Spin c structures on manifolds

Nicolas Ginoux
Seminar on Seiberg-Witten theory - University of Regensburg

November 17, 2012

Abstract

After introducing the spin ${ }^{c}$ group and the spinor representation, we discuss spin ${ }^{c}$ structures and show that every orientable closed smooth 4 -dimensional manifold has a spin^{c} structure. We closely follow [6, App. D] and [1] (see also [2] for a few details).

1 The spin^{c} group and its representations

1.1 The spin group

Definition 1.1 Let n be a positive integer. The spin group in dimension n, denoted by Spin_{n}, is the non-trivial 2 -fold covering of the special orthogonal group SO_{n}.

The group Spin_{n} is a compact $\frac{n(n-1)}{2}$-dimensional Lie group, connected if $n \geq 2$ and simply-connected if $n \geq 3$. In fact, if $\operatorname{Spin}_{n} \xrightarrow{\xi} \mathrm{SO}_{n}$ denotes this non-trivial covering map, then $\xi(z)=z^{2}$ for any $z \in \operatorname{Spin}_{2} \cong \mathbb{U}^{1}=\{z \in$ $\mathbb{C},|z|=1\}$ and ξ is the universal covering map if $n \geq 3$. In particular, we have the following short exact sequence of Lie groups:

$$
1 \longrightarrow\{ \pm 1\} \longrightarrow \operatorname{Spin}_{n} \xrightarrow{\xi} \mathrm{SO}_{n} \longrightarrow 1
$$

Examples 1.2

1. For $n=3$, the spin group $\operatorname{Spin}_{3} \cong \mathrm{SU}_{2}$, where ξ becomes the wellknown 2 -fold covering map.
2. For $n=4$, the spin group $\operatorname{Spin}_{4} \cong \operatorname{Spin}_{3} \times \operatorname{Spin}_{3} \cong \mathrm{SU}_{2} \times \mathrm{SU}_{2}$.

This defines the spin group as an abstract Lie group. Actually, the spin group is a Lie subgroup of a natural Lie group, namely the group of units of a Clifford algebra.

Definition 1.3 Let $q_{\mathbb{C}}\left(z, z^{\prime}\right):=\sum_{j=1}^{n} z_{j} z_{j}^{\prime}$ denote the canonical complex bilinear form on \mathbb{C}^{n}. The complex Clifford algebra in dimension n is defined as

$$
\mathbb{C l}_{n}:=\mathrm{Cl}\left(\mathbb{C}^{n}, q_{\mathbb{C}}\right):=\bigotimes \mathbb{C}^{n} / \mathcal{I}
$$

where $\otimes \mathbb{C}^{n}$ denotes the tensor algebra of \mathbb{C}^{n} and \mathcal{I} the two-sided ideal generated by the elements of the form $z \otimes w+w \otimes z+2 q_{\mathbb{C}}\left(z, z^{\prime}\right) \cdot 1$, where z, w run in \mathbb{C}^{n}.

Proposition 1.4 Endowed with the so-called Clifford mutliplication $[a] \cdot[b]:=$ $[a \otimes b]$, the complex Clifford algebra in dimension n is an associative algebra with unit which is linearly isomorphic to the exterior algebra $\bigwedge \mathbb{C}^{n}$ (hence of complex dimension 2^{n}). It can be characterised as the smallest associative complex algebra with unit containing \mathbb{C}^{n} and where the relations

$$
z \cdot w+w \cdot z=-2 q_{\mathbb{C}}(z, w) \cdot 1
$$

are satisfied for all $z, w \in \mathbb{C}^{n}$.
Proposition 1.5 The spin group in dimension n can be identified with the following subgroup of the group $\mathbb{C l}_{n}^{\times}$of units of $\mathbb{C l}_{n}$:

$$
\operatorname{Spin}_{n} \cong\left\{v_{1} \cdot \ldots \cdot v_{2 k}\left|v_{j} \in \mathbb{R}^{n},\left|v_{j}\right|=1, k \geq 1\right\} \subset \mathbb{C l}_{n}^{\times} .\right.
$$

Moreover, the 2 -fold covering homorphism ξ can be identified with the restriction of the adjoint map acting on \mathbb{R}^{n} :

$$
\xi=\operatorname{Ad}_{\mid \operatorname{spin}_{n}}: \operatorname{Spin}_{n} \longrightarrow \operatorname{Aut}\left(\mathbb{R}^{n}\right), u \longmapsto\left(v \mapsto u \cdot v \cdot u^{-1}\right) .
$$

1.2 The spin ${ }^{c}$ group

Definition 1.6 Let n be a positive integer. The spin ${ }^{c}$ group in dimension n, denoted by Spin_{n}^{c}, is the subgroup

$$
\operatorname{Spin}_{n}^{c}:=\left\{\lambda u \mid \lambda \in \mathbb{U}_{1}, u \in \operatorname{Spin}_{n}\right\} \subset \mathbb{C l}_{n}^{\times} .
$$

