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Abstract: We show how to make a normal map highly connected within

a normal cobordism class. The main source is [5, Sec. 3.4].

1 Motivation

Recall that, by definition, given a C0 real vector bundle ξ −→ X over a
finite n-dimensional connected Poincaré complex and a closed smooth n-
dimensional manifold M , a normal map w.r.t. the tangent bundle of M is a
fibrewise bijective vector bundle homomorphism (f, f) : TM ⊕ Ra −→ ξ for
some a ∈ N. As usual, Ra −→ X denotes the trivial a-ranked real vector
bundle over X. A Poincaré complex is a CW-complex satisfying a kind of
Poincaré duality, see [5, Def. 3.6].

We are interested in the following

Problem [5, Problem 3.54]: Given a normal map (f, f) from a closed
smooth manifold M to a finite n-dimensional connected Poincaré complex
X, can one change M and (f, f) - but neither ξ nor X - to a normal map
(f ′, f ′) from a new closed smooth manifold M ′ to X such that f ′ : M ′ → X
is a homotopy equivalence?

Although we shall not give a full (and firmly positive) answer to that ques-
tion, we shall show how to make the map f highly connected, that is, “near
to” a homotopy equivalence in some sense. This is first done in a naive way by
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attaching a cell to M (Section 2), which is a purely topological construction
killing non-trivial elements of the “relative” homotopy groups πk(f) intro-
duced below (see Definition 2.1). Since this construction does not preserve
the structure of manifolds, we shall consider the well-known way of attach-
ing cells (then called handles) to manifolds so as to obtain a new manifold:
surgery (Section 3). This new construction still kills non-trivial elements of
πk(f) but does not take care of the bundles and normal maps we had at the
beginning. To succeed, we have to make use of Hirsch and Smale deep results
on regular homotopy classes of immersions (Theorem 3.6), see Carolina’s part
in Section 4.

2 Attaching cells

First we want to indicate how to partially solve the problem on the topo-
logical level and without taking care of the bundles or even of the manifold
structure. More precisely, the problem we want to solve in this section is the
following:

Problem: Let f : Y −→ X be a continuous map between CW-complexes.
Can one find a new CW-complex Y ′ and a continuous map f ′ : Y ′ −→ X
which is a homotopy equivalence?

The answer will eventually be “Yes, well, at least f can be made highly
connected”. First we have to explain what “highly connected” for f means.

2.1 A generalization of relative homotopy groups

To that extent, we introduce the following homotopy groups.

Definition 2.1 Given a continuous map f : Y → X between CW-complexes
and k ∈ N \ {0}, we denote by πk(f)1 the set of all homotopy classes of
commutative diagrams of the form

Sk−1

j

��

q // Y

f
��

Dk
Q // X,

where j : Sk−1 = ∂Dk → Dk is the inclusion and q,Q are continuous maps.

1not to be confused with the map πk(Y )→ πk(X) induced by f !
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With “homotopy classes of commutative diagrams” of the form above, we
mean that two such diagrams with maps (q0, Q0) and (q1, Q1) respectively
are homotopic if and only if there exist continuous maps h : Sk−1× [0, 1]→ Y
and H : Dk × [0, 1] → X with H(·, t) ◦ j = f ◦ h on Sk−1 × [0, 1] as well as
h(i, ·) = qi and H(·, i) = Qi for both i = 0, 1.

The sets πk(f) can be seen as generalizing the relative homotopy groups when

replacing the inclusion map Y ⊂ X by an arbitrary map Y
f→ X. Just as

the relative homotopy groups, the set πk(f) has a natural group structure for
k ≥ 2 which is abelian as soon as k ≥ 32. There is also a long exact sequence
available:

. . .→ πk(Y )→ πk(X)→ πk(f)→ πk−1(Y )→ . . .→ π0(X).

Important as well is to mention is that there is, at least when Y is path-
connected, a natural π1(Y )-action on πk(f) for each k ≥ 2.

Definition 2.2 A continuous map f : Y → X between CW-complexes is
called k-connected for some k ∈ N if and only if πj(f) = 0 for all 1 ≤ j ≤ k
and π0(Y )→ π0(X) is surjective.

