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Preface

This overview is based on the talk [105] given at the mini-workshop 0648c
“Dirac operators in differential and non-commutative geometry”, Mathematis-
ches Forschungsinstitut Oberwolfach. Intended for non-specialists, it draws up
a panorama about the spectrum of the fundamental Dirac operator on Rie-
mannian spin manifolds, including recent research and open problems. No spin
geometrical background is required, nevertheless the reader is assumed to be fa-
miliar with basic notions of differential geometry (manifolds, Lie groups, vector
and principal bundles, coverings, connections, differential forms). The starting
point was the surveys [45, 138], which already provide a very good insight for
closed manifolds. We hope the content of this book reflects the wide range of
results and sometimes amazing applications of the spin side of spectral theory
and attracts a new audience to the topic.
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Introduction

“Find a first order linear differential operator on Rn whose square coincides
with the Laplace operator −

∑n
j=1

∂2

∂x2
j
.” Give this as exercise to a group of un-

dergraduates. If they can solve it for n = 1 then they have heard of complex
numbers. If they can do it for n ≥ 2 then either they believe to have solved it,
or they claim to be students, or they know about Dirac.

For this simple-minded question and its rather involved answer lie at the origin
of the whole theory of Dirac operators. It was P. Dirac who introduced [84]
the operator now bearing his name when looking for an equation describing
the probability amplitude of spin- 1

2 -particles (fermions, e.g. electrons) and that
would fit into the framework of both special relativity and quantum mechanics.
Mathematically formulated, his problem consisted in finding a square root of
the Klein-Gordon operator (d’Alembert plus potential) on the 4-dimensional
Minkowski spacetime. It already came as a breakthrough when Dirac showed
that the problem could be solved not for the scalar operator but for the C2-
valued one using the so-called Pauli matrices as coefficients.

Like many objects invented by physicists, the Dirac operator was soon called
upon to develop an own mathematical life. It was indeed later discovered that
the setup of Clifford algebras allowed it to be defined in a general geometrical
framework on “almost any” smooth semi-Riemannian manifold. Here “almost
any” means that there exists a topological restriction on the manifold for the
Dirac operator to be well-defined - the spin condition, see Chapter 1 - which
is however satisfied on most “known” manifolds. This mathematical investiga-
tion gave birth to spin geometry. One of the first and probably most famous
achievements of spin geometry was the discovery of a topological obstruction
to positive scalar curvature as a relatively straightforward application of the
Atiyah-Singer-Index theorem, see Chapter 3 and references therein.

It would be very modest to claim that spin geometry has remained lively since.
Less than twenty years after Atiyah and Singer’s breakthrough, the whole ma-
thematical community could only gape at E. Witten’s amazingly simple proof
of the positive mass theorem based on the analysis of a Dirac-type operator
of a bounding hypersurface [241]. At the same time, noncommutative geome-
try made the Dirac operator one of its keystones as it allows to reconstruct
a given Riemannian spin manifold from its so-called canonical spectral triple
[81, 115]. Independently, special eigenvectors of the Dirac operator called Killing
spinors have become some of the physicists’ main tools in the investigation of
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supersymmetric models for string theory in dimension 10, see e.g. [190]. In a
more geometrical context, Dirac-type operators have been successfully applied
in as varied situations as finding obstructions to minimal Lagrangian embed-
dings [145], rigidity issues in extrinsic geometry [142] or the Willmore conjecture
[14, 19], just to cite a few of them.

Exploring the spin geometrical aspects of all the above-mentioned topics would
require a small encyclopedia, therefore we focus on a particular one. Out of
lack of up-to-date literature on the subject, we choose to deal in this book with
the spectrum of the Dirac operator on complete (mainly compact) Riemannian
spin manifolds with or without boundary. In particular we do not intend to
give any kind of extensive introduction to spin geometry, see [66, 91] and the
mother-reference [178] in this respect (the physics-oriented reader may prefer
[233]). Since it was not possible to handle all facets of the Dirac spectrum in one
volume, we had to leave some of them aside. To keep the book as self-contained
as possible, we sketch those briefly in the last chapter.

We begin with introducing the Dirac operator and its geometrical background.
Although the definition is rather involved, we try to remain as simple as possible
so as not to drown the reader in technical considerations such as representation
theory of Clifford algebras or the topological spin condition. In Chapter 1 we
define the spin group, spin structures on manifolds, spinors (which are sections
of a vector bundle canonically attached to manifolds carrying a spin structure)
and the Dirac operator acting on spinors. We show that the Dirac operator is an
elliptic, formally self-adjoint linear differential operator of first order and, if the
underlying Riemannian manifold is furthermore complete, then it is essentially
self-adjoint in L2. In particular, if the manifold is closed, then the spectrum
of its Dirac operator is well-defined, real, discrete and unbounded. In case the
boundary of the manifold is non-empty, elliptic boundary conditions have to be
precised for the spectrum to be well-defined and discrete.
At this point we underline that only a so-called spinc structure is needed on
the manifold in order for the Dirac operator to be well-defined. Spinc structures
require weaker topological assumptions to exist than spin structures. Since how-
ever their treatment would bring us too far, we choose to ignore them in this
book (see Section 8.4 for references).

The second chapter deals with examples of closed manifolds whose Dirac spec-
trum - or at least some eigenvalues - can be explicitly computed. They all be-
long to the class of homogeneous spaces, for which we recall the representation-
theoretical method allowing one to describe the Dirac operator as a family of
matrices, see Theorem 2.2.1.

Since it would be illusory to aim at the explicit knowledge of the Dirac spec-
trum in general, one way for studying it consists in estimating the eigenvalues.
In Chapter 3 we consider an arbitrary closed Riemannian spin manifold and
describe the main lower bounds that have been proved for its Dirac spectrum.
Almost all of them rely on the Schrödinger-Lichnerowicz formula (1.15) and
thus involve the scalar curvature of the manifold. Starting from the most gen-
eral estimate - Friedrich’s inequality (3.1) - we show how it can be improved in
some particular cases. The equality-case of most of those inequalities is charac-
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terized by the existence of special sections (e.g. Killing spinors) which give rise
to interesting geometrical features. We shift the treatment of some of them to
Appendix A since they are of independent interest.

In the situation where the manifold has a non-empty boundary, we consider
four different boundary conditions, two of which generalize those originally in-
troduced by Atiyah, Patodi and Singer [30]. We describe in Chapter 4 the cor-
responding lower bounds à la Friedrich that have been obtained in this context.

The techniques involved for proving lower bounds drastically differ from those
used in getting upper eigenvalue bounds. In the latter case - and if the manifold
is closed - there exist two methods available for the Dirac operator, the first one
based on index theory and the second one on the min-max principle. Chapter
5 collects the different geometrical upper bounds that have been proved with
the help of those, separating the intrinsic - depending on the intrinsic geometry
only - from the extrinsic ones, i.e., depending on some map from the manifold
into another one.

In Chapter 6, we turn to the closely related issues of isospectrality and prescrip-
tion of eigenvalues. In a first part, we discuss isospectrality results obtained
on spaceforms of non-negative curvature and on circle bundles. Turning to the
eigenvalue 0, we detail in Section 6.2 existence as well as non-existence results
for harmonic spinors, i.e., sections lying in the kernel of the Dirac operator. Here
there is a remarkable difference between dimensions 2 and greater than 2. We
end this chapter with a brief account on how the lower part of the spectrum can
always be prescribed provided it does not contain 0.

On non-compact Riemannian spin manifolds another part of the spectrum beside
the eigenvalues must be taken into account, the so-called continuous spectrum.
For the Dirac operator it is well-defined as soon as the underlying Riemannian
manifold is complete, however the square of the Dirac operator always has a
spectrum (see Section 7.1). Only few examples are known where the whole Dirac
spectrum can be computed. In Chapter 7 we mainly discuss the interactions be-
tween the geometry or topology of the manifold with the Dirac spectrum, in
particular we focus on whether it can be purely discrete or continuous.
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Chapter 1

Basics of spin geometry

In this chapter we define spin structures, spinors, the Dirac operator and dis-
cuss the properties we need further on. Unless explicitly mentioned all objects
(manifolds, bundles, sections) will be assumed smooth in the whole survey. For
the thorough treatment of spin or spinc groups, spin or spinc structures on vec-
tor bundles, representation theory of Clifford algebras and Dirac operators on
arbitrary semi-Riemannian Clifford modules we refer to [66, 91, 178].

1.1 Spin group and spin structure

Definition 1.1.1 Let n be a positive integer. The spin group in dimension n,
denoted by Spinn, is the non-trivial 2-fold covering of the special orthogonal
group SOn.

The spin group in dimension n is a compact n(n−1)
2 -dimensional Lie group,

connected if n ≥ 2 and simply-connected if n ≥ 3. In fact, if Spinn
ξ−→ SOn

denotes this non-trivial covering map, then ξ(z) = z2 for any z ∈ Spin2
∼= S1 =

{z ∈ C, |z| = 1} and ξ is the universal covering map if n ≥ 3. In particular the
spin group provides the following short exact sequence:

0 −→ Z2 −→ Spinn
ξ−→ SOn −→ 1,

where we identify {±1} to Z2.
From now on we denote by SO(TM) −→ M the SOn-principal bundle of pos-
itively oriented orthonormal frames on the tangent bundle of an oriented Rie-
mannian manifold (Mn, g).

Definition 1.1.2 Let n ∈ N \ {0}.

i) A spin structure on an oriented Riemannian manifold (Mn, g) is a Spinn-
principal bundle Spin(TM) −→ M together with a 2-fold covering map
Spin(TM)

η−→ SO(TM) compatible with the respective group actions, i.e.,

11
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the following diagram commutes:

Spin(TM)× Spinn

η×ξ

��

// Spin(TM)

η

��

$$JJJJJJJJJ

M

SO(TM)× SOn
// SO(TM)

::ttttttttt

ii) A spin manifold is an oriented Riemannian manifold admitting a spin
structure.

A spin structure is a reduction of the bundle of oriented orthonormal frames to
the spin group. Not every oriented Riemannian manifold admits a spin structure,
the condition for its existence being of topological nature.

Proposition 1.1.3 An oriented Riemannian manifold (Mn, g) is spin if and
only if the second Stiefel-Whitney class of its tangent bundle vanishes. If this
condition is fulfilled, then the set of spin structures on (Mn, g) stands in one-
to-one correspondence with H1(M,Z2).

In other words, a manifold is spin if and only both its first and second Stiefel-
Whitney classes vanish (the vanishing of the first one being equivalent to the
orientability of the manifold). This explains why the spin condition is sometimes
presented as an orientability condition of second order.

Proof of Proposition 1.1.3: First recall that, for any Lie group G, there exists
a bijection between the set of equivalence classes of G-principal bundles over
some manifold N and the set H1(N,G) (which, if G is abelian, is the first Čech-
cohomology group with coefficients in G), see e.g. [178, App. A]. In particular
the set of two-fold coverings of - i.e., of Z2-bundles over - N can be identified
with H1(N,Z2).
For n = 1 the result is a trivial consequence of this observation, since in that
case H2(M,Z2) = 0 and a spin structure is a 2-fold covering of the manifold
itself, hence R has exactly one and the circle 2 spin structures, see also Example
1.4.3.1 below for a more precise description.
Assume for the rest of the proof n ≥ 2. First note that, from their definition,
the spin structures on (Mn, g) coincide with the 2-fold coverings of SO(TM)
which are non-trivial on each fibre of the projection map SO(TM) −→M . This
follows essentially from the standard lifting property of maps through coverings.
From the remark above, the set of 2-fold coverings of SO(TM) can be identified
with H1(SO(TM),Z2). Now the second Stiefel-Whitney class of TM can be
defined as follows: the fibration SOn

ι→ SO(TM) π→ M induces the following
short exact sequence of groups

0 −→ H1(M,Z2) π∗−→ H1(SO(TM),Z2) ι∗−→ H1(SOn,Z2) w−→ H2(M,Z2)

and the second Stiefel-Whitney class of TM is the image under w of the non-
trivial element of H1(SOn,Z2) ∼= Z2. The spin structures on (Mn, g) can there-
fore be reinterpreted as the elements in H1(SO(TM),Z2) with non-zero image
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under ι∗. In particular (Mn, g) is spin if and only if such an element exists,
that is, if and only if ι∗ is surjective. From w ◦ ι∗ = 0 this is equivalent to
w = 0, i.e., to the vanishing of the second Stiefel-Whitney class of TM . This
proves the first statement. If (Mn, g) is spin then the set of its spin struc-
tures identifies through the above exact sequence with the non-zero coset in
H1(SO(TM),Z2)/π∗(H1(M,Z2)), which has the same cardinality as H1(M,Z2)
itself. This concludes the proof. �

Notes 1.1.4

1. In particular the existence of a spin structure does not depend on the
metric or the orientation of a given manifold. Actually, if the manifold
M is oriented, spin structures can be defined independently of any metric
(declare them to be non-trivial 2-fold coverings of the bundle of oriented
frames of TM). In an equivalent way, a spin structure for a given met-
ric canonically induces a spin structure for another one. For a detailed
discussion of this point we refer to [178, Chap. 2], [10] and to [65].

2. Not every orientable manifold is spin. On surfaces the spin condition is
equivalent to the vanishing of the mod 2 reduction of the Euler class, thus is
fulfilled for orientable surfaces. In dimension 3, the second Stiefel-Whitney
class is the square of the first one [178, p.86], hence any 3-dimensional ori-
entable manifold is spin. The simplest counter-example comes up in dimen-
sion 4: the complex projective plane CP2 is not spin (even if it canonically
carries a so-called spinc structure as a Kähler manifold). Indeed a complex
manifold is spin if and only if the mod 2 reduction of its first Chern class
vanishes, see [178, App. D].

3. However any simply-connected manifold has a unique spin structure as
soon as it is spin, since in that case H1(M,Z2) = 0.

4. It was first noticed by J. Milnor [199] that different spin structures may
provide equivalent principal Spinn-bundles. For instance, the 2-dimensional
torus has 4 different spin structures (see Example 1.4.3.2), all of which are
equivalent as principal Spin2-bundles. This is due to the fact that, for the
torus, H1(M,Z2) = H1(M,Z)⊗ Z2, see [178, p.84].

From now on, each time we assume that a manifold is spin we shall implicitly
mean that a spin structure is fixed on it.

1.2 Spinor bundle and Clifford multiplication

In this section we define the natural algebraic and geometric objects on a Rie-
mannian spin manifold, namely the Clifford multiplication and the induced com-
patible covariant derivative on its spinor bundle. We first recall the following
central result in representation theory which can be found e.g. in [178, Prop.
5.15 p.36].

Proposition 1.2.1 Let n ∈ N \ {0}.
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i) If n is odd then there exists up to equivalence exactly one fundamental
irreducible complex representation Spinn

δn−→ Aut(Σn) of Spinn that does
not come from SOn. It is called the spinor representation in dimension n

and has dimension 2
n−1

2 .

ii) If n is even then there exist up to equivalence exactly two fundamental

irreducible complex representations Spinn
δ±n−→ Aut(Σ±n ) of Spinn that do

not come from SOn. The representations δ+
n and δ−n are called the positive

and negative half spinor representation in dimension n respectively and
each have dimension 2

n−2
2 .

Recall that a fundamental representation of a compact Lie group G is an irre-
ducible complex representation whose highest weight is a fundamental weight
(it belongs to a system of generators of all irreducible complex representations
of G). That δ(±)

n is a representation of Spinn which does not come from SOn

means that there does not exist any representation ρ of SOn with ρ ◦ ξ = δ
(±)
n .