The group homomorphism

$$
\begin{aligned}
\operatorname{Spin}_{n} \times \mathbb{U}_{1} & \longrightarrow \operatorname{Spin}_{n}^{c} \\
(u, \lambda) & \longmapsto \lambda u
\end{aligned}
$$

is by definition surjective and its kernel is $\{ \pm(1,1)\}$ since $\operatorname{Spin}_{n} \cap \mathbb{U}_{1}=\{ \pm 1\}$. Therefore,

$$
\operatorname{Spin}_{n}^{c} \cong \operatorname{Spin}_{n} \times \mathbb{U}_{1} / \mathbb{Z}_{2}
$$

which is sometimes taken as a definition for the spin^{c} group.
As for the spin group, there is a short exact sequence of Lie groups

$$
\begin{equation*}
1 \longrightarrow\{ \pm 1\} \longrightarrow \operatorname{Spin}_{n}^{c} \xrightarrow{\xi^{c}} \mathrm{SO}_{n} \times \mathbb{U}_{1} \longrightarrow 1, \tag{1}
\end{equation*}
$$

where $\xi^{c}([u, \lambda]):=\left(\xi(u), \lambda^{2}\right)$. Beware that $\operatorname{Spin}_{n}^{c}$, though connected for $n \geq 2$, is never simply-connected:

$$
\pi_{1}\left(\operatorname{Spin}_{n}^{c}\right)= \begin{cases}\mathbb{Z}^{2} & \text { if } n=2 \\ \mathbb{Z} & \text { if } n \geq 3\end{cases}
$$

1.3 The spinor representation

Proposition 1.7 Let $\Sigma_{n}:=\mathbb{C}^{\left.2 \frac{n}{2}\right]}$, then there exist complex algebra homomorphisms

$$
\mathbb{C l}_{n} \cong \begin{cases}\operatorname{End}_{\mathbb{C}}\left(\Sigma_{n}\right) & \text { if } n \text { is even } \\ \operatorname{End}_{\mathbb{C}}\left(\Sigma_{n}\right) \oplus \operatorname{End}_{\mathbb{C}}\left(\Sigma_{n}\right) & \text { if } n \text { is odd } .\end{cases}
$$

The representation space Σ_{n} can actually be constructed explicitly as a subspace of $\mathbb{C l}_{n}$ itself (on which $\mathbb{C l}_{n}$ acts from the left by Clifford multiplication), see [2].

Since any complex matrix algebra is simple, Proposition 1.7 implies that there is up to equivalence only one (non-zero) irreducible complex representation of $\mathbb{C l}_{n}$ if n is even and there are exactly two if n is odd. To distinguish the two, we introduce the so-called complex volume element

$$
\omega_{n}^{\mathbb{C}}:=i^{\left[\frac{n+1}{2}\right]} e_{1} \cdot \ldots \cdot e_{n} \in \mathbb{C l}_{n}
$$

where $\left(e_{j}\right)_{1 \leq j \leq n}$ is any p.o.n.b of \mathbb{R}^{n} with the canonical metric and orientation.

Lemma 1.8 The complex volume element acts as an isometric involution on Σ_{n}. More precisely,

$$
\omega_{n}^{\mathbb{C}} .= \begin{cases}\operatorname{Id}_{\Sigma_{n}^{+}} \oplus-\operatorname{Id}_{\Sigma_{n}^{-}} & \text {if } n \text { is even } \\ \operatorname{Id}_{\Sigma_{n}} \oplus-\operatorname{Id}_{\Sigma_{n}} & \text { if } n \text { is odd },\end{cases}
$$

where $\Sigma_{n}^{ \pm}:=\operatorname{Ker}\left(\omega_{n}^{\mathbb{C}} \cdot \mp \operatorname{Id}_{\Sigma_{n}}\right) \subset \Sigma_{n}$ in the case n even.

From now on, we denote by $\delta_{n}: \mathbb{C l}_{n} \longrightarrow \operatorname{End}_{\mathbb{C}}\left(\Sigma_{n}\right)$ the representation provided by Proposition 1.7 if n is even and by the factor of $\operatorname{End}_{\mathbb{C}}\left(\Sigma_{n}\right) \oplus$ $\operatorname{End}_{\mathbb{C}}\left(\Sigma_{n}\right)$ on which $\omega_{n}^{\mathbb{C}}$ acts as the identity if n is odd.

Definition 1.9 The representation δ_{n} is called the complex spinor representation.

Proposition 1.10 The spinor representation satisfies the following:
i) There exists up to scaling only one Hermitian product on Σ_{n} such that each vector in \mathbb{R}^{n} acts in a skew-Hermitian way on Σ_{n}.
ii) In n is even, then $\delta_{\left.n\right|_{\sin _{n}^{c}}}$ splits into the sum of two inequivalent irreducible complex representations: $\delta_{n| |_{\sin _{n}^{c}}^{n}}=\delta_{n}^{+} \oplus \delta_{n}^{-}$, where $\delta_{n}^{ \pm}: \operatorname{Spin}_{n}^{c} \longrightarrow$ $\operatorname{Aut}_{\mathbb{C}}\left(\Sigma_{n}^{ \pm}\right)$are irreducible with $\delta_{n}^{+} \nsim \delta_{n}^{-}$.
iii) If n is odd, then $\delta_{\left.n\right|_{\operatorname{Spin}_{n}^{c}}}$ is irreducible. Moreover, the restriction of the factor of $\operatorname{End}_{\mathbb{C}}\left(\Sigma_{n}\right) \oplus \operatorname{End}_{\mathbb{C}}\left(\Sigma_{n}\right)$ on which $\omega_{n}^{\mathbb{C}}$ acts as minus the identity to $\operatorname{Spin}_{n}^{c}$ gives rise to an equivalent representation.
In case n even, the representations $\delta_{n}^{ \pm}$are called half-spinor representations; δ_{n}^{+}is the positive one and δ_{n}^{-}the negative one. Note in particular that, as a consequence of Proposition $1.10, i$ and of Proposition 1.5, the representation δ_{n} is unitary.