Equivalently, f is k-connected if and only if the induced map πj(Y )→ πj(X)
is an isomorphism for all 1 ≤ j ≤ k − 1 and is surjective for j = 0, k.

By Whitehead’s theorem (see e.g. [2, Sec. 4.1]), a map f : Y → X between
connected CW-complexes is a homotopy equivalence if and only if it induces
an isomorphism πj(Y )→ πj(X) for all j ≥ 1, that is, if and only if πj(f) = 0
for all j ≥ 1 and π0(Y ) → π0(X) is bijective. The approach to solve our
problem is hence to “kill” all homotopy groups πj(f) inductively, the decisive
step consisting of annihilating a non-trivial element ω ∈ πk(f) by a suitable
operation on Y and f . The basic and central concept needed here is that of
(topological) pushout.

2.2 Pushouts

Definition 2.3 Given three topological spaces X, Y, Z and two continuous
maps f : X → Y and g : X → Z, the pushout of f and g is defined to be
the quotient space Y

⊔
Z/f(x) ∼ g(x) endowed with the quotient topology.

2and π0(f) is not defined, at least not canonically!
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By construction, there exist continuous maps ιY : Y → Y
⊔
Z/∼ and ιZ :

Z → Y
⊔
Z/∼ making the following diagram commutative:

X

g

��

f // Y

ιY
��

Z
ιZ// Y

⊔
Z/∼.

Moreover, the pushout satisfies the following universal property: given any
topological space W and any commutative diagram

X

g

��

f // Y

jY
��

Z
jZ // W

with continuous maps jY , jZ , there exists a unique continuous map u :
Y
⊔
Z/∼ → W with u ◦ ιY = jY and u ◦ ιZ = jZ . Mind however that the

maps ιY and ιZ are not necessarily injective; this is the case if and only if
both maps f and g are injective.

Example 2.4 (Mapping cylinder) The pushout of a map f : Y → X and
the inclusion i0 : Y → Y × [0, 1], y 7→ (y, 0), is called the mapping cylinder of
f and is denoted by cyl(f). It is easy to check that the map ιX : X → cyl(f)
is a homotopy equivalence: there is a well-defined map p : cyl(f) → X with
p ◦ ιX = idX and such that ιX ◦ p is homotopic to idcyl(f).

2.3 Killing homotopy classes via pushouts

The main result of Section 2 is based on the following

Lemma 2.5 For k ≥ 1 let f : Y → X be a k-connected continuous map
between CW-complexes and ω ∈ πk+1(f). Represent ω by a commutative
diagram

Sk

j

��

q // Y

f

��
Dk+1

Q // X

with continuous maps q,Q. Let Y ′ be the pushout of q and j and f ′ : Y ′ → X
be the unique continuous map with f ′ ◦ ιY = f and f ′ ◦ ιDk+1 = Q. Then f ′

is k-connected and the natural map πk+1(f)→ πk+1(f ′) is a surjective group
homomorphism containing ω in its kernel.
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We say that f ′ is obtained from f by attaching a (k + 1)-cell.

Sketch of proof: For every l ≥ 1, there is a well-defined natural map πl(f)→
πl(f

′) induced by

Sl−1

j

��

q̂ // Y

f

��
Dl

Q̂ // X

7−→ Sl−1

j

��

ιY ◦q̂ // Y ′

f ′

��
Dl

Q̂ // X

.

One can show that this map is actually a group homomorphism which is sur-
jective, at least for l ≤ k+1. The image of ω is zero: this is due to the fact that

the map Dk+1 Q−→ X lifts through f ′ to a continuous map Dk+1
ι
Dk+1−→ Y ′ by

construction of the pushout; now ιDk+1 is null-homotopic since Dk+1 is con-
tractible, hence projecting the homotopy down using f ′ gives a homotopy of
the diagram with the “trivial” one (where the horizontal arrows are constant
maps). �

One can actually show that, if k ≥ 2, then the kernel of the above map
πk+1(f)→ πk+1(f ′) is exactly the Zπ1(Y )-module generated by ω, see [6].

We come to the main result of this section [5, Lemma 3.55].