Proof of Proposition 1.2.1: The representation

δn :=
{
δ+
n ⊕ δ−n for n even
δn for n odd

is actually the restriction of the (or one of both if n is odd) irreducible repre-
sentation(s) of the corresponding finite-dimensional complex Clifford algebra.
Remember that, for any given (real or complex) vector space V endowed with
a non-degenerate symmetric bilinear form 〈· , ·〉, the Clifford algebra of the pair
(V, 〈· , ·〉) is the quotient of its tensor algebra through the two-sided ideal gene-
rated by the elements of the form x⊗ y + y ⊗ x+ 2〈x, y〉1 where x, y ∈ V . The
product law induced on the quotient, which is usually denoted by “·” and called
the Clifford product or Clifford multiplication, satisfies the Clifford relations,
namely

x · y + y · x = −2〈x, y〉1 (1.1)

for all x, y ∈ V . Since we do not want to deal with Clifford algebras in detail we
just recall their most important properties for our purpose (see e.g. [178, Chap.
1]):

1. The Clifford algebra is the smallest associative algebra with unit contai-
ning V and satisfying the Clifford relations.

2. The Clifford algebra of the n-dimensional Euclidean space is linearly iso-
morphic to its exterior algebra Λ∗Rn, the Clifford product being then
given by

x· ' x[∧ −xy (1.2)

for every x ∈ Rn.

3. If V is real then the complexification of the Clifford algebra of (V, 〈· , ·〉)
coincides with the (complex) Clifford algebra of (V ⊗ C, 〈· , ·〉C) (where
〈· , ·〉C is complex bilinear).
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4. The Clifford algebra of C2n with its canonical complex bilinear form is
isomorphic to the algebra of all complex 2n × 2n matrices, and that of
C2n+1 to two copies of this algebra [178, Tab. I p.28].

Property 4 implies in particular the existence of exactly two and one irreducible
non-trivial representations of the Clifford algebra of Cn for n odd and even re-
spectively. Now Spinn can be identified with the set of even Clifford products of
unit vectors of Rn (this can actually be used as definition of Spinn), in particu-
lar sits in the Clifford algebra of Cn. After restriction onto Spinn both Clifford-
algebra-representations turn out to become equivalent for n odd whereas the
unique one splits into two inequivalent equally dimensional representations of
Spinn for n even. The statement on their dimensions easily follows. �

The simplest way to distinguish δ+
n from δ−n consists in looking at the action of

the so-called complex volume form of Rn and which is defined for every n by

ωC
n := i[

n+1
2 ]e1 · . . . · en (1.3)

for any positively-oriented orthonormal basis (e1, . . . , en) of Rn. The complex
volume form does in general not lie in Spinn but in the complex Clifford algebra
of Cn and it can be shown that

δ±n (ωC
n) = ±IdΣ±n

(1.4)

for n even whereas δn(ωC
n) = IdΣn or −IdΣn for n odd (in the latter case both

possibilities can occur).

Definition 1.2.2 Let (Mn, g) be a Riemannian spin manifold.

i) The spinor bundle of M is the complex vector bundle associated to the
principal bundle Spin(TM) via the spinor representation, i.e.,

ΣM := Spin(TM)×
δn

Σn,

where, for n even, Σn := Σ+
n ⊕ Σ−n and δn := δ+

n ⊕ δ−n .

i’) If M is even-dimensional, the positive (resp. negative) spinor bundle of M
is the complex vector bundle associated to the principal bundle Spin(TM)
via the positive (resp. negative) half-spinor representation, i.e.,

Σ+M := Spin(TM)×
δ
+
n

Σ+
n

(resp. Σ−M := Spin(TM)×
δ
−
n

Σ−n ).

ii) A Clifford multiplication is a complex linear vector-bundle-homomorphism

T ∗M ⊗ ΣM
µ−→ ΣM, X[ ⊗ ϕ 7−→ X · ϕ

such that
X ·(Y · ϕ) + Y ·(X · ϕ) = −2g(X,Y )ϕ (1.5)

for all X,Y ∈ TM and ϕ ∈ ΣM .
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iii) A compatible covariant derivative on ΣM is a covariant derivative ∇Σ on
ΣM such that

∇Σ
X(Y · ϕ) = (∇XY )· ϕ+ Y · ∇Σ

Xϕ

for all X,Y ∈ Γ(TM) and ϕ ∈ Γ(ΣM), where ∇ denotes the Levi-Civita
covariant derivative of (Mn, g).

In particular the spinor bundle of an even-dimensional Riemannian spin ma-
nifold always splits into ΣM = Σ+M ⊕ Σ−M . Note moreover that, in any
dimension, rkC(ΣM) = 2[n2 ].

From its definition any Clifford multiplication can be canonically extended
into an algebra-homomorphism from the so-called Clifford-algebra-bundle to
End(ΣM). Since we essentially do not need the Clifford-algebra-bundle, we just
indicate how µ extends from T ∗M ⊗ΣM to ΛTM ⊗ΣM : for any p-form ω and
any spinor ϕ, the product ω · ϕ is defined by

ω · ϕ :=
∑

1≤j1<...<jp≤n

ωj1,...,jpej1 · (. . . · (ejp · ϕ)),

where ω =
∑

1≤j1<...<jp≤n ωj1,...,jpe
∗
j1
∧ . . . ∧ e∗jp in a local orthonormal basis

{ej}1≤j≤n of TM . Moreover the Clifford algebra being associative (see Property
1 in the proof of Proposition 1.2.1 above), we shall in the following forget about
the parentheses and write X ·Y · ϕ instead of X ·(Y · ϕ).

The spinor bundle comes with a natural Hermitian inner product which together
with Clifford multiplication exist and are unique in some sense.

Proposition 1.2.3 Let (Mn, g) be a Riemannian spin manifold.

a) If n is odd then there exist up to equivalence exactly two Clifford multipli-
cations, which are opposite from each other.

b) If n is even then there exists up to equivalence exactly one Clifford multi-
plication.

c) There exists a Hermitian inner product 〈· , ·〉 on ΣM , pointwise unique up
to scale, such that

〈X · ϕ,ψ〉 = −〈ϕ,X · ψ〉

for all X ∈ TM and ϕ,ψ ∈ ΣM , where “ ·” denotes any fixed Clifford
multiplication on ΣM .

d) There exists a metric compatible covariant derivative ∇Σ on ΣM .

Proof: The first two statements follow from Proposition 1.2.1 (see also its proof),
since the spinor or half-spinor representations are exactly provided by represen-
tations of the complex Clifford algebra. The third statement is not a direct
consequence of the existence of a Hermitian inner product on Σn preserved by
δ

(±)
n (which would simply follow from the compactness of Spinn), but from the

following argument: choose any Hermitian inner product 〈· , ·〉′ on Σn and mean
it over the Clifford action of the (finite) group generated by the canonical basis
of Rn (which is a subgroup of the group of invertible elements in the Clifford
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algebra). One obtains a new Hermitian inner product 〈· , ·〉0 on Σn for which
obviously every canonical basis vector acts unitarily and hence in a skew-adjoint
way from (1.1). Therefore the Clifford action of every vector of Rn on Σn be-
comes also skew-adjoint w.r.t. 〈· , ·〉0 . Since Spinn can be identified with the set
of even Clifford products of unit vectors of Rn, the inner product 〈· , ·〉0 remains
invariant under the Spinn-action - which is precisely δn. Hence 〈· , ·〉0 induces a
Hermitian inner product 〈· , ·〉 on ΣM which obviously has the same properties.
The pointwise uniqueness of 〈· , ·〉 up to scale follows from the irreducibility of
δn as a Clifford-algebra-representation.
A covariant derivative on ΣM may be constructed by lifting locally the connec-
tion 1-form of the Levi-Civita covariant derivative of (Mn, g), which is made

possible by spinn
d1ξ−→ son being a Lie-algebra-isomorphism, see e.g. [138, (8)

p.140] and the local formula (1.6) below. It is then straightforward to show that
the covariant derivative defined in this way is metric and compatible in the sense
of Definition 1.2.2.iii) (see e.g. [138, Prop. 4.4]). This explains d). �

From now on we choose a Hermitian inner product 〈· , ·〉 on ΣM coming from a
Hermitian inner product on Σn making Clifford multiplication of vectors of Rn
skew-Hermitian, as in Proposition 1.2.3.
Note that, if ∇Σ is a compatible covariant derivative on ΣM , then for any real
1-form θ on M the covariant derivative ∇Σ + iθ⊗ Id is again compatible, hence
such a covariant derivative is not unique. We choose henceforth and denote by
∇ the covariant derivative on ΣM naturally induced by the Levi-Civita covariant
derivative ∇ on (Mn, g) and which can be locally expressed as [138, Prop. 4.3]

∇ϕα =
1
4

n∑
j,k=1

g(∇ej , ek)ej · ek · ϕα, (1.6)

where {ej}1≤j≤n denotes a local positively-oriented orthonormal basis of TM
and {ϕα}1≤α≤2[n2 ] any corresponding local spinorial frame, that is: ϕα = [s̃, σα]
with η(s̃) = (e1, . . . , en) and {σα}1≤α≤2[n2 ] is a fixed orthonormal basis of Σn.

The curvatureR∇ of that covariant derivative can be explicitly expressed through
that (denoted by R) of the Levi-Civita covariant derivative on (Mn, g): for any
local orthonormal basis {ej}1≤j≤n of TM ,

R∇X,Y ϕ =
1
4

n∑
j,k=1

g(RX,Y ej , ek)ej · ek · ϕ, (1.7)

for all X,Y ∈ TM and ϕ ∈ ΣM (see again [138, Prop. 4.3]). In dimension n = 2
this identity simplifies into

R∇X,Y ϕ =
S

8
(X · Y − Y ·X) · ϕ, (1.8)

where S is the scalar curvature of (Mn, g).
The following very useful formula can be deduced from (1.7).
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Lemma 1.2.4 Let Ric denote the Ricci-tensor of the Riemannian spin manifold
(Mn, g), then for all X ∈ TM and ϕ ∈ ΣM one has

n∑
j=1

ej ·R∇X,ejϕ =
1
2

Ric(X) · ϕ, (1.9)

with the convention R∇X,Y = ∇[X,Y ] − [∇X ,∇Y ].

Proof: The first Bianchi identity implies that
n∑
j=1

ej ·R∇X,ejϕ
(1.7)
=

1
4

n∑
j,k,l=1

g(RX,ejek, el)ej · ek · el · ϕ

= −1
4

n∑
j,k,l=1

g(Rej ,ekX, el)ej · ek · el · ϕ

−1
4

n∑
j,k,l=1

g(Rek,Xej , el)ej · ek · el · ϕ

= −1
4

n∑
j,k,l=1

g(RX,ejek, el)(ek · el · ej − ek · ej · el) · ϕ,

with

ek · el · ej − ek · ej · el
(1.5)
= −ek · ej · el − 2δjlek + ej · ek · el + 2δjkel

(1.5)
= 2ej · ek · el + 4δjkel − 2δjlek.

We deduce that

3
n∑
j=1

ej ·R∇X,ejϕ = −
n∑

j,l=1

g(RX,ejej , el)el · ϕ+
1
2

n∑
j,k=1

g(RX,ejek, ej)ek · ϕ

=
n∑
l=1

g(Ric(X), el)el · ϕ+
1
2

n∑
k=1

g(Ric(X), ek)ek · ϕ

=
3
2

Ric(X) · ϕ,

which is the result. �

1.3 The Dirac operator

We are now ready to define the central object of this survey.

Definition 1.3.1 The fundamental Dirac operator of a Riemannian spin man-
ifold (Mn, g) is the map D : Γ(ΣM) −→ Γ(ΣM) defined by

Dϕ :=
n∑
j=1

ej · ∇ejϕ

for every ϕ ∈ Γ(ΣM), where {ej}1≤j≤n is any local orthonormal basis of TM .
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The Dirac operator is sometimes called Atiyah-Singer operator in the literature
in honour to M. Atiyah and I. Singer who brought it to mathematical day-
light through their famous index theorem [31]. To distinguish it from its twisted
and/or generalized versions on Clifford bundles, it is also called the fundamental
(or spin) Dirac operator. In this book, we only deal with D, see Chapter 8 for re-
sults related to twisted or generalized Dirac operators. When necessary we shall
write DM or DM,g, Dg to precise the underlying manifold M and/or the metric g.

The Dirac operator is obtained as the composition of the Clifford multiplication
with the natural covariant derivative on ΣM . Alternatively one can check that
the local expression defining the Dirac operator is independent of the local
orthonormal basis chosen on TM . Beware here that, since D depends on the
choice of Clifford multiplication, it is only defined up to a sign if n is odd.
The usual convention in that case is to choose the Clifford multiplication such
that the action of the complex volume form ωC

n (whose algebraic definition (1.3)
makes sense on M as an element of the so-called Clifford-algebra-bundle) is the
identity, see e.g. [178, Prop. 5.9 p.34] for the real analog.
In case n is even the Dirac operator can be split in a canonical way.

Proposition 1.3.2 Let (Mn, g) be an even-dimensional Riemannian spin man-
ifold, then its Dirac operator D splits into

D = D+ ⊕D−,

where D± : Γ(Σ±M) −→ Γ(Σ∓M).

Proof: In even dimension the Clifford action of the complex volume form ωC
n

is a non-trivial parallel involution of ΣM anti-commuting with the Clifford
multiplication with vectors (i.e., X · ωC

n = −ωC
n ·X for every X ∈ TM), so that

D(ωC
n · ϕ) = −ωC

n ·Dϕ (1.10)

for every ϕ ∈ Γ(ΣM). From Σ±M = {ϕ ∈ ΣM |ωC
n · ϕ = ±ϕ} we conclude. �

We come to the properties of the Dirac operator which are fundamental for the
further study of its spectrum. First we need a formula computing the commuta-
tor of the Dirac operator with a function. For technical reasons we include into
the next lemma the computation of commutators or anticommutators involving
the Dirac operator and which we shall need in the following.

Lemma 1.3.3 Let ϕ be a smooth spinor field, f a smooth function and ξ a
smooth vector field on a Riemannian spin manifold (Mn, g), then

i)
D(fϕ) = grad(f) · ϕ+ fDϕ, (1.11)

where grad(f) denotes the gradient vector field of f on (Mn, g).

ii)
D(ξ · ϕ) = −ξ ·Dϕ− 2∇ξϕ+ (d+ δ)ξ[ ·ϕ, (1.12)

where d and δ denote the exterior differential and codifferential on (Mn, g)
respectively.
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iii)
D2(fϕ) = fD2ϕ− 2∇grad(f)ϕ+ (∆f)ϕ, (1.13)

where ∆ := δd = −tr(Hessg(·)) denotes the scalar Laplace operator on
(Mn, g).

Proof: Fix a local orthonormal basis {ej}1≤j≤n of TM . We compute:

D(fϕ) =
n∑
j=1

ej · ∇ej (fϕ)

=
n∑
j=1

ej · (ej(f)ϕ+ f∇ejϕ)

= grad(f) · ϕ+ fDϕ,

which proves i). Moreover,

D(ξ · ϕ) =
n∑
j=1

ej ·∇ej (ξ · ϕ)

=
n∑
j=1

ej ·(∇ejξ) · ϕ+
n∑
j=1

ej ·ξ ·∇ejϕ

(1.5)
=

n∑
j=1

ej ·(∇ejξ) · ϕ− ξ ·
n∑
j=1

ej ·∇ejϕ− 2
n∑
j=1

g(ξ, ej)∇ejϕ

(1.2)
= (

n∑
j=1

ej ∧∇ejξ[)·ϕ− (
n∑
j=1

ejy∇ejξ[)·ϕ

−ξ ·
n∑
j=1

ej ·∇ejϕ− 2
n∑
j=1

g(ξ, ej)∇ejϕ

= −ξ ·Dϕ− 2∇ξϕ+ (d+ δ)ξ[ ·ϕ

and

D2(fϕ)
(1.11)

= D(df ·ϕ+ fDϕ)
(1.12)

= −df ·Dϕ− 2∇grad(f)ϕ+ (d+ δ)df ·ϕ+ df ·Dϕ+ fD2ϕ

= fD2ϕ− 2∇grad(f)ϕ+ (∆f)ϕ,

where we have identified 1-forms with vector fields through the metric g. This
concludes the proof. �

Proposition 1.3.4 The Dirac operator of a Riemannian spin manifold is an
elliptic and formally self-adjoint linear differential operator of first order.