2 Spin ${ }^{c}$ structures

We denote by $P_{\mathrm{SO}_{n}} T M \longrightarrow M$ the SO_{n}-principal bundle of positively oriented orthonormal frames on the tangent bundle of an oriented Riemannian manifold (M^{n}, g).

Definition 2.1 Let $\left(M^{n}, g\right)$ be an n-dimensional oriented Riemannian manifold.

1. A spin structure on $\left(M^{n}, g\right)$ is a reduction of $P_{\mathrm{SO}_{n}} T M \longrightarrow M$ to the spin group. More precisely, a spin structure is given by a Spin_{n} principal bundle $P_{\text {Spin }_{n}} T M \longrightarrow M$ together with a 2-fold covering map $\left.P_{\mathrm{Spin}_{n}} T M \xrightarrow{\eta} P_{\mathrm{SO}_{n}} T M\right)$ such that the following diagramme commutes:

2. A spin^{c}-structure on $\left(M^{n}, g\right)$ consists of a pair $\left(P_{\text {Spin }_{n}^{c}} T M, P_{\mathbb{U}_{1}}\right)$, where $P_{\text {Spin }_{n}^{c}} T M \longrightarrow M$ is a Spin_{n}^{c}-principal bundle, $P_{\mathbb{U}_{1}} \longrightarrow M$ is a \mathbb{U}_{1} principal bundle, together with a 2 -fold covering map $P_{\operatorname{Spin}_{n}^{c}} T M \xrightarrow{\eta^{c}}$ $P_{\mathrm{SO}_{n}} T M \times P_{\mathrm{U}_{1}}$ such that the following diagramme commutes:

3. The manifold $\left(M^{n}, g\right)$ is called spin (resp. spin ${ }^{c}$) if and only if it admits a spin- (resp. spin ${ }^{c}$-)structure.

Any spin structure defines a spin^{c} structure in an obvious way: take $P_{\mathbb{U}_{1}}:=$ $M \times \mathbb{U}_{1}$ to be the trivial \mathbb{U}_{1}-bundle and extend the Spin_{n}-bundle via the inclusion $\operatorname{Spin}_{n} \subset \operatorname{Spin}_{n}^{c}$. In particular, any spin manifold is spin ${ }^{c}$.

The condition to be spin or spin^{c} a priori depends on the metric (through $\left.P_{\mathrm{SO}_{n}} T M\right)$. It actually only has to do with the topology of the manifold since it may be understood as an orientability condition of second order, as we shall prove next. Denote by $r: \mathbb{Z} \longrightarrow \mathbb{Z}_{2}$ the mod-2-reduction and also by $r: H^{q}(M ; \mathbb{Z}) \longrightarrow H^{q}\left(M ; \mathbb{Z}_{2}\right)$ the induced homomorphism in cohomology.

Proposition 2.2

i) A smooth manifold M is spin if and only if its first and second StiefelWhitney classes vanish, that is, iff $w_{1}(T M)=0$ and $w_{2}(T M)=0$.
ii) A smooth manifold M is spinc if and only if its first Stiefel-Whitney class vanishes and its second Stiefel-Whitney class is the mod-2-reduction of an integral class, that is, iff

$$
w_{1}(T M)=0 \quad \text { and } \quad w_{2}(T M) \in r\left(H^{2}(M ; \mathbb{Z})\right)
$$

Proof: We only prove $i i$), see e.g. [6] or [3] for i). We follow [6, App. D]. First M has to be orientable in order to be spin^{c}, the orientability of $T M$ being equivalent to $w_{1}(T M)=0$, which we assume from now on. The short exact sequence of groups (1) induces the following long exact sequence in Čech cohomology:

$$
\ldots \rightarrow H^{1}\left(M ; \mathbb{Z}_{2}\right) \longrightarrow H^{1}\left(M ; \operatorname{Spin}_{n}^{c}\right) \xrightarrow{\xi^{c}} H^{1}\left(M ; \mathrm{SO}_{n}\right) \oplus H^{1}\left(M ; \mathbb{U}_{1}\right) \xrightarrow{w_{2}+\text { roc }_{1}} H^{2}\left(M ; \mathbb{Z}_{2}\right) \rightarrow \ldots,
$$

where $w_{2}: H^{1}\left(M ; \mathrm{SO}_{n}\right) \rightarrow H^{2}\left(M ; \mathbb{Z}_{2}\right)$ denotes the homomorphism associating the second Stiefel-Whitney class to an equivalence class of SO_{n}-bundles (or, equivalently, of Riemannian vector bundles) and $c_{1}: H^{1}\left(M ; \mathbb{U}_{1}\right) \rightarrow$ $H^{2}(M ; \mathbb{Z})$ denotes the homomorphism associating the first Chern class to an equivalence class of \mathbb{U}_{1}-bundles (or, equivalently, of Hermitian line bundles). The condition M to be spin^{c} means that there exists a \mathbb{U}_{1}-bundle $P_{\mathbb{U}_{1}} \longrightarrow M$ such that the element $\left[\left(P_{\mathrm{SO}_{n}} T M, P_{\mathbb{U}_{1}}\right)\right] \in H^{1}\left(M ; \mathrm{SO}_{n}\right) \oplus H^{1}\left(M ; \mathbb{U}_{1}\right)$ lies in the image of the map ξ^{c}. This, in turn, is equivalent to $\left[\left(P_{\mathrm{SO}_{n}} T M, P_{\mathbb{U}_{1}}\right)\right]$ lying in the kernel of $w_{2}+r \circ c_{1}$, meaning that $w_{2}\left(P_{\mathrm{SO}_{n}} T M\right)=r\left(c_{1}\left(P_{\mathbb{U}_{1}}\right)\right)$. Since c_{1} : $H^{1}\left(M ; \mathbb{U}_{1}\right) \rightarrow H^{2}(M ; \mathbb{Z})$ is a group isomorphism, the condition to be spin ${ }^{c}$ for M is therefore equivalent to $w_{2}(T M)=w_{2}\left(P_{\mathrm{SO}_{n}} T M\right) \in r\left(H^{2}(M ; \mathbb{Z})\right)$, which was to be shown.

