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Abstract: After introducing the spinc group and the spinor representa-

tion, we discuss spinc structures and show that every orientable closed

smooth 4-dimensional manifold has a spinc structure. We closely follow

[6, App. D] and [1] (see also [2] for a few details).

1 The spinc group and its representations

1.1 The spin group

Definition 1.1 Let n be a positive integer. The spin group in dimension n,
denoted by Spinn, is the non-trivial 2-fold covering of the special orthogonal
group SOn.

The group Spinn is a compact n(n−1)
2

-dimensional Lie group, connected if

n ≥ 2 and simply-connected if n ≥ 3. In fact, if Spinn
ξ−→ SOn denotes this

non-trivial covering map, then ξ(z) = z2 for any z ∈ Spin2
∼= U1 = {z ∈

C, |z| = 1} and ξ is the universal covering map if n ≥ 3. In particular, we
have the following short exact sequence of Lie groups:

1 −→ {±1} −→ Spinn
ξ−→ SOn −→ 1.

Examples 1.2

1. For n = 3, the spin group Spin3
∼= SU2, where ξ becomes the well-

known 2-fold covering map.

2. For n = 4, the spin group Spin4
∼= Spin3 × Spin3

∼= SU2 × SU2.
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This defines the spin group as an abstract Lie group. Actually, the spin
group is a Lie subgroup of a natural Lie group, namely the group of units of
a Clifford algebra.

Definition 1.3 Let qC(z, z′) :=
∑n

j=1 zjz
′
j denote the canonical complex bi-

linear form on Cn. The complex Clifford algebra in dimension n is defined
as

Cln := Cl(Cn, qC) :=
⊗
Cn/I,

where
⊗
Cn denotes the tensor algebra of Cn and I the two-sided ideal ge-

nerated by the elements of the form z⊗w+w⊗ z + 2qC(z, z′) · 1, where z, w
run in Cn.

Proposition 1.4 Endowed with the so-called Clifford mutliplication [a]·[b] :=
[a⊗ b], the complex Clifford algebra in dimension n is an associative algebra
with unit which is linearly isomorphic to the exterior algebra

∧
Cn (hence

of complex dimension 2n). It can be characterised as the smallest associative
complex algebra with unit containing Cn and where the relations

z · w + w · z = −2qC(z, w) · 1

are satisfied for all z, w ∈ Cn.

Proposition 1.5 The spin group in dimension n can be identified with the
following subgroup of the group Cl×n of units of Cln:

Spinn
∼= {v1 · . . . · v2k | vj ∈ Rn , |vj| = 1 , k ≥ 1} ⊂ Cl×n .

Moreover, the 2-fold covering homorphism ξ can be identified with the restric-
tion of the adjoint map acting on Rn:

ξ = Ad|Spinn : Spinn −→ Aut(Rn), u 7−→ (v 7→ u · v · u−1).

1.2 The spinc group

Definition 1.6 Let n be a positive integer. The spinc group in dimension n,
denoted by Spincn, is the subgroup

Spincn := {λu |λ ∈ U1, u ∈ Spinn} ⊂ Cl×n .

The group homomorphism

Spinn × U1 −→ Spincn
(u, λ) 7−→ λu
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is by definition surjective and its kernel is {±(1, 1)} since Spinn∩U1 = {±1}.
Therefore,

Spincn
∼= Spinn × U1/Z2

,

which is sometimes taken as a definition for the spinc group.

As for the spin group, there is a short exact sequence of Lie groups

1 −→ {±1} −→ Spincn
ξc−→ SOn × U1 −→ 1, (1)

where ξc([u, λ]) := (ξ(u), λ2). Beware that Spincn, though connected for n ≥ 2,
is never simply-connected:

π1(Spincn) =

{
Z2 if n = 2
Z if n ≥ 3.

1.3 The spinor representation

Proposition 1.7 Let Σn := C2[
n
2 ]

, then there exist complex algebra homo-
morphisms

Cln ∼=
{

EndC(Σn) if n is even
EndC(Σn)⊕ EndC(Σn) if n is odd.

The representation space Σn can actually be constructed explicitly as a sub-
space of Cln itself (on which Cln acts from the left by Clifford multiplication),
see [2].