Proof: We deduce from Lemma 1.3.3 that D is a linear differential operator of
first order whose principal symbol is given by

T ∗M −→ End(ΣM)
ξ 7−→ ξ]·,
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where, as usual, g(ξ], X) := ξ(X) for every X ∈ TM . For any ξ ∈ T ∗M \ {0}
the map ξ]· is an automorphism of ΣM since it is injective (from (1.5) one has
ξ] ·ξ] · ϕ = −g(ξ, ξ)ϕ and g is Riemannian). Therefore D is elliptic.
Let ϕ,ψ ∈ Γ(ΣM), then using the mutual compatibility relations between 〈· , ·〉,
“ ·” and ∇ on ΣM one has

〈Dϕ,ψ〉 =
n∑
j=1

〈ej · ∇ejϕ,ψ〉

= −
n∑
j=1

〈∇ejϕ, ej · ψ〉

=
n∑
j=1

−ej(〈ϕ, ej · ψ〉) + 〈ϕ,∇ejej · ψ〉

+
n∑
j=1

〈ϕ, ej · ∇ejψ〉

= div(Vϕψ) + 〈ϕ,Dψ〉, (1.14)

where Vϕψ ∈ Γ(TM ⊗ C) is defined by

(g ⊗ IdC)(Vϕψ, X) := 〈ϕ,X · ψ〉

for all X ∈ TM . In particular, if ϕ or ψ has compact support on (and vanishes
on the boundary of) M then applying Green’s formula we obtain∫

M

〈Dϕ,ψ〉vg =
∫
M

〈ϕ,Dψ〉vg,

which shows that D is formally self-adjoint and concludes the proof. �

In even dimension, Proposition 1.3.4 means that the formal adjoint of D± is
D∓. Beware however that Proposition 1.3.4 does not prove the self-adjointness
of D. It is indeed a priori not clear if D and its adjoint D∗ - which is to be
distinguished from the formal adjoint as a differential operator - have the same
domain of definition and if they can be extended to the whole Hilbert space
L2(ΣM), which is defined as the completion of the space Γc(ΣM) := {ϕ ∈
Γ(ΣM) | supp(ϕ) is compact} w.r.t. (· , ·) :=

∫
M
〈· , ·〉vg. The concept needed here

is that of essential self-adjointness: one has to show that the closure of the op-
erator in L2(ΣM) is self-adjoint. For D this is possible as soon as the underlying
Riemannian manifold is complete.

Proposition 1.3.5 Let (Mn, g) be a complete Riemannian spin manifold, then
its Dirac operator is essentially self-adjoint.

Proof: The proof presented here is based on the talk [46]. Let dom(·) denote the
domain of definition of an operator. By construction the operator D is densely
defined in L2(ΣM) and one can set dom(D) := Γc(ΣM). As a consequence it
admits a unique closure D∗∗, whose graph is the closure of that of D. Proposition
1.3.4 implies that D - thus D∗∗ - is symmetric in L2(ΣM). Its adjoint D∗ is
defined on {ψ ∈ L2(ΣM) |ϕ 7→ (Dϕ,ψ) is bounded on (Γc(ΣM), ‖ · ‖)}. Since
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the topological dual of L2 is L2 itself, dom(D∗) = {ψ ∈ L2(ΣM) |ϕ 7→ (Dϕ,ψ) ∈
L2(ΣM)}. ConsideringD at the distributional level, one deduces from the formal
self-adjointness of D (Proposition 1.3.4) that

dom(D∗) = {ψ ∈ L2(ΣM) |Dψ ∈ L2(ΣM)}.

It remains to show that dom(D∗) = dom(D∗∗), i.e., the inclusion “⊂”. This is
equivalent to proving that Ker(D∗ − iεId) = 0 for both ε ∈ {±1}, see e.g. [239,
Cor. VII.2.9]. Let ψ ∈ dom(D∗) with D∗ψ = iεψ, then (D∗ψ,ϕ) = iε(ψ,ϕ) for
every ϕ ∈ Γc(ΣM), i.e., (ψ,Dϕ) = iε(ψ,ϕ). Since D is formally self-adjoint this
is equivalent to Dψ = iεψ in the distributional sense. The operator D − iεId
being elliptic, general elliptic theory (see e.g. [178, Thm. 4.5 p.190]) implies that
ψ is actually smooth. Let now (ρk)k>0 be a sequence of smooth compactly sup-
ported [0, 1]-valued functions converging pointwise to 1 and with |grad(ρk)| ≤ 1

k
for all k. Such a sequence exists because of the completeness assumption on
(Mn, g). The preceding identity together with Lemma 1.3.3 provide

iε(ψ, ρkψ) = (Dψ, ρkψ)
= (ψ,D(ρkψ))

(1.11)
= (ψ, ρkDψ) + (ψ, grad(ρk) · ψ)
= (ρkψ,Dψ) + (ψ, grad(ρk) · ψ)
= −iε(ψ, ρkψ) + (ψ, grad(ρk) · ψ),

that is, 2iε(ψ, ρkψ) = (ψ, grad(ρk) ·ψ), whose l.h.s. tends to 2iε‖ψ‖2 and whose
r.h.s. tends to 0 when k goes to ∞. Therefore ψ = 0, QED. �

Note 1.3.6 It seems at first glance that the completeness assumption on the
metric enters the proof in a very weak manner and one could therefore think
about getting rid of it. This is unfornutately hopeless. Consider for example
M :=]0,+∞[ with standard metric and canonical spin structure. Its Dirac op-
erator is D = i ddt (the Clifford multiplication of e1 = 1 ∈ R can be identified
with that of i on Σ1 = C). Set dom(D) := Γc(ΣM) = C∞c (]0,+∞[,C), then
the Dirac operator remains symmetric in L2(ΣM). However a simple compu-
tation shows that the kernel of D∗ − iεId in the space of distributions is Reεt.
Since et /∈ L2(ΣM) one has Ker(D∗ − iId) = 0, however e−t ∈ L2(ΣM) so that
Ker(D∗ − iId) = Re−t. Therefore D is not essentially self-adjoint in L2(ΣM).
Actually the fact that Ker(D∗ ∓ iId) do not have the same dimension imply
the non-existence of self-adjoint extensions of D in L2(ΣM) (see [239, Thm.
VII.2.10]).
Another example is M :=]0, 1[ with the same metric and spin structure: again
D = i ddt is not essentially self-adjoint, but this time it has infinitely many self-
adjoint extensions. Indeed the exponential et belongs in that case to L2(ΣM)
so that Ker(D∗− iεId) = Reεt for both ε ∈ {±1}. Moreover Ker(D∗∓ iId) have
the same dimension and it can be shown that there exists an S1-parametrized
family of self-adjoint extensions of D, see [239, Ex. VII.2.a)].

We summarise the spectral properties of the Dirac operator on closed manifolds.
Further basics on non-compact Riemannian spin manifolds are given in Section
7.1.
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Theorem 1.3.7 Let (Mn, g) be a closed Riemannian spin manifold and denote
by Spec(D) the spectrum of its Dirac operator D, then the following holds:

i) The set Spec(D) is a closed subset of R consisting of an unbounded discrete
sequence of eigenvalues.

ii) Each eigenspace of D is finite-dimensional and consists of smooth sections.

iii) The eigenspaces of D form a complete orthonormal decomposition of L2(ΣM),
i.e.,

L2(ΣM) =
⊕

λ∈ Spec(D)

Ker(D − λId).

iv) The set Spec(D) is unbounded on both sides of R and, if moreover n 6≡
3 (4), then it is symmetric about the origin.

Proof: If M is compact without boundary, then the statements i) − iii) follow
from the classical spectral theory of elliptic self-adjoint operators [178, Thm. 5.8
p.196], which is applicable here to the closure of D as a consequence of Propo-
sition 1.3.5.
As for the unboundedness of Spec(D) on both sides of R, we give the proof
presented in [11, Prop. 4.30] and which consists in the following. Assume it
were wrong for n ≥ 3 (for n = 1, 2 the spectrum of D is symmetric about 0,
see Note 2.1.2.1 and end of proof respectively). Since we already know that
Spec(D) is unbounded, this would mean that either Spec(D) ⊂ [m,+∞[ or
Spec(D) ⊂]−∞,m] for some m ∈ R. Up to changing D into −D, one can assume
that Spec(D) ⊂ [m,+∞[, i.e., that (Dϕ,ϕ) ≥ m‖ϕ‖2 for all ϕ ∈ Γ(ΣM) (see e.g.
Lemma 5.0.2 for a formulation of the min-max principle). Consider a finite open
covering (Ωk)k of M such that TM|Ωk is trivial for every k and choose a par-
tition of unity (χk)k subordinated to that covering, that is, χk ∈ C∞(M, [0, 1])
with supp(χk) ⊂ Ωk and

∑
k χk = 1. Let (ej,k)1≤j≤n be an orthonormal frame

trivializing TM|Ωk and set ẽj,k :=
√
χkej,k for all j, k. Note that the ẽj,k are

globally defined smooth vector fields on (Mn, g) satisfying∑
j,k

ẽj,k · ẽj,k· =
∑
j,k

χkej,k · ej,k ·

= −
∑
j,k

χkId

= −nId

and analogously ∑
j,k

ẽj,k · ∇gej,k =
∑
j,k

χkej,k · ∇ej,k

=
∑
k

χkD

= D.

Hence for any section ϕ of ΣM one has∑
j,k

(D(ẽj,k · ϕ), ẽj,k · ϕ)
(1.12)

=
∑
j,k

{
− (ẽj,k ·Dϕ, ẽj,k · ϕ)
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− 2(∇gej,kϕ, ẽj,k · ϕ)

+ ((d+ δ)ẽj,k
[ · ϕ, ẽj,k · ϕ)

}
= −n(Dϕ,ϕ) + 2(Dϕ,ϕ)

−
∑
j,k

((ẽj,k ∧ dẽj,k[) · ϕ,ϕ)

≤ −(n− 2)(Dϕ,ϕ) + C‖ϕ‖2,

where C :=max
M
|
∑
j,k ẽj,k ∧dẽj,k

[| is a finite nonnegative constant independent

of ϕ. The assumption implies that, if ϕ is a non-zero eigenvector for D associated
to the eigenvalue λ, then

(−(n− 2)λ+ C)‖ϕ‖2 ≥ m
∑
j,k

(ẽj,k · ϕ, ẽj,k · ϕ)

= nm‖ϕ‖2,

which leads to a contradiction for λ large enough, QED.
As for the symmetry of Spec(D) about 0, it straightforward follows from Propo-
sition 1.3.2 (i.e., from (1.10)) in the case where n is even whereas for n ≡ 1 (4) it
can be deduced from the existence of a real or quaternionic parallel structure on
ΣM anti-commuting with the Clifford multiplication and hence with the Dirac
operator [91, Prop. p.31]. This concludes the proof. �

From Corollary 2.1.5 below, the Dirac spectrum of the n-dimensional real pro-
jective space RPn endowed with its round metric of sectional curvature 1 and
one of its both spin structures is {n2 + n1 + 2k, −n2 − n2 − 2k, k ∈ N}, where
n1 is the mod 2 reduction of n−3

4 and n2 that of n+1
4 (here the multiplicities are

not taken into account). Thus the symmetry property of Spec(D) from Theorem
1.3.7.iv) breaks in dimension n ≡ 3 (4).

Eigenvectors for D associated to the eigenvalue 0 are called harmonic spinors.
Parallel spinors are harmonic but the converse is false in general. Moreover,
unlike that of harmonic forms, the number of linearly independent harmonic
spinors generally varies under a change of metric, see Section 6.2.

Turning to the square of the Dirac operator, its principal symbol is given by
ξ 7→ −g(ξ, ξ)Id, which is exactly that of the rough Laplacian. The difference
between both must therefore be a linear differential operator of order at most
one. In fact, it turns out to be a very simple curvature expression.

Theorem 1.3.8 ([223, 180]) The Dirac operator D of a Riemannian spin ma-
nifold (Mn, g) satisfies the Schrödinger-Lichnerowicz formula

D2 = ∇∗∇+
S

4
Id, (1.15)

where S is the scalar curvature of (Mn, g).
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Proof: Fix a local orthonormal basis {ej}1≤j≤n of TM , then using the compa-
tibility relations as well as (1.5) one has, for any ϕ ∈ Γ(ΣM),

D2ϕ =
n∑

j,k=1

ej · ∇ej (ek · ∇ekϕ)

=
n∑

j,k=1

ej · ∇ejek · ∇ekϕ+ ej · ek · ∇ej∇ekϕ

= −
n∑

j,k=1

ej · ek · ∇∇ejekϕ+
n∑

j,k=1

ej · ek · ∇ej∇ekϕ

=
n∑
j=1

(∇∇ejej −∇ej∇ej )ϕ

+
∑

1≤j<k≤n

ej · ek · (∇ej∇ek −∇ek∇ej −∇∇ejek +∇∇ekej )ϕ

= ∇∗∇ϕ−
∑

1≤j<k≤n

ej · ek · (∇[ej ,ek] − [∇ej ,∇ek ])ϕ

= ∇∗∇ϕ− 1
2

n∑
j,k=1

ej · ek ·R∇ej ,ekϕ.

It now follows from Lemma 1.2.4 that
n∑

j,k=1

ej · ek ·R∇ej ,ekϕ =
1
2

n∑
j=1

ej · Ric(ej) · ϕ

= −S
2
ϕ,

which concludes the proof.
�

In particular the square of the Dirac operator coincides with the rough Laplacian
acting on spinors as soon as the scalar curvature of the underlying manifold van-
ishes. This provides an answer to Dirac’s original question on Euclidean space.

Applications of the Schrödinger-Lichnerowicz formula to eigenvalue estimates
are discussed in Chapters 3 and 4. Vanishing theorems can also be obtained
combining the Schrödinger-Lichnerowicz formula with the celebrated Atiyah-
Singer index theorem [31], stating that the topological and the analytical index
of any elliptic linear differential operator coincide. In the case of the Dirac
operator, the index theorem reads as follows.

Theorem 1.3.9 (M.F.Atiyah & I.M. Singer [31]) Let (Mn, g) be an even
dimensional closed Riemannian spin manifold and ind(D+) be the analytical
index of the positive part of its Dirac operator. Then

ind(D+) = Â(M),

where Â(M) =
∫
M
Â[TM ] ∈ Z is the Â-genus of M .
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Recall that, by definition, ind(D+) := dim(Ker(D+))− dim(Coker(D+)). Since
D is formally self-adjoint (Proposition 1.3.4) and the formal adjoint of D± is
D∓, one has ind(D+) = dim(Ker(D+)) − dim(Ker(D−)). The Â-class of TM ,
denoted above by Â[TM ], is the characteristic class associated to the Taylor ex-

pansion at 0 of the function x 7→
√

x
2

sinh(
√

x
2 )

. The Â-genus of M is by construction

a rational number and it is already a highly non-trivial statement that, for spin
manifolds, it must be an integer. Theorem 1.3.9 can be proved using either K-
theoretical methods (see [178, Chap. 3] and references therein) or asymptotics
for the heat kernel (see [61, Chap. 3] and references therein). Beware that, if
the dimension of the underlying manifold is odd, then the index of its Dirac
operator - as well as that of any elliptic linear differential operator - vanishes,
see e.g. [178, Thm. 13.12].