Examples 2.3

1. Any 1-dimensional manifold is spin, a circle having two inequivalent spin structures. Any orientable surface is also spin since in that case $w_{2}(T M) \in H^{2}\left(M ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$ is the mod-2-reduction of the Euler characteristic (which is even). Any 3-dimensional orientable 3-dimensional manifold has trivial tangent bundle and hence is spin. The "simplest" example of non-spin manifold is the complex 2-dimensional projective space $\mathbb{C P}{ }^{2}$.
2. The set of (inequivalent) spin structures of a given spin manifold M can be shown to stand in one-to-one correspondence with its cohomology group $H^{1}\left(M ; \mathbb{Z}_{2}\right)$. In particular, M may have more than one spin structure. However, there is only one if e.g. M is simply-connected.
3. Any almost-Hermitian manifold has a natural spin^{c} structure, due to the existence of a reduction of $P_{\mathrm{SO}_{2 m}}$ to the unitary group \mathbb{U}_{m} and of a lift $\mathbb{U}_{m} \longrightarrow$ Spin $_{2 m}^{c}$ over $\mathbb{U}_{m} \xrightarrow{\text { incl. } \times \text { det }} \mathrm{SO}_{2 m} \times \mathbb{U}_{1}$.
4. Spin^{c} structures need also not be unique: if $P_{\mathbb{U}_{1}}(\alpha) \longrightarrow M$ is any $\mathbb{U}_{1^{-}}$ bundle (with Chern-class $\alpha \in H^{2}(M ; \mathbb{Z})$) over M, then

$$
P_{\text {Spin }_{n}^{c}} \times_{M} P_{\mathbb{U}_{1}}(\alpha)_{\mathbb{U}_{1}} \longrightarrow P_{\mathrm{SO}_{n}} \times_{M}\left(P_{\mathbb{U}_{1}} \otimes P_{\mathbb{U}_{1}}(2 \alpha)\right)
$$

defines a new spin ${ }^{c}$ structure, where the new associated \mathbb{U}_{1}-bundle is $P_{\mathbb{U}_{1}} \otimes P_{\mathbb{U}_{1}}(2 \alpha)$.

From now on, we shall implicitely assume that, on a given spin^{c} manifold, a spin^{c} structure is fixed.

Definition 2.4 Let $\left(M^{n}, g\right)$ be a spin ${ }^{c}$ manifold. The spinor bundle of M is the vector bundle - denoted by ΣM - associated to the $\operatorname{Spin}_{n}^{c}$-bundle via the spinor representation:

$$
\Sigma M:=P_{\mathrm{Spin}_{n}^{c}} T M \times_{\delta_{n}} \Sigma_{n}=P_{\mathrm{Spin}_{n}^{c}} T M \times \Sigma_{n / \sim},
$$

where $(p, \sigma) \sim\left(p \cdot u, \delta_{n}\left(u^{-1}\right)(\sigma)\right.$ for all $(p, \sigma) \in P_{\text {Sinin }_{n}^{c}} T M \times \Sigma_{n}$ and $u \in \operatorname{Spin}_{n}^{c}$.
By definition, the spinor bundle is a complex vector bundle of (complex) rank $2^{\left[\frac{n}{2}\right]}$ over M. Sections of ΣM are called spinor fields or just spinors. Since δ_{n} can be assumed unitary (see above), ΣM can be naturally endowed with a pointwise Hermitian inner product $\langle\cdot, \cdot\rangle$, turning it into a Hermitian vector bundle. Like the space Σ_{n}, the spinor bundle also admits a Clifford multiplication:

Proposition 2.5 The spinor representation of $\mathbb{C l}_{n}$ induces a linear map $T M \otimes \Sigma M \longrightarrow \Sigma M, X \otimes \varphi \longmapsto X \cdot \varphi$, satisfying the (pointwise) Clifford relation

$$
X \cdot(Y \cdot \varphi)+Y \cdot(X \cdot \varphi)=-2 g(X, Y) \varphi
$$

for all $X, Y \in T M$ and $\varphi \in \Sigma M$. Moreover, the Hermitian inner product $\langle\cdot, \cdot\rangle$ can be defined such that

$$
\langle X \cdot \varphi, \psi\rangle=-\langle\varphi, X \cdot \psi\rangle
$$

for all $X \in T M$ and $\varphi, \psi \in \Sigma M$.
As a last important step, any connection 1-form on the auxiliary bundle $P_{\mathbb{U}_{1}}$ induces, together with the Levi-Civita connection of $\left(M^{n}, g\right)$, a metric connection on ΣM :

