, Université Henri Poincaré, Nancy, 2002 |
N. Ginoux | Géométrie hermitienne et géométrie spinorielle conforme | Mémoire de D.É.A, Université Henri Poincaré, Nancy, 1999 |
Please note: The files that can be downloaded on this page may differ from the published versions / Veuillez noter svp que les versions téléchargeables sur cette page peuvent différer des versions publiées / Bitte beachten Sie, dass die Dateien, die auf dieser Seite heruntergeladen werden können, sich von den veröffentlichten Versionen unterscheiden können.