We end this section with the remarkable property of conformal covariance of
the Dirac operator.

Proposition 1.3.10 Let the spin structure be fixed and denote by D the Dirac
operator of M for the conformal metric g := e2ug, with u ∈ C∞(M,R). Then
there exists a unitary isomorphism between the spinor bundle of (Mn, g) and
that of (Mn, g) (denoted in the whole text by ϕ 7→ ϕ) such that

D(e−
n−1

2 uϕ) = e−
n+1

2 uDϕ (1.16)

for every ϕ ∈ Γ(ΣM), with D := Dg.

Proof: The isometry X 7→ e−uX from (TM, g) onto (TM, g) defines a principal
bundle isomorphism SOg(TM) −→ SOg(TM) lifting to the spin level. More
precisely, it induces a vector-bundle isomorphism ΣgM −→ ΣgM , ϕ 7−→ ϕ, pre-
serving the pointwise Hermitian inner product and sending X ·ϕ onto e−uX·ϕ.
As for the natural covariant derivative ∇ on the spinor bundle, its local ex-
pression in terms of the Levi-Civita connection of g on TM (1.6) immediately
implies for all ϕ ∈ Γ(TM) and X ∈ TM :

∇Xϕ = ∇Xϕ−
1
2
X · grad(u) · ϕ− X(u)

2
ϕ. (1.17)

Since {e−uej}1≤j≤n is a local o.n.b. of TM for g as soon as {ej}1≤j≤n is one
for g, we deduce that

Dϕ =
n∑
j=1

e−2uej ·∇ejϕ

(1.17)
= e−2u

n∑
j=1

ej ·
(
∇ejϕ−

1
2
ej · grad(u) · ϕ− ej(u)

2
ϕ

)

= e−u
n∑
j=1

(
ej · ∇ejϕ−

1
2
ej · ej · grad(u) · ϕ− ej(u)

2
ej · ϕ

)
= e−u(Dϕ+

n− 1
2

grad(u) · ϕ). (1.18)
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Hence

D(e−
n−1

2 uϕ) = e−u(D(e−
n−1

2 uϕ) +
n− 1

2
e−

n−1
2 ugrad(u) · ϕ)

(1.11)
= −n− 1

2
e−

n−1
2 ue−ugrad(u) ·Dϕ+ e−

n−1
2 ue−uDϕ

+
n− 1

2
e−

n−1
2 ue−ugrad(u) · ϕ

= e−
n+1

2 uDϕ,

which concludes the proof. �

1.4 Spinors on hypersurfaces and coverings

In this section we discuss how spinors can be induced on submanifolds or quo-
tients. We restrict ourselves to the case of Riemannian hypersurfaces and cover-
ings, see e.g. [43, 108] and [204, 17, 122] for higher codimensional submanifolds
and submersions or foliations respectively. The case of general homogeneous
spaces, which is much more involved, is handled separately in Section 2.2. In
order to simplify the notations, we denote in this survey, for the situation where
M is a hypersurface in some spin manifold M̃ , by “·” the Clifford multiplication
of M̃ and by “ ·

M
” that of M .

Proposition 1.4.1 Let ι : M −→ M̃ be an immersed oriented Riemannian
hypersurface in an (n + 1)-dimensional Riemannian spin manifold. Let the
unit normal ν ∈ Γ(T⊥M) be chosen such that, for every local oriented basis
{v1, . . . , vn} of TM , the local basis {v1, . . . , vn, ν} of TM̃|M is oriented. Then
the manifold M is spin and carries an induced spin structure for which a unitary
isomorphism exists

ΣM̃|M −→
∣∣∣∣ ΣM if n is even

ΣM ⊕ ΣM if n is odd
ϕ 7−→ ϕ

where, for n odd, the two copies of ΣM correspond to the splitting ΣM̃|M =
Σ+M̃|M ⊕ Σ−M̃|M . Moreover this isomorphism can be chosen so as to satisfy

iν · ϕ =

∣∣∣∣∣∣
ωC
n ·
M
ϕ if n is even(

0 Id
Id 0

)
, if n is odd

(1.19)

X · ν · ϕ =

∣∣∣∣∣ X ·M ϕ if n is even

(X ·
M
⊕−X ·

M
)ϕ if n is odd (1.20)

and

∇̃Xϕ = ∇Xϕ+
A(X)

2
· ν · ϕ (1.21)

for all X ∈ TM and ϕ ∈ Γ(ΣM̃|M ), where ωC
n is the complex volume form (see

(1.3) and A := −∇̃ν denotes the Weingarten endormorphism field of ι.
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In particular the fundamental Dirac operators D and D̃ of M and M̃ respectively
are related through

D̃ϕ = ν · ∇̃νϕ+ ν · (D2 −
nH

2
)ϕ, (1.22)

where

D2 :=
∣∣∣∣ D if n is even
D ⊕−D if n is odd

and H := 1
n tr(A) is the mean curvature of ι.

Proof: Since M has trivial normal bundle in M̃ , it is spin. This can be seen as
a consequence of a more general result [200] or, alternatively, in the following
way: the pull-back of Spin(TM̃)|M to SO(TM) over the map “completion by ν”

SO(TM) −→ SO(TM̃)|M
(e1, . . . , en) 7−→ (e1, . . . , en, ν)

provides a 2-fold covering of SO(TM) which can easily be proved to be a Spinn-
bundle hence a spin structure on M . The identity (1.20) is just the geometric
translation of the canonical embedding of the Clifford algebra in dimension n
into that in dimension n + 1, see e.g. [138, Prop. 2.7]. The local formula (1.6)
defining the compatible covariant derivative combined with the classical Gauss-
Weingarten identity ∇̃XY = ∇XY + g(A(X), Y )ν (for all X,Y ∈ Γ(TM)) lead
to (1.21). The last equality (1.22) is a straightforward consequence of both (1.20)
and (1.21). �

In particular a hypersurface in a spin manifold is spin as soon as it is orientable.
For example the round sphere Sn is from its definition a hypersurface in Rn+1,
which is obviously spin, therefore it is also spin and carries an induced spin struc-
ture. This spin structure is unique if n ≥ 2 since Sn is then simply-connected,
however there exists another spin structure on S1, see Example 1.4.3.1 below.
Note also that, as a consequence of (1.19), (1.20) and (1.21), the Clifford ac-
tion of ν onto ΣM or ΣM ⊕ ΣM respectively (according to the parity of n) is
∇-parallel, in particular it anti-commutes with D2: for every ϕ ∈ Γ(ΣM) (or in
Γ(ΣM ⊕ ΣM) if n is odd),

D2(ν · ϕ) = −ν ·D2ϕ. (1.23)

Turning to coverings, we have the following proposition, which is also well-known
(see e.g. [206, Lemma 7.3]).

Proposition 1.4.2 Let Γ × M̃ → M̃ be a properly discontinuous free isomet-
ric and orientation-preserving action of a discrete group Γ on a Riemannian
spin manifold (M̃n, g). Assume that the induced principal-bundle-action of Γ on
SO(TM̃) lifts to a principal-bundle-action on Spin(TM̃) such that the following
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diagram commutes:

Γ× Spin(TM̃)

Id×η

��

// Spin(TM̃)

η

��

$$HHH
HHH

HHH
H

M̃

Γ× SO(TM̃) // SO(TM̃)

::vvvvvvvvvv

Then the following holds:

i) The manifold M := Γ\M̃ is spin and carries an induced spin structure for
which the Γ-action on ΣM̃ provides a unitary isomorphism

ΣM ∼= Γ\ΣM̃

preserving the Clifford multiplication and the natural compatible covariant
derivative.

ii) This unitary isomorphism identifies the sections of ΣM on M with the
Γ-equivariant sections of ΣM̃ on M̃ , i.e.,

Γ(ΣM) ∼= {ϕ ∈ Γ(ΣM̃) | ϕ(γ · x) = γ · ϕ(x) ∀x ∈ M̃, ∀γ ∈ Γ},
(1.24)

where we also denote by “ · ” the action of Γ on ΣM̃ . In particular, the
eigenvectors of the Dirac operator on M identify with those of the Dirac
operator on M̃ satisfying (1.24).

iii) If M̃ is simply-connected, then the spin structures on M stand in one-to-
one correspondence with Hom(Γ,Z2).

Proof: The left-quotient Γ\Spin(TM̃) obviously defines a spin structure on M .
Since Γ operates by principal-bundle-homomorphisms, its action commutes with
the right action of the structure groups, therefore one straightforward obtains

ΣM = (Γ\Spin(TM̃))×δn Σn ∼= Γ\(Spin(TM̃)×δn Σn) = Γ\ΣM̃.

For the same reason the Hermitian inner product of ΣM̃ remains preserved by
Γ - hence the above identification can be assumed to be unitary - and so does
the Clifford multiplication: for all x ∈ M̃ , X ∈ TxM̃ , ϕ ∈ ΣxM̃ and γ ∈ Γ,
γ · (X · ϕ) = (dγ(X)) · (γ · ϕ). The equivariance condition follows from this
observation. In the case where M̃ is simply-connected one has

H1(M,Z2) = Hom(H1(M),Z2) = Hom(π1(M),Z2) = Hom(Γ,Z2),

where we have used H1(M) = π1(M)/[π1(M), π1(M)]. This concludes the proof.
�
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As noticed in Proposition 1.4.2.iii), the spin structure induced on the base space
is in general not unique: multiplying the action of Γ at the spin level by any
group homomorphism Γ −→ {±1} provides another group action satisfying the
assumptions of Proposition 1.4.2, however the spin structure downstairs changes.
Note also that the pull-back of any spin structure on the base of a Riemannian
covering is a spin structure on the total space and sections on the base can
always be lifted to equivariant sections upstairs.

Examples 1.4.3

1. Let M̃ := R and Γ := 2πZ acting on M̃ by translations. Since Spin(TR) =
R× Spin1 = R× {±1} there are only two possible lifts of the Γ-action to
the spin level which are determined by the image (−1)δ of the generator
2π of Γ in {±1}, where δ ∈ {0, 1}. We call the spin structure induced by
δ = 0 the trivial spin structure on S1 = 2πZ\R and the one induced by
δ = 1 the non-trivial one.

2. More generally, consider a lattice Γ ⊂ M̃ := Rn of rank n ≥ 1 and the
corresponding torus M := Γ\R

n with flat metric. The action of Γ by
translations induces the trivial group-homomorphism Γ −→ SOn, which
obviously lifts to the spin level, hence M is spin. Moreover, there ex-
ist 2n group-homomorphisms Γ −→ {±1}: fix a basis (γ1, . . . , γn) of Γ,
δ1, . . . , δn ∈ {0, 1} and define the group-homomorphism εδ1,...,δn : Γ −→
{±1} by εδ1,...,δn(γj) := (−1)δj for all 1 ≤ j ≤ n. The spin structure on
M induced by εδ1,...,δn is called (δ1, . . . , δn)-spin structure. We obtain in
this way all spin structures on the torus.

3. Let n ≥ 2 and Γ be a finite subgroup of SOn+1 acting freely on Sn.
For n even there is obviously no non-trivial such subgroup, thus we as-
sume n odd. On the round sphere both bundles SO(TM̃) and Spin(TM̃)
canonically identify to SOn+1 and Spinn+1 respectively. Therefore, the ex-
istence of a lift of the action of Γ to the spin level is equivalent to that
of a group homomorphism ε : Γ −→ Spinn+1 such that ξ ◦ ε is the inclu-
sion Γ ⊂ SOn+1. If this is fulfilled then from Proposition 1.4.2.iii) there
are as many spin structures on Γ\S

n as there are group homomorphisms
Γ −→ {±1}. For example consider Γ = Z2 = {±Id}. Of course it preserves
the orientation of Sn only if n is odd. Furthermore, the pre-image of −Id
under ξ can be shown to be ±e1 · . . . ·en+1, which is involutive if and only if
n ≡ 0 (4) or n ≡ 3 (4). Hence the n-dimensional real projective space RPn

is spin only for n ≡ 3 (4) and in that case it admits two spin structures.

1.5 Elliptic boundary conditions for the Dirac
operator

We end this chapter by briefly describing four types of boundary conditions for
the Dirac operator on manifolds M with non-empty boundary ∂M and discuss
their ellipticity and self-adjointness. We mostly use the notations of [143], which
is a good reference on the topic. A more general approach where less regularity
is required can be found in the seminal paper [35].
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Apart from the 1-dimensional case, the Dirac operator on a compact manifold
with boundary is in general not Fredholm since it has infinite dimensional kernel;
for example, given any domain Ω of C, the kernel of the Dirac operator of Ω
coincides with the direct sum of the space of holomorphic functions with that of
anti-holomorphic functions on Ω. The purpose of elliptic boundary conditions for
D is precisely to make it Fredholm. This is done in terms of pseudo-differential
operators on the boundary. To avoid technicalities, we shortcut the original
definition [143, p.380] of elliptic boundary condition providing the following one
[143, Prop. 1]:

Definition 1.5.1 Let (Mn, g) be a Riemannian spin manifold with non-empty
boundary ∂M . Denote Σ := Σ∂M if n is even and Σ∂M ⊕ Σ∂M if n is odd.

i) An elliptic boundary condition for D is a pseudo-differential operator B :
L2(Σ) −→ L2(V ), where V is some Hermitian vector bundle on ∂M , such
that the boundary value problem∣∣∣∣ Dϕ = Φ on M

B(ϕ|∂M ) = χ on ∂M
(1.25)

has smooth solutions up to a finite-dimensional kernel for any given smooth
data Φ ∈ Γ(ΣM) and χ ∈ Γ(V ) belonging to a certain subspace with finite
codimension.

ii) An elliptic boundary condition for D is called self-adjoint if and only if
the restriction of D onto {ϕ ∈ Γ(ΣM) |B(ϕ|∂M ) = 0} is symmetric.

As a consequence of the Fredholm alternative, one may talk about the spectrum
of D if an elliptic boundary condition is fixed [143, Prop. 1]:

Theorem 1.5.2 Let (Mn, g) be a compact Riemannian spin manifold with non-
empty boundary ∂M . Let B be an elliptic boundary condition for D. Then the
eigenvalue problem ∣∣∣∣ Dϕ = λϕ on M

B(ϕ|∂M ) = 0 on ∂M

has a discrete spectrum with finite dimensional eigenspaces in Γ(ΣM), unless
the spectrum is C itself. Moreover, if B is self-adjoint, then the Dirac spectrum
is real.