Proposition 2.6 Let $A \in \Omega^{1}\left(P_{\mathbb{U}_{1}}, i \mathbb{R}\right)$ be any connection 1-form on $P_{\mathbb{U}_{1}}$. Then A and the Levi-Civita connection ∇ of $\left(M^{n}, g\right)$ together induce a metric covariant derivative ∇^{A} on ΣM, which satisfies:

$$
\nabla_{X}^{A}(Y \cdot \varphi)=\left(\nabla_{X} Y\right) \cdot \varphi+Y \cdot \nabla_{X}^{A} \varphi
$$

for all $X, Y \in \Gamma(M, T M)$ and $\varphi \in \Gamma(M, \Sigma M)$.
Definition 2.7 The Dirac operator associated to a connection 1-form A on the auxiliary bundle $P_{\mathbb{U}_{1}} \longrightarrow M$ on a spin ${ }^{c}$ manifold $\left(M^{n}, g\right)$ is the operator

$$
D^{A}: \Gamma(M, \Sigma M) \rightarrow \Gamma(M, \Sigma M), \quad \varphi \mapsto \sum_{j=1}^{n} e_{j} \cdot \nabla_{e_{j}}^{A} \varphi,
$$

where ∇^{A} is the covariant derivative associated to A and $\left(e_{j}\right)_{1 \leq j \leq n}$ is any local o.n.b. of TM.

The Dirac-operator is a well-defined, elliptic, formally self-adjoint differential operator of order 1 . It is even essentially self-adjoint if $\left(M^{n}, g\right)$ is complete.

Theorem 2.8 (Schrödinger-Lichnerowicz formula) For any connection 1 -form A on the auxiliary bundle $P_{\mathbb{U}_{1}} \longrightarrow M$ on a spin ${ }^{c}$ manifold $\left(M^{n}, g\right)$, we have

$$
\left(D^{A}\right)^{2}=\left(\nabla^{A}\right)^{*} \nabla^{A}+\frac{S}{4} \mathrm{Id}+\frac{F_{A}}{2} \cdot \mathrm{Id},
$$

where $\left(\nabla^{A}\right)^{*} \nabla^{A}:=-\operatorname{tr}_{g}\left(\left(\nabla^{A}\right)^{2}\right)=\sum_{j=1}^{n} \nabla_{\nabla_{e_{j} e_{j}}}^{A}-\nabla_{e_{j}}^{A} \nabla_{e_{j}}^{A}$ is the connection Laplacian associated to ∇^{A} (here $\left\{e_{j}\right\}_{1 \leq j \leq n}$ is a local o.n.b. of $T M$), S is the scalar curvature of (M, g) and $F_{A} \in \Gamma\left(\Lambda^{2} T^{*} M \otimes i \mathbb{R}\right)$ is the curvature form of A.
Proof: Fix a local orthonormal basis $\left\{e_{j}\right\}_{1 \leq j \leq n}$ of $T M$. Using the compatibility conditions as well as the Clifford relations, we have, for any $\varphi \in \Gamma(\Sigma M)$,

$$
\begin{aligned}
\left(D^{A}\right)^{2} \varphi= & \sum_{j, k=1}^{n} e_{j} \cdot \nabla_{e_{j}}^{A}\left(e_{k} \cdot \nabla_{e_{k}}^{A} \varphi\right) \\
= & \sum_{j, k=1}^{n} e_{j} \cdot \nabla_{e_{j}} e_{k} \cdot \nabla_{e_{k}}^{A} \varphi+e_{j} \cdot e_{k} \cdot \nabla_{e_{j}}^{A} \nabla_{e_{k}}^{A} \varphi \\
= & -\sum_{j, k=1}^{n} e_{j} \cdot e_{k} \cdot \nabla_{\nabla_{e_{j}} e_{k}}^{A} \varphi+\sum_{j, k=1}^{n} e_{j} \cdot e_{k} \cdot \nabla_{e_{j}}^{A} \nabla_{e_{k}}^{A} \varphi \\
= & \sum_{j=1}^{n}\left(\nabla_{\nabla_{e_{j}} e_{j}}^{A}-\nabla_{e_{j}}^{A} \nabla_{e_{j}}^{A}\right) \varphi \\
& +\sum_{1 \leq j<k \leq n} e_{j} \cdot e_{k} \cdot\left(\nabla_{e_{j}}^{A} \nabla_{e_{k}}^{A}-\nabla_{e_{k}}^{A} \nabla_{e_{j}}^{A}-\nabla_{\nabla_{e_{j}} e_{k}}^{A}+\nabla_{\nabla_{e_{k} e_{j}}}^{A}\right) \varphi \\
= & \left(\nabla^{A}\right)^{*} \nabla^{A} \varphi+\sum_{1 \leq j<k \leq n} e_{j} \cdot e_{k} \cdot\left(\left[\nabla_{e_{j}}^{A}, \nabla_{\left.e_{k}\right]}^{A}\right]-\nabla_{\left[e_{j}, e_{k}\right]}^{A}\right) \varphi \\
= & \left(\nabla^{A}\right)^{*} \nabla^{A} \varphi+\frac{1}{2} \sum_{j, k=1}^{n} e_{j} \cdot e_{k} \cdot R_{e_{j}, e_{k}}^{\nabla^{A}} \varphi .
\end{aligned}
$$