Proposition 2.6 Let f : Y → X be a (k − 1)-connected continuous map
between finite CW-complexes for some k ∈ N \ {0}.

1. If X is connected, k ≥ 2 and π1(Y )→ π1(X) is bijective, then πk(f) is
a finitely generated Zπ1(Y )-module.

2. The map f can be made k-connected by attaching finitely many cells.

Sketch of proof:
1. Note that, by assumption, π0(Y )→ π0(X) has to be bijective, therefore Y

is also connected. Denote by Ỹ
pY−→ Y and X̃

pX−→ X the universal coverings
of X and Y . Let f̃ : Ỹ → X̃ be a lift of f . Then, for each l ∈ N \ {0}, there

is a well-defined natural map πl(f̃)
ψl−→ πl(f) induced by

Sl−1

j

��

q̂ // Ỹ

f̃
��

Dl
Q̂ // X̃

7−→ Sl−1

j

��

pY ◦q̂ // Y

f

��
Dl

pX◦Q̂ // X

.
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For l ≥ 2, the map ψl can be shown to be bijective (and to be a group
homomorphism). Namely, using the lifting property of maps and homotopies
through coverings, one can construct a map

Sl−1

j

��

q // Y

f

��
Dl

Q // X

7−→ Sl−1

j

��

q̃ // Ỹ

f̃
��

Dl
Q̃ // X̃

,

where q̃ and Q̃ are lifts of q and Q through pY and pX respectively. Here one
has to pay attention to two things: first, we only consider pointed maps so as
to make the lifts unique; second, this lifting property still holds in the case
l = 2 (where a priori not every loop lifts through pY ) because π1(X)→ π1(Y )
is bijective by assumption. One checks that this map induces a group homo-
morphism χl : πl(f) → πl(f̃) satisfying ψl ◦ χl = id and χl ◦ ψl = id, in
particular ψl is a group isomorphism.
Now recall the following version of the Hurewicz theorem, see e.g. [2] for the
relative homotopy groups: If f : Y → X is a (k−1)-connected map with k ≥ 2
and Y is (non-empty and) 1-connected, then πl(f) is canonically isomorphic
to Hl(f) for all 1 ≤ l ≤ k. Here we can assume that (integral) homology
groups can be constructed generalizing the usual (integral) relative homol-
ogy groups just as above for homotopy groups; those are what we denote by
Hl(f). In our situation, Ỹ and X̃ are 1-connected and πl(f̃) ∼= πl(f) = 0 for
all 1 ≤ l ≤ k−1, so that Hurewicz theorem applies and provides in particular
an isomorphism πk(f̃) ∼= Hk(f̃). This shows by the way that, even if k = 2,

the group πk(f̃) - and hence πk(f) - has to be abelian. It remains to show

that Hk(f̃) is a finitely generated Zπ1(Y )-module, see [6].
2. Making a map 0-connected simply means adding points to Y - one in each
path-connected component of X not meeting Y - and extending f by the
inclusion of those points in X. This can be done by adding finitely many
points since by assumption X is a finite CW-complex.
Assuming f to be 0-connected, it will be 1-connected as soon as the in-
duced map π0(Y ) → π0(X) will be injective and π1(Y ) → π1(X) will be
surjective. The injectivity of π0(Y ) → π0(X) can be attained by linking all
path-connected components of Y lying in the same path-connected compo-
nent of X by continuous curves; this can be achieved in a finite number of
steps since Y is a finite CW-complex. The surjectivity of π1(Y )→ π1(X) can
be attained by attaching at one point loops representing generators of π1(X)
to Y . This shows the case k = 1.
For k = 2, one has to notice that the kernel of π1(Y ) → π1(X) is finitely
generated since π1(Y ) is finitely generated and π1(X) is finitely presented.
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Each element in this kernel can be killed by attaching a 2-dimensional cell,
so that we obtain after finitely many such attachments an isomorphism
π1(Y ) → π1(X) and can apply part 1 of the proposition. The case k ≥ 3
follows directly from part 1. �

On the whole, the answer to our problem at the beginning of Section 2 is
positive, at least for finite CW-complexes. The major difficulty in our context
is that we want to obtain a manifold after attaching cells and the way we
did it (using pushouts) obviously destroys the manifold structure in general.
Therefore, we have to be more careful and use another way to attach cells.
This can be achieved by doing surgery on the manifold.