In view of the study of spectral properties of the Dirac operator four kinds of
boundary conditions have been mainly considered so far:

• generalized Atiyah-Patodi-Singer (gAPS) boundary condition (depending
on a fixed β ∈ R that we omit in the notations) [78]: define B := BgAPS to
be the L2-orthogonal projection onto the subspace spanned by the eigen-
vectors of D2 (which is D∂M or D∂M ⊕−D∂M according to the dimension)
to eigenvalues not smaller than β. For β = 0 this condition is called the
Atiyah-Patodi-Singer (APS) boundary condition and was originally intro-
duced by Atiyah, Patodi and Singer to prove index theorems on manifolds
with boundary, see e.g. [85, 147].
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• Boundary condition associated to a chirality (CHI) operator (see e.g. [85,
147]): define the endomorphism-field BCHI := 1

2 (Id − ν · G) of Σ, where
ν is a unit normal on ∂M and G is a chirality operator (i.e., it is the
restriction on ∂M of an endomorphism-field G of ΣM which is involutive,
unitary, parallel and anti-commuting with the Clifford multiplication on
M). Natural chirality operators appear in case n is even (then define
G := ωC

n ·, where ωC
n is the complex volume form of M , see (1.3)) or if M is

itself a spacelike hypersurface in a Lorentzian manifold (then define G to
be the Clifford multiplication by a unit timelike normal vector field to M).
Among others, this boundary condition has been used to prove positive
mass theorems in the presence of black holes, see references in [143].

• MIT bag boundary condition (see e.g. [148]): define the endomorphism-
field BMIT of Σ by BMIT := 1

2 (Id − iν·). It was first introduced in the
Lorentzian context by physicists at the MIT for the description of spin
1
2 -particles, see references in [143].

• modified generalized Atiyah-Patodi-Singer( (mgAPS) boundary condition
(also depending on some fixed β ∈ R) [78]: define BmgAPS := BgAPS(Id +
ν·). In the particular case where β = 0 this condition is called the modified
Atiyah-Patodi-Singer (mAPS) boundary condition [143].

To test the ellipticity of a boundary condition, practical criteria are available
[143, Prop. 1]:

Proposition 1.5.3 Let (Mn, g) be a compact Riemannian spin manifold with
non-empty boundary ∂M . A pseudo-differential operator B : L2(Σ) −→ L2(V ),
where V is some Hermitian vector bundle on ∂M , is an elliptic boundary condi-
tion for D if and only if its principal symbol b : T ∗∂M −→ Hom(Σ, V ) satisfies
the following two conditions:

a) Ker(b(ξ)) ∩Ker(iξ · ν · −g(ξ, ξ)
1
2 Id) = {0}

b) dim(Im(b(ξ)) = rkC(ΣM)
2 = 2[n2 ]−1

for every ξ ∈ T ∗∂M \ {0}, where ν denotes the inner unit normal.

The central result of this section is the following.

Proposition 1.5.4 Let (Mn, g) be a compact Riemannian spin manifold with
non-empty boundary ∂M . Then the gAPS, CHI, MIT bag and mgAPS boundary
conditions are elliptic. Moreover, the spectrum of D is a discrete unbounded
sequence which is real for

• the gAPS and mgAPS boundary conditions with β ≤ 0,

• the CHI boundary condition,

and which is contained in the upper half of C for the MIT bag boundary condi-
tion.

Proof: We consider the four conditions separately.
• gAPS boundary condition: It can be shown (see e.g. [62, Prop. 14.2]) that the
principal symbol of BgAPS is given on any ξ ∈ T ∗∂M \{0} by bgAPS(ξ) = 1

2 (iξ ·ν ·
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+g(ξ, ξ)
1
2 Id), i.e., it is the (pointwise) orthogonal projection onto the eigenspace

of the Clifford-multiplication by iξ (on ∂M , which corresponds to iξ · ν·, cf.
(1.20)) to the eigenvalue g(ξ, ξ)

1
2 . For ξ 6= 0 the image of bgAPS(ξ) is obviously

2[n2 ]−1-dimensional. On the other hand, Ker(bgAPS(ξ)) = Ker(iξ ·ν ·+g(ξ, ξ)
1
2 Id),

so that the criterium a) of Proposition 1.5.3 is also fulfilled, hence the gAPS
boundary condition is elliptic.
We now have to show that, for any ϕ,ψ ∈ Γ(ΣM) satisfying BgAPS(ϕ|∂M ) =
BgAPS(ψ|∂M ) = 0 then

∫
M
〈Dϕ,ψ〉vg =

∫
M
〈ϕ,Dψ〉vg holds. But from (1.14) and

Green’s formula we know that, for all ϕ,ψ ∈ Γ(ΣM),∫
M

〈Dϕ,ψ〉 − 〈ϕ,Dψ〉vg =
∫
∂M

〈ϕ, ν · ψ〉v∂Mg . (1.26)

Therefore we have to prove that BgAPS(ϕ|∂M ) = BgAPS(ψ|∂M ) = 0 implies
the vanishing of

∫
∂M
〈ϕ, ν · ψ〉v∂Mg . Denote by (· , ·)M :=

∫
M
〈· , ·〉vMg the L2-

inner product on Γ(ΣM), (· , ·)∂M :=
∫
∂M
〈· , ·〉v∂Mg that on Γ(Σ∂M) and for

any real numbers c < d by π≥c (resp. π>c, π<c, π≤c, π[c,d]) the L2-orthogonal
projection onto the subspace spanned by the eigenvectors of D2 associated to
the eigenvalues lying in the interval [c,+∞[ (resp. ]c,+∞[, ] −∞, c[, ] −∞, c],
[c, d]). Since BgAPS = π≥β , we have, for β ≤ 0 and all ϕ,ψ ∈ Γ(ΣM) satisfying
BgAPS(ϕ|∂M ) = BgAPS(ψ|∂M ) = 0:

(ϕ, ν · ψ)∂M =
(
π<β(ϕ), π<β(ν · ψ)

)
∂M

(1.23)
=

(
(π<β(ϕ), ν · π>−β(ψ)︸ ︷︷ ︸

0

)
∂M

= 0.

• CHI boundary condition: The endomorphism-field ν · G of Σ is by definition
of G unitary, Hermitian and involutive, therefore BCHI is nothing but the point-
wise orthogonal projection onto its eigenspace to the eigenvalue −1, which is
2[n2 ]−1-dimensional. Moreover since it is a differential operator of zero order
its principal symbol is the operator itself, therefore criterium b) of Proposi-
tion 1.5.3 is fulfilled. On the other hand, for any ξ ∈ T ∗∂M \ {0}, the en-
domorphisms iξ · ν· and ν · G of Σ obviously anti-commute, so that, for any
ϕ ∈ Ker(Id− ν · G) ∩Ker(iξ · ν · −g(ξ, ξ)

1
2 Id),

g(ξ, ξ)
1
2ϕ = iξ · ν · ϕ

= iξ · ν · ν · Gϕ
= −ν · G(iξ · ν · ϕ)

= −g(ξ, ξ)
1
2 ν · Gϕ

= −g(ξ, ξ)
1
2ϕ,

which implies ϕ = 0. Hence the criterium a) of Proposition 1.5.3 is also fulfilled.
This shows the ellipticity of the CHI boundary condition.
Let now ϕ,ψ ∈ Γ(ΣM) satisfying BCHI(ϕ|∂M ) = BCHI(ψ|∂M ) = 0, then

(ϕ, ν · ψ)∂M = (ν · Gϕ, ν · ψ)∂M
= (ϕ,Gψ)∂M
= −(ϕ, ν · G2ψ)∂M
= −(ϕ, ν · ψ)∂M ,
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hence (ϕ, ν · ψ)∂M = 0 and the spectrum of D must therefore be real.
• MIT bag boundary condition: The endomorphism-field iν· of Σ is unitary,
Hermitian and involutive, so that BMIT is the pointwise orthogonal projection
onto its eigenspace to the eigenvalue −1, which is 2[n2 ]−1-dimensional. Moreover,
for any ξ ∈ T ∗∂M \ {0}, the endomorphisms iν· and iξ · ν· of Σ anti-commute,
so that the same arguments as for the CHI boundary condition apply for the
ellipticity.
Let now ϕ,ψ ∈ Γ(ΣM) satisfying BMIT(ϕ|∂M ) = BMIT(ψ|∂M ) = 0, then this
time (ϕ, ν · ψ)∂M does not vanish in general. However (1.14) with ϕ = ψ gives

2i=m
(∫

M

〈Dψ,ψ〉vg
)

=
∫
∂M

〈ψ, ν · ψ〉v∂Mg = i

∫
∂M

|ψ|2v∂Mg ,

therefore any eigenvalue λ of D with associated (non-zero) eigenvector ψ must

satisfy =m(λ) =
R
∂M
|ψ|2v∂Mg

2
R
M
|ψ|2vg . If ψ|∂M = 0 then a unique continuation property

for the Dirac operator [62, Sec. 1.8] would imply ψ = 0 on M , contradiction.
Therefore =m(λ) > 0.
• mgAPS boundary condition: Since Id + ν· is an isomorphism-field of Σ,
the principal symbol of BmgAPS evaluated on any vector ξ ∈ T ∗∂M \ {0} is
bmgAPS(ξ) = bgAPS(ξ) ◦ (Id + ν·), hence it has rank 2[n2 ]−1. Moreover,

Ker(bmgAPS(ξ)) = (Id− ν·)Ker(bgAPS(ξ)) = (Id− ν·)Ker(iξ · ν ·+g(ξ, ξ)
1
2 Id).

Let ϕ ∈ Ker(bmgAPS(ξ)) ∩ Ker(iξ · ν · −g(ξ, ξ)
1
2 Id), then there exists a ψ ∈

Ker(iξ · ν ·+g(ξ, ξ)
1
2 Id) with ϕ = (Id− ν·)ψ so that

g(ξ, ξ)
1
2 (Id− ν·)ψ = g(ξ, ξ)

1
2ϕ

= iξ · ν · ϕ
= (Id + ν·)iξ · ν · ψ
= −g(ξ, ξ)

1
2 (Id + ν·)ψ,

from which one deduces that ψ = 0 hence ϕ = 0. This shows the ellipticity of
the mgAPS boundary condition.
Let now ϕ,ψ ∈ Γ(ΣM) satisfying BmgAPS(ϕ|∂M ) = BgAPS(ψ|∂M ) = 0, then with
the notations introduced above for the gAPS boundary condition and for β ≤ 0
one has:

2(ϕ, ν · ψ)∂M =
(
{Id + ν·}ϕ, {Id + ν·}ν · ψ

)
∂M

=
(
π<β({Id + ν·}ϕ), π<β({Id + ν·}ν · ψ)

)
∂M

(1.23)
=

(
π<β({Id + ν·}ϕ), ν · π>−β({Id + ν·}ψ︸ ︷︷ ︸

0

)
)
∂M

= 0,

which shows that the spectrum of D under the mgAPS boundary condition is
real and concludes the proof. �



Chapter 2

Explicit computations of
spectra

In this chapter we present the few known closed Riemannian spin manifolds
whose Dirac spectrum - or at least some eigenvalues - can be explicitly computed.

2.1 Spectrum of some non-negatively curved space-
forms

We begin with the examples where no machinery is required. The simplest ones
are the flat tori. The description of the (δ1, . . . , δn)-spin structure on the n-torus
is explained in Example 1.4.3.2.

Theorem 2.1.1 (T. Friedrich [89]) For a positive integer n let Γ ⊂ Rn be a
lattice and M = Tn := Γ\R

n the corresponding n-dimensional torus. Fix a basis
(γ1, . . . , γn) of Γ and δ1, . . . , δn ∈ {0, 1}.
Then the spectrum of the Dirac operator of Tn endowed with the induced flat
metric and the (δ1, . . . , δn)-spin structure is given by{

± 2π|γ∗ +
1
2

n∑
j=1

δjγ
∗
j |, γ∗ ∈ Γ∗

}
,

where Γ∗ := {θ ∈ (Rn)∗ | θ(Γ) ⊂ Z} is the dual lattice and (γ∗1 , . . . , γ
∗
n) the basis

of Γ∗ dual to (γ1, . . . , γn). Furthermore, if non-zero, the eigenvalue provided by
γ∗ has multiplicity 2[n2 ]−1. In case δ1 = . . . = δn = 0 the multiplicity of the
eigenvalue 0 is 2[n2 ].

Beware that the multiplicities add if the corresponding eigenvalues are equal.
Thus, the multiplicity of the eigenvalue ±2π|γ∗+ 1

2

∑n
j=1 δjγ

∗
j | is always at least

2[n2 ] (even for n = 1): if it is non zero, then γ′∗ := −γ∗ −
∑n
j=1 δjγ

∗
j ∈ Γ∗ pro-

vides the same eigenvalue and γ′∗ 6= γ∗.

Proof of Theorem 2.1.1: For any f ∈ C∞(Rn,Σn), the equivariance condition
(1.24) reads

f(x+ γj) = (−1)δjf(x)

35
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for all x ∈ Rn and 1 ≤ j ≤ n. Given γ∗ ∈ Γ∗, we denote by θγ the constant
1-form γ∗+ 1

2

∑n
j=1 δjγ

∗
j on Rn. For an arbitrary orthonormal basis (σl)1≤l≤2[n2 ]

of Σn - which we trivially extend onto Rn as sections of Σ(Rn) = Rn×Σn - and
1 ≤ l ≤ n, we define the spinor field

φγ,l := e2iπθγσl (2.1)

on Rn. It obviously satisfies the equivariance condition and, for any X ∈ Rn,

∇Xφγ,l = X(φγ,l)
= 2iπθγ(X)e2iπθγσl

= 2iπθγ(X)φγ,l,

so that, choosing a local orthonormal basis (ek)1≤k≤n of Rn

Dφγ,l =
n∑
k=1

ek · ∇ekφγ,l

= 2iπ
n∑
k=1

θγ(ek)ek · φγ,l

= 2iπθγ · φγ,l.

If θγ = 0, which only happens if γ∗ = 0 and δ1 = . . . = δn = 0, the spinor
φγ,l = σl provides an eigenvector of D associated to the eigenvalue 0. Moreover,
as a consequence of the Schrödinger-Lichnerowicz formula (1.15), the kernel of
D consists of parallel spinors - as it does whenever the scalar curvature of the
closed manifold vanishes. We deduce in that case that 0 is an eigenvalue of D
with multiplicity 2[n2 ].
If θγ 6= 0 and n = 1 then i

θγ
|θγ | · = Id or −Id on Σ1 = C, therefore Dφγ,l =

2π|θγ |φγ,l or −2π|θγ |φγ,l, i.e., φγ,l is a non-zero eigenvector of D associated to
the eigenvalue 2π|θγ | or −2π|θγ |. Both eigenvalues occur because, as noticed
above, θ−γ∗−Pn

j=1 δjγ
∗
j

= −θγ . Each eigenvalue has multiplicity 1.

If θγ 6= 0 and n ≥ 2 we consider the Clifford action of i θγ|θγ | on Σn. It is involutive,
parallel and unitary, hence it induces the orthogonal and parallel splitting

Σn = Ker(i
θγ
|θγ |
· −Id)⊕Ker(i

θγ
|θγ |
·+Id),

where both spaces on the r.h.s. have the same dimension since the Clifford ac-
tions of two orthogonal vectors anti-commute. We replace in that case (σl)1≤l≤2[n2 ]

by an orthonormal basis (σ+
1 , . . . , σ

+

2[n2 ]−1 , σ
−
1 , . . . , σ

−
2[n2 ]−1) of Σn, where each

(σε1, . . . , σ
ε

2[n2 ]−1) is a constant orthonormal basis of Ker(i θγ|θγ | · −εId) ⊂ Σn for
ε ∈ {±1}. We redenote the φγ,l of (2.1) by φεγ,l. The above computations apply
with σεl instead of σl, so that

Dφεγ,l = 2iπ(−iε|θγ |)φεγ,l
= 2πε|θγ |φεγ,l,

i.e., φεγ,l is a non-zero eigenvector of D associated to the eigenvalue 2πε|θγ |.
Since the sections φεγ,1, . . . , φ

ε

γ,2[n2 ]−1 are linearly independent, the multiplicity
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of the eigenvalue 2πε|θγ | is at least 2[n2 ]−1.
To conclude the proof, it remains to remember that the {eiγ∗ , γ∗ ∈ Γ∗} form a
Hilbert basis of L2(Tn,C) and therefore so do the φ(ε)

γ,l in L2(ΣTn). �

Notes 2.1.2

1. For n = 1, Theorem 2.1.1 reads as follows: the Dirac spectrum of the
circle S1(L) of length L > 0 (for L = 2π we just write S1) and the δ-spin
structure, where δ ∈ {0, 1}, is 2π

L ( δ2 + Z). Furthermore, each eigenvalue is
simple.