Since any complex matrix algebra is simple, Proposition 1.7 implies that there
is up to equivalence only one (non-zero) irreducible complex representation
of Cln if n is even and there are exactly two if n is odd. To distinguish the
two, we introduce the so-called complex volume element

ωCn := i[
n+1
2

]e1 · . . . · en ∈ Cln,

where (ej)1≤j≤n is any p.o.n.b of Rn with the canonical metric and orienta-
tion.

Lemma 1.8 The complex volume element acts as an isometric involution
on Σn. More precisely,

ωCn · =
{

IdΣ+
n
⊕−IdΣ−

n
if n is even

IdΣn ⊕−IdΣn if n is odd,

where Σ±n := Ker(ωCn · ∓IdΣn) ⊂ Σn in the case n even.
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From now on, we denote by δn : Cln −→ EndC(Σn) the representation
provided by Proposition 1.7 if n is even and by the factor of EndC(Σn) ⊕
EndC(Σn) on which ωCn acts as the identity if n is odd.

Definition 1.9 The representation δn is called the complex spinor represen-
tation.

Proposition 1.10 The spinor representation satisfies the following:

i) There exists up to scaling only one Hermitian product on Σn such that
each vector in Rn acts in a skew-Hermitian way on Σn.

ii) In n is even, then δn|Spincn splits into the sum of two inequivalent irre-

ducible complex representations: δn|Spincn = δ+
n⊕δ−n , where δ±n : Spincn −→

AutC(Σ±n ) are irreducible with δ+
n � δ−n .

iii) If n is odd, then δn|Spincn is irreducible. Moreover, the restriction of the

factor of EndC(Σn)⊕EndC(Σn) on which ωCn acts as minus the identity
to Spincn gives rise to an equivalent representation.

In case n even, the representations δ±n are called half-spinor representations ;
δ+
n is the positive one and δ−n the negative one. Note in particular that, as a

consequence of Proposition 1.10.i) and of Proposition 1.5, the representation
δn is unitary.

2 Spinc structures

We denote by PSOnTM −→ M the SOn-principal bundle of positively ori-
ented orthonormal frames on the tangent bundle of an oriented Riemannian
manifold (Mn, g).

Definition 2.1 Let (Mn, g) be an n-dimensional oriented Riemannian ma-
nifold.

1. A spin structure on (Mn, g) is a reduction of PSOnTM −→ M to
the spin group. More precisely, a spin structure is given by a Spinn-
principal bundle PSpinn

TM −→M together with a 2-fold covering map

PSpinn
TM

η−→ PSOnTM) such that the following diagramme commutes:

PSpinn
TM × Spinn

η×ξ

��

// PSpinn
TM

η

��

%%JJJJJJJJJJ

M

PSOnTM × SOn
// PSOnTM

99tttttttttt
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2. A spinc-structure on (Mn, g) consists of a pair (PSpinc
n
TM,PU1), where

PSpinc
n
TM −→ M is a Spincn-principal bundle, PU1 −→ M is a U1-

principal bundle, together with a 2-fold covering map PSpinc
n
TM

ηc−→
PSOnTM × PU1 such that the following diagramme commutes:

PSpinc
n
TM × Spincn

ηc×ξc

��

// PSpinc
n
TM

ηc

��

''OOOOOOOOOOOO

M

PSOnTM ×M PU1 × (SOn × U1) // PSOnTM ×M PU1

77ooooooooooooo

3. The manifold (Mn, g) is called spin (resp. spinc) if and only if it admits
a spin- (resp. spinc-)structure.

Any spin structure defines a spinc structure in an obvious way: take PU1 :=
M × U1 to be the trivial U1-bundle and extend the Spinn-bundle via the
inclusion Spinn ⊂ Spincn. In particular, any spin manifold is spinc.

The condition to be spin or spinc a priori depends on the metric (through
PSOnTM). It actually only has to do with the topology of the manifold since
it may be understood as an orientability condition of second order, as we
shall prove next. Denote by r : Z −→ Z2 the mod-2-reduction and also by
r : Hq(M ;Z) −→ Hq(M ;Z2) the induced homomorphism in cohomology.