3 Performing surgery

The new problem we are interested in is the following:

Problem: Let f : M −→ X be a continuous map from a smooth closed n-
dimensional manifold M to a CW-complex X. Can one find a new smooth
closed n-dimensional manifold M ′ and a continuous map f ′ : M ′ −→ X
which is a homotopy equivalence?

The answer will be “Yes, at least if X is a finite CW-complex”. The main
tool we use is surgery.

3.1 Attaching handles

Definition 3.1 Let M and M ′ be two smooth n-dimensional manifolds with-
out boundary and k ∈ {0, . . . , n − 1}. We say that M ′ is obtained from M
by attaching a k-handle - or by k-dimensional surgery - if and only if there
exists a smooth embedding Sk ×Dn−k q−→M such that

M ′ diff.∼=
(
M\

◦
im(q)

) ⊔
q

(
Dk+1 × Sn−k−1

)
,

where
◦

im(q) denotes the interior of the range of q in M and the symbol

“
⊔
q” means we glue the topological space Dk+1 × Sn−k−1 to M\

◦
im(q) along

q|Sk×Sn−k−1
.

The glueing process is made possible thanks to the identities ∂(Sk×Dn−k) =
Sk×Sn−k−1 = ∂(Dk+1×Sn−k−1). It can be easily shown that, if a k-handle is
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attached to M , then the new space M ′ has a unique structure of topological

manifold such that both inclusions from Dk+1 × Sn−k−1 and M\
◦

im(q) into
M ′ are continuous embeddings. With a bit of work (“straightening the an-
gles” is the name of the method, meaning we smooth out along ∂im(q)) one
can even prove the existence of a unique smooth structure on M ′ such that
both embeddings above are smooth. Moreover, if M is closed (resp. oriented),
then so is M ′.

Note that, by construction, if M ′ is obtained from M by attaching a k-handle,
then conversely M is obtained from M ′ by attaching a (n− k− 1)-handle. A
less trivial but still central property of attaching handles is that it preserves
the cobordism class. Namely, if M ′ is obtained from a closed smooth manifold
M by attaching a k-handle, then the space

W :=
(
M × [0, 1]

) ⊔
q

(
Dk+1 ×Dn−k)

obtained by attaching the “full” handle Dk+1 × Dn−k to M × {1} along q,
is a compact manifold with boundary M

⊔
M ′. In case M is oriented, the

manifolds M ′ and W can be given an orientation such that ∂W = −M
⊔
M ′,

where −M denotes the manifold M with the opposite orientation.

What is the effect of attaching handles on the homotopy groups?

Lemma 3.2 For k ∈ {0, . . . , [n−2
2

]} let f : M → X be a k-connected continu-
ous map from a closed smooth n-dimensional manifold M to a CW-complex
X. Let ω ∈ πk+1(f) be represented by a commutative diagram

Sk

j

��

q // M

f

��
Dk+1

Q // X

with continuous maps q,Q. Assume that q can be extended to a smooth em-

bedding Sk × Dn−k q−→ M and let M ′ be the closed smooth n-dimensional
manifold obtained by attaching a k-handle along q. Then f induces a k-
connected map f ′ : M ′ → X which is bordant to f and such that the induced
map πk+1(f)→ πk+1(f ′) is surjective and contains ω in its kernel.

Proof: First, there exists a continuous map Q : Dk+1 × Dn−k → X making
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the following diagram

Sk ×Dn−k

j×id
��

q // M

f

��
Dk+1 ×Dn−kQ // X

commute and such that Q|
Dk+1×{0}

= Q: indeed there exists a continuous map

Dk+1×Dn−k ϕ−→ Dk+1×Dn−k with ϕ|
Dk+1×{0}

= id and ϕ|Sk×Dn−k
= id (“com-

press” the interior of the cylinder Dk+1×Dn−k onto the “walls” Sk×Dn−k and
the “bottom” Dk+1×{0}); now just consider the map obtained by composing
q and Q by φ (which is then defined and continuous on Dk+1 ×Dn−k).3 De-
fine f ′ : M ′ → X by f ′|