2. It is remarkable that the kernel of the Dirac operator of (Tn, gflat) is not
reduced to 0 for the (0, . . . , 0)-spin structure (called sometimes the triv-
ial spin structure) whereas it is for all other ones. Flat tori are thus the
most simple-minded examples of closed manifolds with non-zero harmonic
spinors for some spin structure. Moreover, as already noticed in the proof
of Theorem 2.1.1, the kernel of D actually consists of parallel spinors.
Therefore, (Tn, gflat) admits a 2[n2 ]-dimensional space of parallel spinors
for the trivial spin structure and no non-zero one otherwise. The reader
interested in basic results as well as the classification of complete Rieman-
nian spin manifolds with parallel spinors should refer to Section A.4.

Only few spectra of closed flat manifolds are known, although such manifolds
are always covered by flat tori as a consequence of Bieberbach’s theorems. This
is due to the high complexity of the groups involved, which makes the search
for equivariant eigenvectors very technical. Up to now, only dimension 3 (F.
Pfäffle [212]) and some particular cases in higher dimensions (R. Miatello and
R. Podestá [194]) have been handled using representation-theoretical methods,
see Section 2.2.

A rather different technique leads to the Dirac spectrum of round spheres.

Theorem 2.1.3 (S. Sulanke [232], see also [41, 75, 234, 235]) Consider,
for n ≥ 2, the round sphere M = Sn := {x ∈ Rn+1, |x| = 1} with its canonical
metric g of constant sectional curvature 1 and its canonical spin structure.
Then the spectrum of the Dirac operator is {±(n2 + k), k ∈ N} and each eigen-

value ±(n2 + k) has multiplicity 2[n2 ] ·
( n+ k − 1

k

)
.

Proof: We present here C. Bär’s proof [41, Sec. 2], which has the advantage to
get to the result in a very elementary way. It is based on the knowledge of the
spectrum of the scalar Laplacian and on the trivialization of the spinor bundle
of Sn through either − 1

2 - or 1
2 -Killing spinors, see Example A.1.3.2.

Let ϕ be a non-zero ε
2 -Killing spinor on (Sn, can), where ε ∈ {±1}. Then Dϕ =

ε
2

∑n
j=1 ej · ej · ϕ = −nε2 ϕ, so that, for every f ∈ C∞(Sn,R),

D2(fϕ)
(1.13)

= fD2ϕ− 2∇grad(f)ϕ+ (∆f)ϕ

=
n2

4
fϕ− εgrad(f) · ϕ+ (∆f)ϕ
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(1.11)
=

n2

4
fϕ− ε(D(fϕ)− fDϕ) + (∆f)ϕ

= (
n2

4
− n

2
)fϕ− εD(fϕ) + (∆f)ϕ,

that is, ((D + ε
2 Id)2 − 1

4 Id)(fϕ) = (n
2

4 −
n
2 )fϕ+ (∆f)ϕ, or, equivalently,

(D +
ε

2
Id)2(fϕ) = (∆f + (

n− 1
2

)2f)ϕ. (2.2)

The spectrum of the scalar Laplacian ∆ on (Sn, can) is given by (see e.g. [77])
{k(n + k − 1) | k ∈ N}, where the eigenvalue k(n + k − 1) appears with mul-

tiplicity n+2k−1
n+k−1 ·

( n+ k − 1
k

)
. Since the spinor bundle ΣSn of Sn is triviali-

zed by ε
2 -Killing spinors one deduces from (2.2) that, if {fk}k∈N denotes a L2-

orthonormal basis of eigenfunctions of ∆ on Sn and {ϕj}1≤j≤2[n2 ] a trivialization

of ΣSn through a pointwise orthonormal basis, then {fkϕj | k ∈ N, 1 ≤ j ≤ 2[n2 ]}
provides a complete L2-orthonormal basis of L2(ΣSn) made out of eigenvectors
of (D+ ε

2 Id)2 associated to the eigenvalues (n−1
2 +k)2 with k ∈ N, each of those

having multiplicity 2[n2 ] · n+2k−1
n+k−1 ·

( n+ k − 1
k

)
. Therefore the spectrum of D is

contained in − ε2 ± (n−1
2 + N), where the multiplicities remain to be determined.

We name the possible eigenvalues of D

λ+
k :=

n

2
+ k

λ+
−k−1 := −n

2
− k + 1

λ−k := −n
2
− k

λ−−k−1 :=
n

2
+ k − 1,

with k ∈ N, and denote by m(·) their corresponding multiplicity (both ε = ±1
have to be taken into account). It can already be deduced from the splitting

Ker((D +
ε

2
Id)2 − (

n− 1
2

+ k)2Id) = Ker(D + (
ε

2
− n− 1

2
− k)Id)⊕

Ker(D + (
ε

2
+
n− 1

2
+ k)Id)

that, for every k ∈ N,

m(λ±k ) +m(λ±−k−1) = 2[n2 ] · n+ 2k − 1
n+ k − 1

·
(
n+ k − 1

k

)
.

Next we show by induction on k that m(λ±k ) = 2[n2 ] ·
(
n+ k − 1

k

)
.

For k = 0, both λ+
0 and λ−0 have multiplicity 2[n2 ] because, as we have seen

above, ε2 -Killing spinors are eigenvectors for D associated to the eigenvalue −nε2 .
Alternatively the eigenvalues λ±−1 = ∓(n2 − 1) cannot appear because otherwise
Friedrich’s inequality (3.1) would be violated.
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If the result is true for k, then the identity just above implies

m(λ±k+1) = 2[n2 ] · n+ 2k + 1
n+ k

·
(
n+ k
k + 1

)
−m(λ±−k−2)

= 2[n2 ] · n+ 2k + 1
n+ k

·
(
n+ k
k + 1

)
−m(λ∓k )

= 2[n2 ] ·
{n+ 2k + 1

n+ k
·
(
n+ k
k + 1

)
−
(
n+ k − 1

k

)}
= 2[n2 ] ·

(
n+ k
k + 1

)
,

which was to be shown. �

On spaceforms of positive curvature the Dirac spectrum can be determined
thanks to a handy formula which reads as follows. First assume such a spaceform
(Mn, g) = (Γ\S

n
, can) to be spin, which is equivalent to n odd and the existence

of a group homomorphism ε : Γ −→ Spinn+1 such that ξ ◦ ε is the inclusion map
Γ ⊂ SOn+1, see Example 1.4.3.3. Proposition 1.4.2 states that the eigenvectors
of the Dirac operator on (Mn, g) are exactly the Γ-equivariant eigenvectors of
the Dirac operator on (Sn, can). In particular the Dirac spectrum of (Mn, g) is
included in that of (Sn, can), so that it is enough to find the multiplicity m(·)
of each eigenvalue ±(n2 + k). To that extent one encodes them into the two
following formal power series:

F±(z) :=
+∞∑
k=0

m(±(
n

2
+ k))zk.

Theorem 2.1.4 (C. Bär [41]) For n ≥ 3 odd, let (Mn, g) := (Γ\S
n
, can) be

a Riemannian spin spaceform of constant sectional curvature 1 and with spin
structure fixed by ε. Then the Dirac eigenvalues of (Mn, g) are contained in
{±(n2 + k), k ∈ N} with multiplicities given by

F±(z) =
1
|Γ|
∑
γ∈Γ

χ∓(ε(γ))− χ±(ε(γ)) · z
det(IdRn+1 − z · γ)

,

where χ± := tr(δ±n+1) : Spinn+1 −→ C is the character of δ±n+1.

The proof of Theorem 2.1.4 relies on a similar formula for the Laplace eigenvalues
by A. Ikeda, see [41, Sec. 3]. As an application of Theorem 2.1.4, one obtains
the Dirac spectrum of real projective spaces. We keep the notations of Example
1.4.3.3.

Corollary 2.1.5 For n ≡ 3 (4) let Mn := RPn = Z2
\Sn be the n-dimensional

real projective space of constant sectional curvature 1 and with spin structure
fixed by ε(−Id) = (−1)δe1 · . . . · en+1, where δ ∈ {0, 1}. Then the spectrum of its
Dirac operator is

{n
2

+ k, k ∈ N ∩ (δ +
n− 3

4
+ 2Z)} ∪ {−n

2
− k, k ∈ N ∩ (δ +

n+ 1
4

+ 2Z)},

each eigenvalue corresponding to k having multiplicity 2[n2 ] ·
( n+ k − 1

k

)
.
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Proof: On the one hand, χ±(ε(Id)) = tr(δ±n+1(1)) = 2
n−1

2 , on the other hand,

χ±(ε(−Id)) = (−1)δtr(δ±n (e1 · . . . · en+1))

= (−1)δ+
n+1

4 tr(δ±n (ωC
n))

(1.4)
= ±(−1)δ+

n+1
4 tr(IdΣ±n

)

= ±(−1)δ+
n+1

4 2
n−1

2 ,

so that Theorem 2.1.4 implies that

F±(z) =
1
2

∑
γ∈Γ

χ∓(ε(γ))− χ±(ε(γ)) · z
det(IdRn+1 − z · γ)

=
1
2

(2
n−1

2 − 2
n−1

2 z

(1− z)n+1
+
∓(−1)δ+

n+1
4 2

n−1
2 ∓ (−1)δ+

n+1
4 2

n−1
2 z

(1 + z)n+1

)
= 2

n−1
2

( 1
2(1− z)n

∓ (−1)δ+
n+1

4

2(1 + z)n
)

= 2
n−1

2

+∞∑
k=0

1∓ (−1)k+δ+n+1
4

2

(
n+ k − 1

k

)
zk,

from which the result follows. �

Apart from the examples above, no Dirac spectrum can be computed in such an
elementary way. This is in particular the case for closed hyperbolic manifolds
(spaceforms of negative curvature), see also Theorem 2.2.3 below. However, it
remains theoretically possible to do the computations on homogeneous spaces,
where there exists a representation-theoretical method to express the Dirac op-
erator. This is the object of the next section.

2.2 Spectrum of some other homogeneous spaces

Let us first introduce a few notations and recall basic facts. Denote by M := G/H
an n-dimensional homogeneous space and by g (resp. h) the Lie algebra of G
(resp. of H). In that case the existence as well as the set of spin structures on
M can be read off the isotropy representation of M , which is defined as the
Lie-group-homomorphism α : H → GL(g/h) induced by the restriction of the
adjoint map Ad of G onto H. It is indeed well-known that M carries a homo-
geneous Riemannian metric (i.e., a metric invariant under the left G-action) or
an orientation if and only if α(H) is compact or connected respectively. As-
suming both conditions α becomes a map H −→ SO(g/h). The existence of a
homogeneous spin structure (i.e., a spin structure on which the left G-action on
SO(TM) lifts) on M is then equivalent to that of a lift α̃ of α into Spin(g/h),
the set of spin structures standing then in one-to-one correspondence with that
of such α̃’s, that is, with the set of group-homomorphisms H −→ {±1}, see
[37, Lemma 1]. For example, if H is connected, then there can exist only one
homogeneous spin structure on M . Moreover, if G is simply-connected, then all
spin structures are obtained in such a way.
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To describe the Dirac operator on M , one has to look at the left action of G
onto the space of sections of ΣM , which can be identified with the space of
equivariant maps G −→ Σn. This left action induces a unitary representation of
G onto the space of L2 sections on M , which can be split into irreducible and
finite-dimensional components since G is compact. The Dirac operator preserves
that splitting and can be determined with the help of the following result based
on the Frobenius reciprocity principle (see reference in [37]).

Theorem 2.2.1 (see e.g. [37]) Let M := G/H be an n-dimensional Rieman-
nian homogeneous spin manifold with G compact and simply-connected. Let
p be an Ad(H)-invariant supplementary subspace of h in g and fix a p.o.n.b
{X1, . . . , Xn} of p. Choose a spin structure on M and let α̃ : H −→ Spinn be
the corresponding lift of the isotropy representation. Denote by ΣeαM −→M the
spinor bundle of M associated with α̃. Let Ĝ be the set of equivalence classes of
irreducible unitary representations of G (we identify an element of Ĝ with one
of its representants).

1. The space L2(M,ΣeαM) splits under the unitary left action of G into a
direct Hilbert sum ⊕

γ∈ bG
Vγ ⊗HomH(Vγ ,Σn)

where Vγ is the space of the representation γ (i.e., γ : G −→ U(Vγ)) and

HomH(Vγ ,Σn) :=
{
f ∈ Hom(Vγ ,Σn) s.t. ∀h ∈ H,

f ◦ γ(h) = (δn ◦ α̃) (h) ◦ f
}
.

2. The Dirac operator D of M preserves each summand in the splitting above;
more precisely, if {e1, . . . , en} denotes the canonical basis of Rn, then for
every γ ∈ Ĝ, the restriction of D to Vγ⊗HomH(Vγ ,Σn) is given by Id⊗Dγ ,
where, for every A ∈ HomH(Vγ ,Σn),

Dγ(A) = −
n∑
k=1

ek ·A ◦ deγ(Xk)

+

 n∑
i=1

βiei +
∑
i<j<k

αijkei · ej · ek

 ·A, (2.3)

and

βi :=
1
2

n∑
j=1

〈[Xj , Xi]p, Xj〉

αijk :=
1
4

(〈[Xi, Xj ]p, Xk〉+ 〈[Xj , Xk]p, Xi〉+ 〈[Xk, Xi]p, Xj〉)

(here Xp denotes the image of X ∈ g under the projection g −→ p with
kernel h).



42 CHAPTER 2. EXPLICIT COMPUTATIONS OF SPECTRA

Of course, if H is a discrete subgroup of the Lie group G, then Theorem 2.2.1
contains Proposition 1.4.2 (just transform the left-action into a right-one).

Theorem 2.2.1 can for instance be applied to the computation of the Dirac
spectrum of S2m+1 = Ũm+1/Ũm

with Berger metric, where Ũm stands for the
universal covering of the unitary group Um. Recall that, if n is odd, then the
round sphere Sn is the total space of an S1-bundle called the Hopf-fibration
Sn −→ CP

n−1
2 , where CP

n−1
2 is the complex projective space of complex di-

mension n−1
2 . In particular one may decompose the round metric on Sn along

the S1-fibres and their orthogonal complement; we denote this decomposition
by can = gS1 ⊕ g⊥.

Theorem 2.2.2 (C. Bär [42]) For n = 2m+1 ≥ 3, let Mn := Sn with Berger
metric gt = tgS1 ⊕ g⊥ for some real t > 0. Then the Dirac operator of (Mn, gt)
has the following eigenvalues:

i) 1
t (
m+1

2 + k) + tm
2 , k ∈ N, with multiplicity

( m+ k
k

)
.

ii) (−1)m+1
(

1
t (
m+1

2 + k) + tm
2

)
, k ∈ N, with multiplicity

( m+ k
k

)
.

iii) (−1)j t2±
√

[ t2 (m− 1− 2j) + 1
t (a1 − a2 + m−1

2 − j)]2 + 4(m+ a1 − j)(1 + a2 + j),

a1, a2 ∈ N, j ∈ {0, 1 . . . ,m−1}, with multiplicity (m+a1)!(m+a2)!(m+1+a1+a2)!
a1!a2!m!j!(m−1−j)!(m+a1−j)(1+a2+j) .