Proposition 2.2

i) A smooth manifold M is spin if and only if its first and second Stiefel-
Whitney classes vanish, that is, iff w1(TM) = 0 and w2(TM) = 0.

ii) A smooth manifold M is spinc if and only if its first Stiefel-Whitney
class vanishes and its second Stiefel-Whitney class is the mod-2-reduction
of an integral class, that is, iff

w1(TM) = 0 and w2(TM) ∈ r(H2(M ;Z)).

Proof: We only prove ii), see e.g. [6] or [3] for i). We follow [6, App. D]. First
M has to be orientable in order to be spinc, the orientability of TM being
equivalent to w1(TM) = 0, which we assume from now on. The short exact
sequence of groups (1) induces the following long exact sequence in Čech
cohomology:

. . .→ H1(M ;Z2) −→ H1(M ; Spincn)
ξc→ H1(M ; SOn)⊕H1(M ;U1)

w2+r◦c1→ H2(M ;Z2)→ . . . ,

5



where w2 : H1(M ; SOn)→ H2(M ;Z2) denotes the homomorphism associat-
ing the second Stiefel-Whitney class to an equivalence class of SOn-bundles
(or, equivalently, of Riemannian vector bundles) and c1 : H1(M ;U1) →
H2(M ;Z) denotes the homomorphism associating the first Chern class to an
equivalence class of U1-bundles (or, equivalently, of Hermitian line bundles).
The condition M to be spinc means that there exists a U1-bundle PU1 −→M
such that the element [(PSOnTM,PU1)] ∈ H1(M ; SOn) ⊕ H1(M ;U1) lies in
the image of the map ξc. This, in turn, is equivalent to [(PSOnTM,PU1)] lying
in the kernel of w2+r◦c1, meaning that w2(PSOnTM) = r(c1(PU1)). Since c1 :
H1(M ;U1) → H2(M ;Z) is a group isomorphism, the condition to be spinc

for M is therefore equivalent to w2(TM) = w2(PSOnTM) ∈ r(H2(M ;Z)),
which was to be shown. �

Examples 2.3

1. Any 1-dimensional manifold is spin, a circle having two inequivalent
spin structures. Any orientable surface is also spin since in that case
w2(TM) ∈ H2(M ;Z2) ∼= Z2 is the mod-2-reduction of the Euler cha-
racteristic (which is even). Any 3-dimensional orientable 3-dimensional
manifold has trivial tangent bundle and hence is spin. The “simplest”
example of non-spin manifold is the complex 2-dimensional projective
space CP2.

2. The set of (inequivalent) spin structures of a given spin manifold M
can be shown to stand in one-to-one correspondence with its cohomo-
logy group H1(M ;Z2). In particular, M may have more than one spin
structure. However, there is only one if e.g. M is simply-connected.

3. Any almost-Hermitian manifold has a natural spinc structure, due to
the existence of a reduction of PSO2m to the unitary group Um and of a

lift Um −→ Spinc2m over Um
incl.×det−→ SO2m × U1.

4. Spinc structures need also not be unique: if PU1(α) −→ M is any U1-
bundle (with Chern-class α ∈ H2(M ;Z)) over M , then

PSpinc
n
×M PU1(α)/U1

−→ PSOn ×M (PU1 ⊗ PU1(2α))

defines a new spinc structure, where the new associated U1-bundle is
PU1 ⊗ PU1(2α).

From now on, we shall implicitely assume that, on a given spinc manifold, a
spinc structure is fixed.
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Definition 2.4 Let (Mn, g) be a spinc manifold. The spinor bundle of M is
the vector bundle – denoted by ΣM – associated to the Spincn-bundle via the
spinor representation:

ΣM := PSpinc
n
TM ×δn Σn = PSpinc

n
TM × Σn/∼,

where (p, σ) ∼ (p·u, δn(u−1)(σ) for all (p, σ) ∈ PSpinc
n
TM×Σn and u ∈ Spincn.

By definition, the spinor bundle is a complex vector bundle of (complex)
rank 2[n

2
] over M . Sections of ΣM are called spinor fields or just spinors.