M\
◦

im(q)

:= f and f ′|
Dk+1×Sn−k−1

:= Q|
Dk+1×Sn−k−1

. Observe

that f ′ is well-defined (and smooth) since by construction f ◦q = Q◦(j× id).
Moreover, if W is the cobordism between M and M ′ described above, then
the assignments F|M×[0,1[

:= f ◦ p1, F|
(M\

◦
im(q))×{1}

:= f and F|
Dk+1×Dn−k

:= Q

define a (continuous) map F : W → X with F|M×{0} = f and F|M′ = f ′. Hence

f and f ′ are cobordant. Next notice that the inclusion map M\
◦

im(q)⊂M is
(n− k − 1)-connected. This follows from an excision argument in homology,
from the inclusion map Sk×Sn−k−1 ⊂ Sk×Dn−k being (n−k−1)-connected

(which itself follows from Dn−k
/Sn−k−1 = Sn−k being (n− k − 1)-connected)

and from the Hurewicz theorem. Using a long exact homotopy sequence for

both maps M\
◦

im(q)
f−→ X and M

f−→ X and the five lemma (still ap-
plicable in the case where j = n − k − 1), this implies that, for all j ∈
{1, . . . , n−k−1}, one has πj(f) ∼= πj(f|

M\
◦

im(q)

). Similarly, since M is obtained

from M ′ by attaching a (n−k−1)-handle, we have πj(f
′) ∼= πj(f

′
|
M\

◦
im(q)

) for all

1 ≤ j ≤ n− (n−k−1)−1 = k; but since by construction f ′|
M\

◦
im(q)

= f|
M\

◦
im(q)

,

we deduce that πj(f) ∼= πj(f
′) for all 1 ≤ j ≤ min(k, n − k − 1). Moreover,

using an argument analogous as the one we used for the pushout, there is
a natural (and surjective) group homomorphism πk+1(f) → πk+1(f ′) and ω
lies in its kernel. All in all, we see that, if k ≤ n−1

2
4, then the above glueing

does not modify πj(f) for all 1 ≤ j ≤ k while it kills ω. �

The first question Lemma 3.2 raises is whether q : Sk →M can be extended
to an embedding q : Sk × Dn−k → M , or if, at least, there exists such a q.
Note that q has to be itself an embedding then. Now for a smooth embedding

3Thanks to Matthias Blank for explaining this to me.
4problem with the bound, it should be k ≤ n

2 − 1.
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q : Sk →M , it is easy to show that q extends to a smooth embedding q : Sk×
Dn−k → M if and only if its normal bundle ν(q) → Sk is trivial (where
ν(q) is the quotient vector bundle q

∗TM/TSk): the reason is that the total
space ν(q) is diffeomorphic (by a diffeomorphism preserving fibres) to a fibre
bundle with fibre Dn−k, the latter bundle being diffeomorphic to a tubular
neighbourhood of q(Sk) in M .
In our situation, any map q : Sk → M can be approximated (in the C0-
topology) by an embedding as soon as 2k < n in virtue of the Whitney
embedding theorem (see e.g. [1]):

Theorem 3.3 (H. Whitney) Let Mm and Nn be smooth manifolds and
f : M → N be a continuous map.

i) If 2m ≤ n, then every C0-neighbourhood of f contains an immersion .

ii) If 2m < n, then every C0-neighbourhood of f contains an embedding.

The main remark now is that, if q : Sk → M is an embedding with 2k < n,
then q extends to an embedding q : Sk×Dn−k →M as soon as it comes from
a commutative diagram

Sk

j

��

q // M

f

��
Dk+1

Q // X

where f is the base map of a normal map (f, f): for then we have

TSk ⊕ ν(q)⊕ Ra ∼= q∗TM ⊕ Ra ∼= q∗(f ∗ξ) = (f ◦ q)∗ξ ∼= j∗(Q∗ξ)

for some a ∈ N. But Q∗ξ → Dk+1 is trivial since Dk+1 is contractible, so
that j∗(Q∗ξ) is trivial, that is, TSk ⊕ ν(q) ⊕ Ra is trivial. Since TSk ⊕ R is
trivial (the normal bundle of the canonical embedding Sk ⊂ Rk+1 is obviously
trivial), we deduce that ν(q)⊕ Ra+k+1 → Sk is trivial. The following lemma
[4, Lemma 3.5] together with n−k > k implies that ν(q)→ Sk itself is trivial
- and that therefore q extends to an embedding q : Sk ×Dn−k →M .