The reader interested in the proof of Theorem 2.2.2 or in the computation of
the Dirac spectrum of 3-dimensional lens spaces S3

/Zk should refer to [42, Sec.
3] or to [36] respectively.

In general, the formula (2.3) describing the Dirac operator as a direct sum of
endomorphisms in finite-dimensional spaces cannot be better explicited. In case
M is symmetric, (2.3) simplifies in the sense that the square of D is given by

D2 = ΩG +
S

8
Id, (2.4)

where ΩG is the Casimir operator of G and S is the scalar curvature of M , see
e.g. [91, Prop. p.87]. However, on general homogeneous spaces, obtaining the
spectrum explicitly still remains very difficult, see e.g. [106, Sec. 3].

In case M is the quotient of a non-compact Lie group G, Theorem 2.2.1 does
not apply since no Frobenius reciprocity is available. Moreover, the irreducible
representations of G are much harder to classify, so that the knowledge of the
spectrum is generally out of reach. We quote the only example where this was
successfully carried out and which is a quotient of the projective special linear
group of R2, that we denote PSL2(R). Define a Fuchsian subgroup of PSL2(R)
to be a discrete one. The signature of a Fuchsian subgroup Γ is the tuple of
non-negative integers (g;m1, . . . ,mr) such that Γ is presented by

Γ = < A1, B1, . . . Ag, Bg, X1, . . . , Xr |
Xm1

1 = . . . = Xmr
r = X1 . . . XrA1B1A

−1
1 B−1

1 . . . AgBgA
−1
g B−1

g = 1 > .
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Theorem 2.2.3 (J. Seade and B. Steer [224]) Let M := PSL2(R)/Γ, where
Γ is a co-compact Fuchsian subgroup of signature (g;m1, . . . ,mr) in PSL2(R).
Consider the orientation and the 1-parameter-family of left-invariant metrics

(gt)t>0 on M for which ( 1
t

(
0 1
−1 0

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
) is a positively-

oriented orthonormal basis of T1M .
Then the Dirac eigenvalues of (M, gt) endowed with its trivial (left-invariant)
spin structure are:

i) − t
2 + 1

t with multiplicity 2.

ii) − t
2 −

2k−1
t , k ≥ 1, with multiplicity

2k − 1
2π

Vol(M)−
r∑
j=1

1
mj

mj−1∑
l=1

sin((2k − 1)mjπ)
sin( lπmj )

.

iii) − t
2 ±

√
(2n− 1)2(1 + t−2)− (2k − 1)2, k ≥ 1, n > k, with the same mul-

tiplicity as in ii).

iv) − t
2 ±

√
(2n− 1)2(1 + t−2)− s2, n ∈ Z, s ∈ Λ, where Λ is some countable

subset of ]− 1, 1[∪iR.

The set Λ depends on representation-theoretical data and cannot be explicited
in general. For t = 1, the metric gt has constant negative sectional curvature.
This is up to the knowledge of the author the only compact hyperbolic manifold
whose Dirac spectrum has been computed.

To summarise, we reproduce - with small changes - the list in [45] of all homo-
geneous spaces of which Dirac spectrum has already been computed:

space description references
G simply-connected compact Lie groups [86]

Rn/Zn flat tori [89]
R3
/Γ 3-dim. (flat) Bieberbach manifolds [212]

Rn/Γ n-dim. (flat) Bieberbach manifolds [194]
Sn round spheres [232]

Sn/Γ spherical spaceforms [41]
S2m+1 spheres with Berger metric [152, 42]
S3
/Zk 3-dim. lens spaces with Berger metric [37]

S3
/Q8

S3 through the group of quaternions, [106]
with Berger metric

H3
/Γ 3-dim. Heisenberg manifolds [17]

PSL2(R)/Γ (Γ Fuchsian) [224]
CP2m+1 complex projective spaces [71, 72, 228]

HPm quaternionic projective spaces [69, 195]
OP2 Cayley projective plane [240]

Gr2(R2m) real 2-Grassmannians [230, 231]
Gr2p(R2m) real 2p-Grassmannians [225]
Gr2(Cm+2) complex 2-Grassmannians [196]

G2/SO4
- [225, 226]
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2.3 Small eigenvalues of some symmetric spaces

In case of a symmetric space M := G/H where G and H have the same rank,
a formula due to R. Parthasarathy (see reference in [197]) allows to express
certain parts of the Casimir operator ΩG (see (2.4)) in terms of representation-
theoretical data:

Theorem 2.3.1 (J.-L. Milhorat [197, 198]) Let M := G/H be a spin com-
pact simply-connected irreducible symmetric space with G compact and simply-
connected, endowed with the metric 〈· , ·〉 induced by the Killing form of G sign-
changed. Assume that G and H have the same rank and fix a spin structure on
G/H. Let βk, k = 1, . . . , p, be the H-dominant weights occurring in the decom-
position into irreducible components of the spin representation under H.
Then the square of the first eigenvalue of D is

n

8
+ 2 min

1≤k≤p
‖βk‖2 =

n

8
+ 2 min

w∈WG

‖w · δG − δH‖2,

where ‖ · ‖ is the norm associated to 〈· , ·〉, WG is the Weyl group of G and δG
(resp. δH) is the half-sum of the positive roots of G (resp. H).

Theorem 2.3.1 has been applied by J.-L. Milhorat in [198] to compute the smal-
lest eigenvalue λ1(D2) for the following symmetric spaces (where S denotes the
scalar curvature of M and Ep the exceptional simple Lie group of rank p):

M = G/H dim(M) λ1(D2)

Spinm+4/(Spinm · Spin4) 4m m2+6m−4
m(m+2) ·

m
2 = m2+6m−4

m(m+2) ·
S
4

(m even)

E6/(SU6 · SU2) 40 41
6 = 41

30 ·
S
4

E7/(Spin12 · SU2) 64 95
9 = 95

72 ·
S
4

E8/(E7 · SU2) 112 269
15 = 269

210 ·
S
4

The quotient S
4 has been each time factorized out in order to compare the dimen-

sion-depending coefficient standing before with n
n−1 , which is the corresponding

one in Friedrich’s inequality (3.1).



Chapter 3

Lower eigenvalue estimates
on closed manifolds

In this chapter we assume that M has empty boundary.

3.1 Friedrich’s inequality

The most general sharp lower bound for the Dirac spectrum has been proved by
T. Friedrich in [88] and is now known under the name “Friedrich’s inequality”.
For the concept of Killing spinor we refer to Section A.1.

Theorem 3.1.1 (T. Friedrich [88]) Any eigenvalue λ of D on an n(≥ 2)-di-
mensional closed Riemannian spin manifold (Mn, g) satisfies

λ2 ≥ n

4(n− 1)
inf
M

(S), (3.1)

where S is the scalar curvature of M .
Moreover (3.1) is an equality for some eigenvalue λ if and only if there exists a
non-zero real Killing spinor on (Mn, g).

Proof: It follows from the Schrödinger-Lichnerowicz formula (1.15) that, for any
ϕ ∈ Γ(ΣM), ∫

M

〈D2ϕ,ϕ〉vg =
∫
M

〈∇∗∇ϕ,ϕ〉vg +
∫
M

S

4
|ϕ|2vg.

By definition of ∇∗∇ and since D is formally self-adjoint we can write∫
M

|Dϕ|2vg =
∫
M

|∇ϕ|2vg +
∫
M

S

4
|ϕ|2vg. (3.2)

Decompose now w.r.t. any local orthonormal basis {ej}1≤j≤n of TM

∇ϕ = ∇ϕ+
1
n

n∑
j=1

e∗j ⊗ ej ·Dϕ︸ ︷︷ ︸
=Pϕ∈Ker(µ)

− 1
n

n∑
j=1

e∗j ⊗ ej ·Dϕ︸ ︷︷ ︸
∈Ker(µ)⊥

,

45
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where P is the so-called Penrose operator of (Mn, g), see also Appendix A. We
deduce that |∇ϕ|2 = |Pϕ|2+ 1

n |Dϕ|
2 (identity (A.11) in Appendix A). Replacing

|∇ϕ|2 in (3.2) one obtains∫
M

|Dϕ|2vg =
1
n

∫
M

|Dϕ|2vg +
∫
M

|Pϕ|2vg +
∫
M

S

4
|ϕ|2vg,

that is, ∫
M

(
|Dϕ|2 − n

4(n− 1)
S|ϕ|2

)
vg =

n

n− 1

∫
M

|Pϕ|2vg. (3.3)

Choose ϕ to be a non-zero eigenvector for D associated to the eigenvalue λ.
From |Pϕ|2 ≥ 0 one straightforward obtains the inequality (3.1).
If (3.1) is an equality for some eigenvalue λ then (3.3) implies Pϕ = 0 for any
non-zero eigenvector ϕ for D associated to λ, hence any such ϕ is a (neces-
sarily real) Killing spinor on (Mn, g). Conversely, if (Mn, g) carries a non-zero
α-Killing spinor ϕ, then since M is compact α must be real. Moreover, on the
one hand ϕ is an eigenvector for D associated to the eigenvalue −nα, on the
other hand we know from Proposition A.4.1 that the scalar curvature of (Mn, g)
must be S = 4n(n− 1)α2, in particular it must be non-negative. Therefore such
a ϕ must be an eigenvector for D associated to the eigenvalue

√
nS

4(n−1) or

−
√

nS
4(n−1) . This shows the equivalence in the limiting-case and concludes the

proof. �

Another method for the proof of (3.1), which is actually T. Friedrich’s in [88],
relies on the modified connection

∇̃Xψ := ∇Xψ +
λ

n
X · ψ

for every X ∈ TM , where Dψ = λψ: Compute |∇̃ψ|2 (which plays the role of
|Pψ|2 above), integrate and apply the Schrödinger-Lichnerowicz formula. Al-
ternatively but still along the same idea, it can be directly deduced from the
Cauchy-Schwarz inequality that |Dϕ| ≤

√
n|∇ϕ| for every section ϕ, from which

(3.1) follows.

As a consequence of Theorem 3.1.1, if the scalar curvature S of (Mn, g) is
positive then its Dirac operator has trivial kernel - whatever the spin structure
is. This had been already noticed by A. Lichnerowicz in [180] where he had
obtained as a straightforward application of (3.2) the following estimate:

λ2 ≥ 1
4

inf
M

(S). (3.4)

It follows from (3.4) combined with the Atiyah-Singer index theorem [31] (see
Theorem 1.3.9) that a Riemannian manifold with positive scalar curvature must
have vanishing topological index. In particular, if the manifold has non-vanishing
Â-genus, then it cannot carry any Riemannian manifold with positive scalar cur-
vature. In other words, there exists a topological obstruction to the existence
of metrics with positive scalar curvature on closed spin manifolds, at least in
even dimensions. The reader interested in further results in that topic - such as
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Gromov-Lawson’s work - should refer to [178] or to [127]. The existence of Rie-
mannian metrics for which the Dirac kernel is non-zero is discussed in Section
6.2. Moreover, we mention another closely related application of the Atiyah-
Singer index theorem to geometry via the Schrödinger-Lichnerowicz formula,
namely to the so-called scalar curvature rigidity issue which asks for the pos-
sibility of increasing the scalar curvature without shrinking the distances of a
given metric on a fixed background manifold. For example this is not possible
on the round sphere (M. Llarull [186, Thm. B]) nor on any connected closed
Kähler manifold with non-negative Ricci curvature (S. Goette and U. Semmel-
mann [112, Thm. 0.1]), we refer to [113] and [185] for the case of symmetric
spaces and references.

Although it requires the non-negativity of S to be non-trivial, Friedrich’s inequa-
lity (3.1) provides fine information of geometrical nature on the Dirac spectrum.
Indeed S stands for a very weak curvature invariant of a given Riemannian ma-
nifold. This shows for example a difference of behaviour with other differential
operators such as the scalar Laplacian ∆: by a result of A. Lichnerowicz [179],
any non-zero eigenvalue λ of ∆ satisfies

λ ≥ n

n− 1
inf
M

(Ric),

where Ric is the Ricci curvature tensor of (Mn, g), which is a stronger curvature
invariant. In case infM (S) ≤ 0 Friedrich’s inequality (3.1) can be improved in
different ways using various techniques, see Sections 3.3 to 3.7.

Besides, (3.1) is sharp since e.g. M := Sn (n ≥ 2) admits non-zero Killing
spinors, see Example A.1.3.2. For the classification of Riemannian spin mani-
folds carrying non-zero real Killing spinors we refer to Theorems A.4.2 and A.4.3
in Appendix A.

3.2 Improving Friedrich’s inequality in presence
of a parallel form

O. Hijazi [132] and A. Lichnerowicz [181, 182] noticed that equality in (3.1)
cannot hold on those M admitting a non-zero parallel k-form for some k ∈
{1, . . . , n− 1}. This suggests (3.1) could be enhanced under this assumption.

The idea of proof for Theorems 3.2.1, 3.2.4 and 3.2.6 can be summarised as
follows (see [67]): given any eigenvector ϕ of D to the eigenvalue λ, decompose
|∇ϕ|2 in a sharper way than for the proof of Friedrich’s inequality, using the
splitting of ΣM induced by the Clifford action of the parallel form.

Theorem 3.2.1 (B. Alexandrov, G. Grantcharov and S. Ivanov [5])
Any eigenvalue λ of D on an n(≥ 3)-dimensional closed Riemannian spin ma-
nifold (Mn, g) admitting a non-zero parallel 1-form satisfies

λ2 ≥ n− 1
4(n− 2)

inf
M

(S), (3.5)
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where S is the scalar curvature of M .
Moreover if (3.5) is an equality for some eigenvalue λ, then the universal cover
of M is a Riemannian product of the form R×N , where N admits a real Killing
spinor.

We shall prove a more general result:

Theorem 3.2.2 (A. Moroianu and L. Ornea [208]) Inequality (3.5) holds
as soon as Mn (n ≥ 3) admits a non-zero harmonic 1-form of constant length.
Furthermore, if it is an equality for some eigenvalue λ, then this form is parallel.

Proof: Let ξ be the dual vector field to the harmonic 1-form of constant length.
We may assume that g(ξ, ξ) = 1 on M . Define the following Penrose-like oper-
ator

TXϕ := ∇Xϕ+
1

n− 1
(X − g(X, ξ)ξ) ·Dϕ− 1

n− 1
(ng(X, ξ) +X · ξ·)∇ξϕ

for all X ∈ TM and ϕ ∈ Γ(ΣM). In case ξ is parallel this operator can be
described as the sum of the orthogonal projections of ∇ϕ onto the kernels of the
Clifford multiplications T ∗M⊗Σ±M

µ±−→ ΣM , where Σ±M := Ker(iξ ·∓IdΣM ),
see [5, eq. (4)] for another equivalent expression (note however that it does not
exactly coincide with the T defined in [208]). Nevertheless ξ need not be parallel
in order for T to play its role for the estimate as we shall see in the proof.
Fix a local orthonormal frame {ej}1≤j≤n of TM . For any ϕ ∈ Γ(ΣM), we have

|Tϕ|2 =
n∑
j=1

|Tejϕ|2

= |∇ϕ|2 +
1

n− 1
|Dϕ|2 +

n

n− 1
|∇ξϕ|2

− 2
n− 1

(|Dϕ|2 + <e (〈ξ ·Dϕ,∇ξϕ〉))

− 2
n− 1

(n|∇ξϕ|2 −<e (〈ξ · ∇ξϕ,Dϕ〉))

− 2
n− 1

<e (〈ξ · ∇ξϕ,Dϕ〉))

= |∇ϕ|2 − 1
n− 1

|Dϕ|2 − n

n− 1
|∇ξϕ|2 +

2
n− 1

<e (〈ξ · ∇ξϕ,Dϕ〉)).