Since δn can be assumed unitary (see above), ΣM can be naturally endowed
with a pointwise Hermitian inner product 〈· , ·〉, turning it into a Hermitian
vector bundle. Like the space Σn, the spinor bundle also admits a Clifford
multiplication:

Proposition 2.5 The spinor representation of Cln induces a linear map
TM ⊗ ΣM −→ ΣM , X ⊗ ϕ 7−→ X · ϕ, satisfying the (pointwise) Clifford
relation

X · (Y · ϕ) + Y · (X · ϕ) = −2g(X, Y )ϕ

for all X, Y ∈ TM and ϕ ∈ ΣM . Moreover, the Hermitian inner product
〈· , ·〉 can be defined such that

〈X · ϕ, ψ〉 = −〈ϕ,X · ψ〉

for all X ∈ TM and ϕ, ψ ∈ ΣM .

As a last important step, any connection 1-form on the auxiliary bundle
PU1 induces, together with the Levi-Civita connection of (Mn, g), a metric
connection on ΣM :

Proposition 2.6 Let A ∈ Ω1(PU1 , iR) be any connection 1-form on PU1.
Then A and the Levi-Civita connection ∇ of (Mn, g) together induce a metric
covariant derivative ∇A on ΣM , which satisfies:

∇A
X(Y · ϕ) = (∇XY ) · ϕ+ Y · ∇A

Xϕ,

for all X, Y ∈ Γ(M,TM) and ϕ ∈ Γ(M,ΣM).

Definition 2.7 The Dirac operator associated to a connection 1-form A on
the auxiliary bundle PU1 −→M on a spinc manifold (Mn, g) is the operator

DA : Γ(M,ΣM)→ Γ(M,ΣM), ϕ 7→
n∑
j=1

ej · ∇A
ej
ϕ,

where ∇A is the covariant derivative associated to A and (ej)1≤j≤n is any
local o.n.b. of TM .
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The Dirac-operator is a well-defined, elliptic, formally self-adjoint differential
operator of order 1. It is even essentially self-adjoint if (Mn, g) is complete.

Theorem 2.8 (Schrödinger-Lichnerowicz formula) For any connection
1-form A on the auxiliary bundle PU1 −→ M on a spinc manifold (Mn, g),
we have

(DA)2 = (∇A)∗∇A +
S

4
Id +

FA
2
· Id,

where (∇A)∗∇A := −trg((∇A)2) =
∑n

j=1∇A
∇ej ej

− ∇A
ej
∇A
ej

is the connection

Laplacian associated to ∇A (here {ej}1≤j≤n is a local o.n.b. of TM), S is the
scalar curvature of (M, g) and FA ∈ Γ(Λ2T ∗M ⊗ iR) is the curvature form
of A.

Proof: Fix a local orthonormal basis {ej}1≤j≤n of TM . Using the compatibi-
lity conditions as well as the Clifford relations, we have, for any ϕ ∈ Γ(ΣM),

(DA)2ϕ =
n∑

j,k=1

ej · ∇A
ej

(ek · ∇A
ek
ϕ)

=
n∑

j,k=1

ej · ∇ejek · ∇A
ek
ϕ+ ej · ek · ∇A

ej
∇A
ek
ϕ

= −
n∑

j,k=1

ej · ek · ∇A
∇ejek

ϕ+
n∑

j,k=1

ej · ek · ∇A
ej
∇A
ek
ϕ

=
n∑
j=1

(∇A
∇ejej
−∇A

ej
∇A
ej

)ϕ

+
∑

1≤j<k≤n

ej · ek · (∇A
ej
∇A
ek
−∇A

ek
∇A
ej
−∇A

∇ejek
+∇A

∇ekej
)ϕ

= (∇A)∗∇Aϕ+
∑

1≤j<k≤n

ej · ek · ([∇A
ej
,∇A

ek
]−∇A

[ej ,ek])ϕ

= (∇A)∗∇Aϕ+
1

2

n∑
j,k=1

ej · ek ·R∇
A

ej ,ek
ϕ.