Lemma 3.4 Let E → X be a real n-ranked vector bundle over an k-dimen-
sional CW-complex X. Assume n > k. Then E → X is trivial if and only if
E ⊕ Rr → X is trivial for some r ∈ N.

Proof: Assume E ⊕ Rr → X to be trivial. Note that showing the case r = 1
suffices (then prove the result by induction over r). First, if E ⊕ R1 → X
is trivial, then the first Stiefel-Whitney class w1(E) = w1(E ⊕ R1) = 0, so
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that E → X is orientable. Fix an orientation on E → X and an orientation-
preserving isomorphism φ : E ⊕ R1 → Rn+1 = X × Rn+1. Denoting by
γ̃n(Rn+1)→ G̃n(Rn+1) the oriented universal bundle over the Grassmannian

of oriented n-planes in Rn+1, the map ψ : X → G̃n(Rn+1), x 7→ φ(Ex), is

well-defined, continuous and obviously pulls γ̃n(Rn+1) → G̃n(Rn+1) back to

E → X. Now G̃n(Rn+1) is diffeomorphic to G̃1(Rn+1), which itself is dif-
feomorphic to Sn. Because of n > k, the map ψ : X → Sn is necessarily
null-homotopic, therefore E = ψ∗γ̃n(Rn+1)→ X is isomorphic to the trivial
vector bundle Rn → X. �

The next question is whether the map f ′ obtained after adding a k-handle is
still a normal map. This is not the case in general, however it can be made
possible after having a closer look to the connection between immersions and
their differential. This is explained below.

3.2 Regular homotopy classes of immersions

Recall first the following

Definition 3.5 Let M and N be smooth manifolds.

i) Two immersions fi : M → N , i = 0, 1, are called regularly homotopic if
and only if there exists a smooth map h : M×[0, 1]→ N with h(·, i) = fi
for i = 0, 1 and each h(·, t) : M → N is an immersion.

ii) Let E →M and F → N be smooth vector bundles and (f i, fi) : E → F
be smooth vector-bundle-monomorphisms (i.e., fibrewise injective vector-
bundle-homomorphisms). Then (f 0, f0) and (f 1, f1) are called bundle
homotopic if and only if there exists a pair (h, h) of smooth maps ma-
king the following diagram commute

E × [0, 1]

πE×id
��

h // F

πF

��
M × [0, 1] h // N

with h(·, i) = f i, i = 0, 1 and h(·, t) : E → F is a vector-bundle-
monomorphism for every t ∈ [0, 1].5

5In particular, h is a (smooth) homotopy between f0 and f1.
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Regular homotopies and bundle homotopies define equivalence relations. We
denote by π0(Imm(M,N)) the set of regular homotopy classes of immersions
from M into N and by π0(Mono(E,F )) that of bundle homotopy classes of
monomorphisms of E to F 6.

It is a striking fact due to Hirsch and Smale that the sets π0(Imm(M,N))
and π0(Mono(TM, TN)) correspond (see [5, Sec. 3.4.2] for references):

Theorem 3.6 (Hirsch and Smale) Let Mm be an m-dimensional closed
smooth manifold and Nn be an n-dimensional smooth manifold.

1. If 1 ≤ m < n, then taking the differential yields a bijection

T : π0(Imm(M,N)) −→ π0(Mono(TM, TN)).

2. If 1 ≤ m ≤ n and M has a handlebody decomposition consisting solely
of k-handles with k ≤ n− 2. Then taking the differential yields a bijec-
tion

T : π0(Imm(M,N)) −→ lim−→
a→∞

π0(Mono(TM ⊕ Ra, TN ⊕ Ra)).

Before returning to our original problem, we give two applications of Theorem
3.6.