Now locally the connection ∇^{A} and its curvature $R^{\nabla^{A}}$ can be expressed as follows: choosing local sections u of $P_{\mathrm{SO}_{n}} T M \rightarrow M$ and s of $P_{\mathbb{U}_{1}} \rightarrow M$, we obtain a local section \widetilde{u} of $P_{\text {Spin }_{n}^{c}} T M \rightarrow M$ and hence a local trivialization $\left\{\psi_{\alpha}\right\}_{1 \leq \alpha \leq 2^{\left[\frac{n}{2}\right]}}$ of ΣM. In that case, we have, for all tangent vectors X, Y (defined locally),

$$
\nabla_{X}^{A} \psi_{\alpha}=\frac{1}{4} \sum_{j, k=1}^{n} g\left(\nabla_{X} e_{j}, e_{k}\right) e_{j} \cdot e_{k} \cdot \psi_{\alpha}+\frac{A(d s(X))}{2} \psi_{\alpha},
$$

from which

$$
R_{X, Y}^{\nabla^{A}}=\frac{1}{4} \sum_{j, k=1}^{n} g\left(R_{X, Y}^{\nabla} e_{j}, e_{k}\right) e_{j} \cdot e_{k} \cdot+\frac{1}{2} \underbrace{d A(d s(X), d s(Y))}_{F_{A}(X, Y)}
$$

follows. By definition of the Clifford action of forms

$$
\sum_{j, k=1}^{n} F_{A}\left(e_{j}, e_{k}\right) e_{j} \cdot e_{k} \cdot=2 \sum_{1 \leq j<k \leq n} F_{A}\left(e_{j}, e_{k}\right) e_{j} \cdot e_{k} \cdot=2 F_{A}
$$

so that only the action of the curvature of the Levi-Civita connection of (M, g) remains to be determined. The first Bianchi identity and the preceding local expressions of ∇^{A} and $R^{\nabla^{A}}$ imply that, for any $X \in T M$,

$$
\begin{aligned}
\sum_{j, k, l=1}^{n} g\left(R_{X, e_{j}}^{\nabla} e_{k}, e_{l}\right) e_{j} \cdot e_{k} \cdot e_{l} \cdot \varphi= & -\sum_{j, k, l=1}^{n} g\left(R_{e_{j}, e_{k}}^{\nabla} X, e_{l}\right) e_{j} \cdot e_{k} \cdot e_{l} \cdot \varphi \\
& -\sum_{j, k, l=1}^{n} g\left(R_{e_{k}, X}^{\nabla} e_{j}, e_{l}\right) e_{j} \cdot e_{k} \cdot e_{l} \cdot \varphi \\
= & -\sum_{j, k, l=1}^{n} g\left(R_{X, e_{j}}^{\nabla} e_{k}, e_{l}\right)\left(e_{k} \cdot e_{l} \cdot e_{j}-e_{k} \cdot e_{j} \cdot e_{l}\right) \cdot \varphi
\end{aligned}
$$

with

$$
\begin{aligned}
e_{k} \cdot e_{l} \cdot e_{j}-e_{k} \cdot e_{j} \cdot e_{l} & =-e_{k} \cdot e_{j} \cdot e_{l}-2 \delta_{j l} e_{k}+e_{j} \cdot e_{k} \cdot e_{l}+2 \delta_{j k} e_{l} \\
& =2 e_{j} \cdot e_{k} \cdot e_{l}+4 \delta_{j k} e_{l}-2 \delta_{j l} e_{k} .
\end{aligned}
$$

We deduce that

$$
\begin{aligned}
3 \sum_{j, k, l=1}^{n} g\left(R_{X, e_{j}}^{\nabla} e_{k}, e_{l}\right) e_{j} \cdot e_{k} \cdot e_{l} \cdot \varphi & =-4 \sum_{j, l=1}^{n} g\left(R_{X, e_{j}}^{\nabla} e_{j}, e_{l}\right) e_{l} \cdot \varphi+2 \sum_{j, k=1}^{n} g\left(R_{X, e_{j}}^{\nabla} e_{k}, e_{j}\right) e_{k} \cdot \varphi \\
& =-4 \sum_{l=1}^{n} g\left(\operatorname{Ric}(X), e_{l}\right) e_{l} \cdot \varphi-2 \sum_{k=1}^{n} g\left(\operatorname{Ric}(X), e_{k}\right) e_{k} \cdot \varphi \\
& =-6 \operatorname{Ric}(X) \cdot \varphi,
\end{aligned}
$$

where Ric denotes the Ricci tensor of (M, g). Therefore,

$$
\begin{aligned}
\frac{1}{2} \sum_{j, k=1}^{n} e_{j} \cdot e_{k} \cdot R_{e_{j}, e_{k}}^{\nabla^{A}} \varphi= & \frac{1}{8} \sum_{i, j, k, l=1}^{n} g\left(R_{e_{i}, e_{j}}^{\nabla} e_{k}, e_{l}\right) e_{i} \cdot e_{j} \cdot e_{k} \cdot e_{l} \cdot \varphi \\
& +\frac{1}{4} \sum_{j, k=1}^{n} F_{A}\left(e_{j}, e_{k}\right) e_{j} \cdot e_{k} \cdot \varphi \\
= & -\frac{1}{4} \sum_{i=1}^{n} e_{i} \cdot \operatorname{Ric}\left(e_{i}\right) \cdot \varphi+\frac{F_{A}}{2} \cdot \varphi \\
= & -\frac{1}{4} \sum_{i, j=1}^{n} \underbrace{g\left(\operatorname{Ric}\left(e_{i}\right), e_{j}\right)}_{\text {symm. }} \underbrace{e_{i} \cdot e_{j}}_{\text {skew-symm. if } i \neq j} \varphi+\frac{F_{A}}{2} \cdot \varphi \\
= & \frac{1}{4} \sum_{i=1}^{n} g\left(\operatorname{Ric}\left(e_{i}\right), e_{i}\right) \varphi+\frac{F_{A}}{2} \cdot \varphi \\
= & \frac{S}{4} \varphi+\frac{F_{A}}{2} \cdot \varphi
\end{aligned}
$$

which concludes the proof.