Now locally the connection ∇A and its curvature R∇
A

can be expressed as
follows: choosing local sections u of PSOnTM → M and s of PU1 → M , we
obtain a local section ũ of PSpinc

n
TM → M and hence a local trivialization

{ψα}1≤α≤2[
n
2 ] of ΣM . In that case, we have, for all tangent vectors X, Y

(defined locally),

∇A
Xψα =

1

4

n∑
j,k=1

g(∇Xej, ek)ej · ek · ψα +
A(ds(X))

2
ψα,
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from which

R∇
A

X,Y =
1

4

n∑
j,k=1

g(R∇X,Y ej, ek)ej · ek ·+
1

2
dA(ds(X), ds(Y ))︸ ︷︷ ︸

FA(X,Y )

follows. By definition of the Clifford action of forms

n∑
j,k=1

FA(ej, ek)ej · ek· = 2
∑

1≤j<k≤n

FA(ej, ek)ej · ek· = 2FA·,

so that only the action of the curvature of the Levi-Civita connection of
(M, g) remains to be determined. The first Bianchi identity and the preceding
local expressions of ∇A and R∇

A
imply that, for any X ∈ TM ,

n∑
j,k,l=1

g(R∇X,ejek, el)ej · ek · el · ϕ = −
n∑

j,k,l=1

g(R∇ej ,ekX, el)ej · ek · el · ϕ

−
n∑

j,k,l=1

g(R∇ek,Xej, el)ej · ek · el · ϕ

= −
n∑

j,k,l=1

g(R∇X,ejek, el)(ek · el · ej − ek · ej · el) · ϕ,

with

ek · el · ej − ek · ej · el = −ek · ej · el − 2δjlek + ej · ek · el + 2δjkel

= 2ej · ek · el + 4δjkel − 2δjlek.

We deduce that

3
n∑

j,k,l=1

g(R∇X,ejek, el)ej · ek · el · ϕ = −4
n∑

j,l=1

g(R∇X,ejej, el)el · ϕ+ 2
n∑

j,k=1

g(R∇X,ejek, ej)ek · ϕ

= −4
n∑
l=1

g(Ric(X), el)el · ϕ− 2
n∑
k=1

g(Ric(X), ek)ek · ϕ

= −6Ric(X) · ϕ,
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where Ric denotes the Ricci tensor of (M, g). Therefore,

1

2

n∑
j,k=1

ej · ek ·R∇
A

ej ,ek
ϕ =

1

8

n∑
i,j,k,l=1

g(R∇ei,ejek, el)ei · ej · ek · el · ϕ

+
1

4

n∑
j,k=1

FA(ej, ek)ej · ek · ϕ

= −1

4

n∑
i=1

ei · Ric(ei) · ϕ+
FA
2
· ϕ

= −1

4

n∑
i,j=1

g(Ric(ei), ej)︸ ︷︷ ︸
symm.

ei · ej·︸ ︷︷ ︸
skew−symm. if i 6=j

ϕ+
FA
2
· ϕ

=
1

4

n∑
i=1

g(Ric(ei), ei)ϕ+
FA
2
· ϕ

=
S

4
ϕ+

FA
2
· ϕ,

which concludes the proof. �

3 The 4-dimensional case

Theorem 3.1 ([8, 5]) Every closed orientable smooth 4-dimensional mani-
fold is spinc.

Proof: We follow [1, pp. 144-145]. We can assume w.l.o.g. that the mani-
fold M is connected. By Proposition 2.2, we have to show that w2(TM) ∈
Im(r) := r(H2(M ;Z)) ⊂ H2(M ;Z2). We define T := Tor(H2(M ;Z)), the
torsion subgroup of H2(M ;Z).
Claim: Im(r) = {γ ∈ H2(M ;Z2) , γ ∪ y = 0 ∀y ∈ r(T )}.
Proof: Let Γ := {γ ∈ H2(M ;Z2) , γ ∪ y = 0 ∀y ∈ r(T )}. If γ ∈ Im(r), then
there exists α ∈ H2(M ;Z) with r(α) = γ. Similarly, for any y ∈ r(T ), there
exists β ∈ T with r(β) = y. It follows γ∪y = r(α∪β). But α∪β ∈ H4(M ;Z)
andH4(M ;Z) ∼= Z becauseM is orientable; since β is a torsion element, there
exists an m ∈ N \ {0} with mβ = 0 and hence m(α ∪ β) = 0, which yields
α∪β = 0 and therefore γ∪y = 0. This shows Im(r) ⊂ Γ. The other inclusion
will be proven as soon as the Z2-dimensions of Im(r) and Γ are shown to
coincide. Since Z2 is a field, the cup product H2(M ;Z2) × H2(M ;Z2) −→
H4(M ;Z2) ∼= Z2 defines a non-degenerate (symmetric) bilinear form (see e.g.
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[4, Prop. 3.38]), therefore

dimZ2(Γ) = dimZ2(r(T )⊥) = dimZ2(H
2(M ;Z2))− dimZ2(r(T )).