Examples 3.7

1. We first claim that π0(Imm(S2,R3)) = 0. Note first that this is an
amazing fact since it implies - among others - that a so-called sphere
eversion exists: one can turn S2 “inside out” using a regular homotopy!
Namely, if ι0 is the canonical inclusion S2 ⊂ R3 and ι1 := ι ◦ I, where
I := −idS2 is the point symmetry about 0, then there must exist a
regular homotopy from ι0 to ι1 - though ι1 is orientation-reversing!
To prove the claim, we show that any two bundle-monomorphisms
(f i, fi), i = 0, 1, from TS2 to TR3 ∼= R3 × R3 are bundle-homotopic;
Theorem 3.6 will imply the result. Given any two such bundle-mo-
nomorphisms, we first notice that, since S2 is orientable and f i is fi-
brewise injective, the bundle f i(TS2)⊥ → S2 is trivial and f i can be
extended to orientation-preserving bundle-monomorphisms gi : TS2 ⊕

6The notation is chosen so as to coincide with that of path-connected components of
the spaces Imm(M,N) and Mono(E,F ) respectively - provided those are endowed with
the right topology!
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R → R3 × R3. On the other hand, since R3 is contractible, both fi
are homotopic (though not regularly homotopic) to the constant map
c0 : S2 → R3, x 7→ 0 ∈ R3, in particular gi is bundle-homotopic to a

bundle-monomorphism TS2 ⊕ R Gi−→ {0} × R3. Consider now the map
u : S2 → GL(3,R) defined by u(x) := G1(x) ◦ G0(x)−1. Since both
gi and hence Gi are orientation-preserving, the map u actually takes
its values in GL+(3,R), which is known to be homotopy-equivalent to

SO(3,R). But π2(SO(3,R)) ∼= π2( ˜SO(3,R)) ∼= π2(S3) = 0, so that u
has to be homotopic to a constant map. Therefore, G0 and G1 are
bundle-homotopic and hence g0 and g1 are bundle-homotopic; by re-
striction onto TS2, the vector-bundle-monomorphisms f 0 and f 1 are
hence bundle-homotopic.

2. We claim that7, given n ≥ 1,

π0(Imm(Sn,S2n)) ∼= π0(Imm(Sn,R2n)) ∼=
{

Z2 if n is odd
Z if n is even.

The first isomorphism is obvious since any immersion Sn → S2n cannot
be surjective and hence can be regularly homotoped to an immersion
Sn → S2n \ {en+1}, the latter space being diffeomorphic to R2n. To see
how the second isomorphism is contructed, consider again two vector-
bundle-monomorphisms (f i, fi) from TSn to R2n×R2n. Fixing a vector-

bundle-isomorphism TSn ⊕ R φ−→ Rn+1, we obtain two vector-bundle-
monomorphisms

Rn+1 φ−1

−→ TSn ⊕ R
f i⊕(fi×idR)
−→ R2n × R2n+1

and hence smooth maps Sn → V2n+1,n+1 := Vn+1(R2n+1), where Vk(Rl)
denotes the Stiefel manifold of all k-frames in Rl. Now it can be shown
that (f 0, f0) and (f 1, f1) are bundle-homotopic if and only if the corre-

sponding maps Sn ui−→ V2n+1,n+1 are homotopic.8 Thus we are reduced
to finding all homotopy classes of maps Sn → V2n+1,n+1 and hence
to computing the homotopy groups πn(V2n+1,n+1). The first step is to
prove that πn(V2n+1,n+1) ∼= πn(V2n,n): this follows by considering the
long exact homotopy sequence associated to the fibration

V2n,n = O2n/On
↪→ O2n+1/On

= V2n+1,n+1 � O2n+1/O2n
= S2n,

7Thanks to Diarmuid Crowley for explaining part of this result to me.
8Why?
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for πk(S2n) = 0 for k ≤ n + 1 as soon as n > 1. The next step is to
consider the long exact homotopy sequence associated to the fibration

Vn,n = On ↪→ O2n = V2n,2n � O2n/On
= V2n,n.

See [6] for the rest of the proof.

4 Performing surgery and carrying bundles
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