3 The 4-dimensional case

Theorem 3.1 ($[8,5])$ Every closed orientable smooth 4-dimensional manifold is spin ${ }^{c}$.

Proof: We follow [1, pp. 144-145]. We can assume w.l.o.g. that the manifold M is connected. By Proposition 2.2, we have to show that $w_{2}(T M) \in$ $\operatorname{Im}(r):=r\left(H^{2}(M ; \mathbb{Z})\right) \subset H^{2}\left(M ; \mathbb{Z}_{2}\right)$. We define $T:=\operatorname{Tor}\left(H^{2}(M ; \mathbb{Z})\right)$, the torsion subgroup of $H^{2}(M ; \mathbb{Z})$.
Claim: $\operatorname{Im}(r)=\left\{\gamma \in H^{2}\left(M ; \mathbb{Z}_{2}\right), \gamma \cup y=0 \forall y \in r(T)\right\}$.
Proof: Let $\Gamma:=\left\{\gamma \in H^{2}\left(M ; \mathbb{Z}_{2}\right), \gamma \cup y=0 \forall y \in r(T)\right\}$. If $\gamma \in \operatorname{Im}(r)$, then there exists $\alpha \in H^{2}(M ; \mathbb{Z})$ with $r(\alpha)=\gamma$. Similarly, for any $y \in r(T)$, there exists $\beta \in T$ with $r(\beta)=y$. It follows $\gamma \cup y=r(\alpha \cup \beta)$. But $\alpha \cup \beta \in H^{4}(M ; \mathbb{Z})$ and $H^{4}(M ; \mathbb{Z}) \cong \mathbb{Z}$ because M is orientable; since β is a torsion element, there exists an $m \in \mathbb{N} \backslash\{0\}$ with $m \beta=0$ and hence $m(\alpha \cup \beta)=0$, which yields $\alpha \cup \beta=0$ and therefore $\gamma \cup y=0$. This shows $\operatorname{Im}(r) \subset \Gamma$. The other inclusion will be proven as soon as the \mathbb{Z}_{2}-dimensions of $\operatorname{Im}(r)$ and Γ are shown to coincide. Since \mathbb{Z}_{2} is a field, the cup product $H^{2}\left(M ; \mathbb{Z}_{2}\right) \times H^{2}\left(M ; \mathbb{Z}_{2}\right) \longrightarrow$ $H^{4}\left(M ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$ defines a non-degenerate (symmetric) bilinear form (see e.g.
[4, Prop. 3.38]), therefore

$$
\operatorname{dim}_{\mathbb{Z}_{2}}(\Gamma)=\operatorname{dim}_{\mathbb{Z}_{2}}\left(r(T)^{\perp}\right)=\operatorname{dim}_{\mathbb{Z}_{2}}\left(H^{2}\left(M ; \mathbb{Z}_{2}\right)\right)-\operatorname{dim}_{\mathbb{Z}_{2}}(r(T))
$$

Thus we have to show that $\operatorname{dim}_{\mathbb{Z}_{2}}(\operatorname{Im}(r))=\operatorname{dim}_{\mathbb{Z}_{2}}\left(H^{2}\left(M ; \mathbb{Z}_{2}\right)\right)-\operatorname{dim}_{\mathbb{Z}_{2}}(r(T))$. The short exact sequence of abelian groups $0 \longrightarrow \mathbb{Z} \xrightarrow{2 \cdot} \mathbb{Z} \xrightarrow{r} \mathbb{Z}_{2} \longrightarrow 0$ induces the following long exact sequence in cohomology
$\ldots \rightarrow H^{2}(M ; \mathbb{Z}) \xrightarrow{2 \cdot} H^{2}(M ; \mathbb{Z}) \xrightarrow{r} H^{2}\left(M ; \mathbb{Z}_{2}\right) \xrightarrow{\beta} H^{3}(M ; \mathbb{Z}) \xrightarrow{2 \cdot} H^{3}(M ; \mathbb{Z}) \rightarrow \ldots$
where β is the so-called Bockstein homomorphism. In particular, $\operatorname{Im}(r)=$ $\operatorname{Ker}(\beta)$, so that $\operatorname{dim}_{\mathbb{Z}_{2}}(\operatorname{Im}(r))=\operatorname{dim}_{\mathbb{Z}_{2}}\left(H^{2}\left(M ; \mathbb{Z}_{2}\right)\right)-\operatorname{dim}_{\mathbb{Z}_{2}}(\operatorname{Im}(\beta))$. Hence it suffices to show that $\operatorname{Im}(\beta) \cong r(T)$. Now the universal coefficient theorem (see e.g. [4, Thm 3.2]) states that there is the following short exact sequence of \mathbb{Z}-modules:

$$
0 \longrightarrow \operatorname{Ext}_{\mathbb{Z}}\left(H_{q-1}(M ; \mathbb{Z}), \mathbb{Z}\right) \longrightarrow H^{q}(M ; \mathbb{Z}) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(H_{q}(M ; \mathbb{Z}), \mathbb{Z}\right) \longrightarrow 0,
$$