Thus we have to show that dimZ2(Im(r)) = dimZ2(H
2(M ;Z2))−dimZ2(r(T )).

The short exact sequence of abelian groups 0 −→ Z 2·−→ Z r−→ Z2 −→ 0
induces the following long exact sequence in cohomology

. . .→ H2(M ;Z)
2·→ H2(M ;Z)

r→ H2(M ;Z2)
β→ H3(M ;Z)

2·→ H3(M ;Z)→ . . .

where β is the so-called Bockstein homomorphism. In particular, Im(r) =
Ker(β), so that dimZ2(Im(r)) = dimZ2(H

2(M ;Z2))−dimZ2(Im(β)). Hence it
suffices to show that Im(β) ∼= r(T ). Now the universal coefficient theorem
(see e.g. [4, Thm 3.2]) states that there is the following short exact sequence
of Z-modules:

0 −→ ExtZ(Hq−1(M ;Z),Z) −→ Hq(M ;Z) −→ HomZ(Hq(M ;Z),Z) −→ 0,

for every q ∈ N \ {0}. Moreover, the free part of Hq−1(M ;Z) does not con-
tribute to ExtZ, more precisely ExtZ(Hq−1(M ;Z),Z) ∼= Tor(Hq−1(M ;Z)).
Similarly, the torsion part of Hq(M ;Z) does not contribute to HomZ, that
is, HomZ(Hq(M ;Z),Z) ∼= Zbq , where bq ∈ N is the rank of Hq(M ;Z); in par-

ticular, HomZ(Hq(M ;Z),Z) ∼= Hq(M ;Z)/Tor(Hq(M ;Z)). Since the latter is
free, the short exact sequence above splits and we obtain

Hq(M ;Z) ∼= ExtZ(Hq−1(M ;Z),Z)⊕ HomZ(Hq(M ;Z),Z)

∼= Tor(Hq−1(M ;Z))⊕Hq(M ;Z)/Tor(Hq(M ;Z)).

As a consequence, Tor(Hq(M ;Z)) ∼= Tor(Hq−1(M ;Z)). Since M is closed and
orientable, Poincaré duality implies Hq−1(M ;Z) ∼= Hn−q+1(M ;Z), where n
is the dimension of the manifold M . Here we obtain, for n = 4 and q = 3:

Tor(H3(M ;Z)) ∼= Tor(H2(M ;Z)) ∼= Tor(H2(M ;Z)).

We deduce that

Im(β) = Ker(2·)
=

{
α ∈ H3(M ;Z) , 2α = 0

}
=

{
α ∈ Tor(H3(M ;Z)) , 2α = 0

}
∼= {α ∈ T , 2α = 0} .

Writing T =
⊕m

j=1 Zpkjj
with pj ∈ N prime and kj ≥ 1, the subgroup

{α ∈ T , 2α = 0} of T is freely generated over Z2 by the elements of the form
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2kj−1 ∈ Z2kj (only the pj = 2 appear since 2 is invertible in Z
p
kj
j

for any prime

pj > 2). So is T/2T for the same reasons. Hence {α ∈ T , 2α = 0} ∼= T/2T
and, using the long exact sequence above, r(T ) ∼= T/Im(2·) ∩ T = T/2T . On

the whole, Im(β) ∼= r(T ), which was to be proven and yields the claim.
√

Pick now an arbitrary y ∈ r(T ), then w2(TM) ∪ y = y2 using a formula due
to W.-T. Wu [8]. As above, since y ∈ r(T ) is the image of a torsion element,
y2 = 0, so that w2(TM) ∪ y = 0. This shows w2(TM) ∈ Γ and, with the
claim, w2(TM) ∈ Im(r). This concludes the proof. �

For further aspects of spinc geometry, we recommend [7].
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