for every $q \in \mathbb{N} \backslash\{0\}$. Moreover, the free part of $H_{q-1}(M ; \mathbb{Z})$ does not contribute to $\operatorname{Ext}_{\mathbb{Z}}$, more precisely $\operatorname{Ext}_{\mathbb{Z}}\left(H_{q-1}(M ; \mathbb{Z}), \mathbb{Z}\right) \cong \operatorname{Tor}\left(H_{q-1}(M ; \mathbb{Z})\right)$. Similarly, the torsion part of $H_{q}(M ; \mathbb{Z})$ does not contribute to $\mathrm{Hom}_{\mathbb{Z}}$, that is, $\operatorname{Hom}_{\mathbb{Z}}\left(H_{q}(M ; \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z}^{b_{q}}$, where $b_{q} \in \mathbb{N}$ is the rank of $H_{q}(M ; \mathbb{Z})$; in particular, $\operatorname{Hom}_{\mathbb{Z}}\left(H_{q}(M ; \mathbb{Z}), \mathbb{Z}\right) \cong H_{q}(M ; \mathbb{Z}) / \operatorname{Tor}\left(H_{q}(M ; \mathbb{Z})\right)$. Since the latter is free, the short exact sequence above splits and we obtain

$$
\begin{aligned}
H^{q}(M ; \mathbb{Z}) & \cong \operatorname{Ext}_{\mathbb{Z}}\left(H_{q-1}(M ; \mathbb{Z}), \mathbb{Z}\right) \oplus \operatorname{Hom}_{\mathbb{Z}}\left(H_{q}(M ; \mathbb{Z}), \mathbb{Z}\right) \\
& \cong \operatorname{Tor}\left(H_{q-1}(M ; \mathbb{Z})\right) \oplus H_{q}(M ; \mathbb{Z}) / \operatorname{Tor}\left(H_{q}(M ; \mathbb{Z})\right)
\end{aligned}
$$

As a consequence, $\operatorname{Tor}\left(H^{q}(M ; \mathbb{Z})\right) \cong \operatorname{Tor}\left(H_{q-1}(M ; \mathbb{Z})\right)$. Since M is closed and orientable, Poincaré duality implies $H_{q-1}(M ; \mathbb{Z}) \cong H^{n-q+1}(M ; \mathbb{Z})$, where n is the dimension of the manifold M. Here we obtain, for $n=4$ and $q=3$:

$$
\operatorname{Tor}\left(H^{3}(M ; \mathbb{Z})\right) \cong \operatorname{Tor}\left(H_{2}(M ; \mathbb{Z})\right) \cong \operatorname{Tor}\left(H^{2}(M ; \mathbb{Z})\right)
$$

We deduce that

$$
\begin{aligned}
\operatorname{Im}(\beta) & =\operatorname{Ker}(2 \cdot) \\
& =\left\{\alpha \in H^{3}(M ; \mathbb{Z}), 2 \alpha=0\right\} \\
& =\left\{\alpha \in \operatorname{Tor}\left(H^{3}(M ; \mathbb{Z})\right), 2 \alpha=0\right\} \\
& \cong\{\alpha \in T, 2 \alpha=0\}
\end{aligned}
$$

Writing $T=\bigoplus_{j=1}^{m} \mathbb{Z}_{p_{j}}$ with $p_{j} \in \mathbb{N}$ prime and $k_{j} \geq 1$, the subgroup $\{\alpha \in T, 2 \alpha=0\}$ of T is freely generated over \mathbb{Z}_{2} by the elements of the form
$2^{k_{j}-1} \in \mathbb{Z}_{2^{k_{j}}}$ (only the $p_{j}=2$ appear since 2 is invertible in $\mathbb{Z}_{p_{j}^{k_{j}}}$ for any prime $p_{j}>2$). So is $T / 2 T$ for the same reasons. Hence $\{\alpha \in T, 2 \alpha=0\} \cong T / 2 T$ and, using the long exact sequence above, $r(T) \cong T / \operatorname{Im}(2 \cdot) \cap T=T / 2 T$. On the whole, $\operatorname{Im}(\beta) \cong r(T)$, which was to be proven and yields the claim. $\sqrt{ }$ Pick now an arbitrary $y \in r(T)$, then $w_{2}(T M) \cup y=y^{2}$ using a formula due to W.-T. Wu [8]. As above, since $y \in r(T)$ is the image of a torsion element, $y^{2}=0$, so that $w_{2}(T M) \cup y=0$. This shows $w_{2}(T M) \in \Gamma$ and, with the claim, $w_{2}(T M) \in \operatorname{Im}(r)$. This concludes the proof.

For further aspects of spin^{c} geometry, we recommend [7].

References

[1] T. Friedrich, Dirac-Operatoren in der Riemannschen Geometrie, Vieweg, 1997.
[2] N. Ginoux, Spinoren, see homepage of the author.
[3] N. Ginoux, The Dirac spectrum, Lect. Notes in Math. 1976 (2009), Springer.
[4] A. Hatcher, Algebraic topology, Cambridge University Press, 2002.
[5] F. Hirzebruch, H. Hopf, Felder von Flächenelementen in 4dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172.
[6] H.B. Lawson, M.-L. Michelsohn, Spin geometry, Princeton University Press, 1989.
[7] R. Nakad, Spinc structures on Manifolds and Geometric Applications, see http://www.iecn.u-nancy.fr/~nakad/mini.pdf.
[8] W.-T. Wu, Classes caractéristiques et i-carrés d'une variété, C. R. Acad. Sci. Paris 230 (1950), 508-511.