Now we can express the last term on the r.h.s. through the other ones, a trick
due to the authors of [208]: namely, since ξ is assumed to be harmonic, i.e.,
closed and co-closed, the identity (1.12) reads D(ξ · ϕ) = −ξ ·Dϕ − 2∇ξϕ and
hence

<e (〈ξ · ∇ξϕ,Dϕ〉) = |∇ξϕ|2 +
1
4

(|Dϕ|2 − |D(ξ · ϕ)|2),

from which we obtain

|Tϕ|2 = |∇ϕ|2 − 1
n− 1

|Dϕ|2 − n− 2
n− 1

|∇ξϕ|2 +
1

2(n− 1)
(|Dϕ|2 − |D(ξ · ϕ)|2).
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Integrating this identity over M and applying the Schrödinger-Lichnerowicz
formula (1.15) we have∫

M

|Tϕ|2vg =
n− 2
n− 1

∫
M

|Dϕ|2vg −
1
4

∫
M

S|ϕ|2vg −
n− 2
n− 1

∫
M

|∇ξϕ|2vg

+
1

2(n− 1)

∫
M

|Dϕ|2 − |D(ξ · ϕ)|2vg.

But choosing ϕ to be eigen for D for the smallest (in absolute value) eigenvalue
λ, the min-max principle (see Lemma 5.0.2) implies∫

M

|D(ξ · ϕ)|2vg ≥ λ2

∫
M

|ξ · ϕ|2vg

= λ2

∫
M

|ϕ|2vg

=
∫
M

|Dϕ|2vg,

hence

(
n− 2
n− 1

λ2 − 1
4

inf
M

(S))
∫
M

|ϕ|2vg ≥
∫
M

|Tϕ|2vg +
n− 2
n− 1

∫
M

|∇ξϕ|2vg (3.6)

and the inequality (3.5) follows.
If (3.5) is an equality for some eigenvalue λ, then (3.6) implies Tϕ = 0 and
∇ξϕ = 0, that is,

∇Xϕ = − λ

n− 1
(X − g(X, ξ)ξ) · ϕ (3.7)

for any eigenvector ϕ associated to λ and any X ∈ TM . In particular its length
must be constant on M . As in [208] we next show that ξ must be parallel. For
this purpose we compute the curvature tensor on such a ϕ: let X,Y ∈ TM , then

RX,Y ϕ = ∇[X,Y ]ϕ− [∇X ,∇Y ]ϕ

=
λ

n− 1
((g(X,∇Y ξ)− g(Y,∇Xξ))ξ + g(X, ξ)∇Y ξ − g(Y, ξ)∇Xξ) · ϕ

+
λ2

(n− 1)2

(
(X − g(X, ξ)ξ) · (Y − g(Y, ξ)ξ)

− (Y − g(Y, ξ)ξ) · (X − g(X, ξ)ξ)
)
· ϕ,

hence using (1.9) and the fact that g(ξ, ξ) = 1 on M we obtain

1
2

Ric(ξ) · ϕ =
n∑
j=1

ej ·R∇ξ,ejϕ

=
λ

n− 1

n∑
j=1

(
(g(ξ,∇ejξ)− g(ej ,∇ξξ))ej · ξ

+ (g(ξ, ξ)∇ejξ − g(ej , ξ)∇ξξ) · ej · ϕ
)

=
λ

n− 1
(−2∇ξξ · ξ +

n∑
j=1

∇ejξ · ej) · ϕ.
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The last sum vanishes because of (1.2) together with ξ being closed and co-
closed. On the other hand dξ = 0 means that g(∇Xξ, Y ) − g(∇Y ξ,X) = 0 for
all X,Y ∈ TM , hence for X = ξ one obtains - using once again g(ξ, ξ) = 1 -
that g(∇ξξ, Y ) = 0 for all Y ∈ TM , i.e., ∇ξξ = 0. This shows Ric(ξ) = 0. From
Bochner’s formula for the Laplace operator on 1-forms (see e.g. [178, Cor. 8.3
p.156]) one deduces that ∇ξ = 0, i.e., that ξ is parallel.
We now prove the limiting-case in Theorem 3.2.1. If ξ is parallel then the uni-
versal cover of M must be a Riemannian product of the form R × N . W.r.t.
the pull-back spin structure the lift of ϕ to R ×N also satisfies (3.7) provided
ξ is replaced by ∂

∂t . Since each {t} × N sits totally geodesically in R × N the
Gauss-type formula (1.21) implies that the induced spinor field on N is a real
Killing spinor for one of the constants ± λ

n−1 . �

Beware that the necessary condition for (3.5) to be an equality is not sufficient,
since e.g. R3 = R×R2 with flat metric carries non-zero parallel spinors whereas
(flat) T3 = Z3\R3 only admits such spinors in case it carries the trivial spin
structure (i.e., the spin structure induced by the trivial lift of the Z3-action to
the spin level, see Proposition 1.4.2). In fact (3.5) is an equality if and only if
there exists a π1(M)-equivariant solution - in the sense of (1.24) - to (3.7) on
the universal cover R×N of M .

Although the (real) Killing-spinor-equation is completely understood (see The-
orems A.4.2 and A.4.3), the list of all local Riemannian products on which (3.5)
is sharp is not entirely known. B. Alexandrov, G. Grantcharov and S. Ivanov
have shown in [5] that, under this assumption and if n 6= 7 is odd, then M is
diffeomorphic - but not necessarily isometric - to S1 × Sn−1.

It is moreover important to note that the hypothesis in Theorem 3.2.2 on the
length being constant cannot be removed: C. Bär and M. Dahl showed in [49]
that in dimension n ≥ 3 Friedrich’s inequality (3.1) cannot be improved with
the help of topological assumptions. Namely there exists on any given compact
spin manifold Mn admitting a metric with positive scalar curvature a smooth
family of Riemannian metrics (gt)t>0 with Sgt ≥ n(n− 1) and

n2

4
≤ λ1(D2

gt) ≤
n2

4
+ t,

where Dgt stands for the Dirac operator to the metric gt on M . In other words,
one can get as close as one wants to the equality in Friedrich’s inequality (3.1)
on any such manifold. Note that the set of compact spin manifolds with posi-
tive first Betti number and admitting a metric with positive scalar curvature is
non-empty since it contains e.g. S1 × Sn−1, n ≥ 3.

The generalization of Theorem 3.2.1 to locally reducible Riemannian manifolds
was achieved by B. Alexandrov, extending earlier work by E.C. Kim [158]:

Theorem 3.2.3 (B. Alexandrov [4]) Let (Mn, g) be an n(≥ 2)-dimensional
closed Riemannian spin manifold with positive scalar curvature S. Assume that
TM splits orthogonally into

TM =
k⊕
j=1

Tj ,
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where Tj is a parallel distribution of dimension nj and n1 ≤ . . . ≤ nk. Then any
eigenvalue λ of D satisfies

λ2 ≥ nk
4(nk − 1)

inf
M

(S). (3.8)

Moreover, if (3.8) is an equality for some eigenvalue λ, then the universal cover
of M is isometric to M1 × . . . × Mk, where Mj is a closed nj-dimensional
Riemannian spin manifold admitting a non-zero real non-parallel Killing spinor
for j = k, a non-zero parallel spinor if nj < nk and a non-zero real Killing
spinor if nj = nk.

Note that (3.8) contains both (3.1) and (3.5) and that nk > 1 because of the
assumption S > 0. Moreover, for any integers 1 ≤ n1 ≤ . . . ≤ np < np+1 =
. . . = nk, all Riemannian products of the form M1 × . . .×Mk, where Mj is an
nj-dimensional closed Riemannian spin manifold admitting a non-zero parallel
spinor for j ≤ p and a non-zero real Killing spinor for j ≥ p + 1 which is fur-
thermore non-parallel for j = k, satisfy the equality in (3.8) w.r.t. the product
spin structure.

Sketch of proof of Theorem 3.2.3: The proof follows the lines of that of Theorem
3.2.1. Define the Penrose-like operator T : for any ϕ ∈ Γ(ΣM) and any X ∈ TM ,

TXϕ := ∇Xϕ+
k∑
j=1

1
nj
πj(X) ·D[j]ϕ,

where πj : TM → Tj is the orthogonal projection, D[j]ϕ :=
∑nj
l=1 el,j ·∇el,jϕ and

(e1,j , . . . , enj ,j) denotes a local orthonormal frame of Tj , for every j ∈ {1, . . . , k}.
A short computation gives

|Tϕ|2 = |∇ϕ|2 −
k∑
j=1

1
nj
|D[j]ϕ|2.

On the other hand, it is an exercise to show that D2 =
∑k
j=1D

2
[j] and that

D[j] is formally self-adjoint, so that, after integration and application of the
Schrödinger-Lichnerowicz formula (1.15), one obtains

‖Dϕ‖2 =
nk

nk − 1
‖Tϕ‖2 +

k∑
j=1

nk − nj
nj(nk − 1)

‖D[j]ϕ‖2 +
nk

4(nk − 1)
(Sϕ,ϕ). (3.9)

Choosing ϕ to be an eigenvector for D associated to the eigenvalue λ leads to the
inequality. If this inequality is an equality for some λ, then (3.9) implies that,
for any non-zero eigenvector ϕ for D associated to the eigenvalue λ, one has
Tϕ = 0, D[j]ϕ = 0 as soon as nj < nk and S is constant on {x ∈M |ϕ(x) 6= 0}.
In case nj < nk one deduces that ∇πj(X)ϕ = 0 for every X. It remains to prove
that, on the universal cover of M , which is a Riemannian product of the form
M1× . . .×Mk by assumption, the lift of ϕ induces a real Killing spinor on each
Mj , which is parallel if nj < nk and non-parallel for j = k. We refer to [4, Sec.
2] for the details. �
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For 2-forms, the canonical class of manifolds to be considered consists of that
of Kähler manifolds, i.e., of triples (Mn, g, J) where (Mn, g) is a Riemannian
manifold and J a parallel almost Hermitian structure on TM . Recall that
J ∈ Γ(End(TM)) is called almost Hermitian if and only if J2 = −IdTM and
g(J(X), J(Y )) = g(X,Y ) for all X,Y ∈ TM . In this case n is even and the
Kähler-form Ω is parallel, where Ω is defined by

Ω(X,Y ) := g(J(X), Y )

for all X,Y ∈ TM . K.-D. Kirchberg was the first to enhance Friedrich’s inequa-
lity (3.1) on Kähler manifolds:

Theorem 3.2.4 (K.-D. Kirchberg [160]) Any eigenvalue λ of D on an n(≥
4)-dimensional closed Kähler spin manifold (Mn, g, J) satisfies

λ2 ≥

∣∣∣∣∣∣
n+2
4n infM (S) if n

2 is odd

n
4(n−2) infM (S) if n

2 is even
, (3.10)

where S is the scalar curvature of M . Moreover, in the case where S > 0, (3.10)
is an equality for some eigenvalue λ if and only if there exists non-zero sections
ψ, φ of ΣM satisfying∣∣∣∣ ∇Xψ = − λ

n+2 (X + iJ(X)) · φ
∇Xφ = − λ

n+2 (X − iJ(X)) · ψ (3.11)

for all X ∈ TM if n
2 is odd and a non-zero section ψ of ΣM satisfying∣∣∣∣∣∣∣∣

D2ψ = λ2ψ
∇Xψ = − 1

n (X + iJ(X)) ·Dψ
Ω · ψ = −2iψ
Ω ·Dψ = 0

(3.12)

for all X ∈ TM if n
2 is even.

Proof: We follow the proof given in [135, 137], see also [229, Sec. 3] or [154].
We may assume that S > 0 on M (otherwise the estimate is trivial). Set, for
every X ∈ TM , p±(X) := 1

2 (X ∓ iJ(X)) ∈ TM ⊗ C. In the whole proof we
shall redenote m := n

2 . Given a pointwise orthonormal basis (e1, . . . , en) of
TM such that ej+m = J(ej) for every 1 ≤ j ≤ m, define zj := p+(ej) and
zj := p−(ej) for all 1 ≤ j ≤ m. Then (z1, . . . , zm) and (z1, . . . , zm) are bases of
T 1,0M := p+(TM) and T 0,1M := p−(TM) respectively satisfying

zj · zk = −zk · zj , zj · zk = −zk · zj , zj · zk + zk · zj = −δjk

for all 1 ≤ j, k ≤ m. With those notations, it is elementary to show that the
ranked-2m-vector bundle (⊕mr=0ΛrT 1,0M) · z1 · . . . · zm becomes a non-trivial
Clifford submodule of the Clifford algebra bundle, which is independent of the
basis originally chosen. Therefore it can be identified with the spinor bundle
ΣM itself. Moreover, setting ΣrM := (ΛrT 1,0M) · z1 · . . . · zm, it is an exercise
to prove that, w.r.t. the Clifford action of the Kähler-form Ω,

ΣrM = Ker(Ω · −i(2r −m)Id)
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and that the Clifford action by Ω is skew-Hermitian and parallel. As a conse-
quence, one obtains the orthogonal and parallel decomposition

ΣM =
m⊕
r=0

ΣrM. (3.13)

By construction p±(X) · ΣrM ⊂ Σr±1M , for every X ∈ TM , where we set
ΣrM := 0 as soon as r /∈ {0, 1, . . . ,m}. In particular the Dirac operator D does
not preserve (3.13): setting D± :=

∑n
j=1 p±(ej) · ∇ej , we have D = D+ + D−

with D± : Γ(ΣrM) → Γ(Σr±1M) for every r ∈ {0, 1 . . . ,m}. Nevertheless, a
more precise study of D± shows that D+ ◦D+ = D− ◦D− = 0, so that (3.13)
is preserved by D2 = D+ ◦D− +D− ◦D+. Beware that the operators D± have
nothing to do with the D± of Proposition 1.3.2.
For any r ∈ {0, 1 . . . ,m} and ϕ ∈ Γ(ΣrM) define

T
(r)
X ϕ := ∇Xϕ+

1
2(r + 1)

p−(X) ·D+ϕ+
1

2(m− r + 1)
p+(X) ·D−ϕ

for all X ∈ TM . In other words, T (r)ϕ is the orthogonal projection of ∇ϕ onto
the kernel of the Clifford multiplication µ : T ∗M ⊗ΣrM −→ Σr−1M ⊕Σr+1M .
Elementary computations show that
n∑
j=1

p+(ej) · p−(ej)· = iΩ · −mId and
n∑
j=1

p−(ej) · p+(ej)· = −iΩ · −mId,

in particular
∑n
j=1 p+(ej) · p−(ej) · ϕ = −2rϕ and

∑n
j=1 p−(ej) · p+(ej) · ϕ =

−2(m− r)ϕ. We deduce for the norms that

|T (r)ϕ|2 =
n∑
j=1

|T (r)
ej ϕ|

2

=
n∑
j=1

|∇ejϕ|2

+
n∑
j=1

1
4(r + 1)2

|p−(ej) ·D+ϕ|2 +
1

4(m− r + 1)2
|p+(ej) ·D−ϕ|2

+2
n∑
j=1

<e
(

1
2(r + 1)

〈∇ejϕ, p−(ej) ·D+ϕ〉
)

+2
n∑
j=1

<e
(

1
2(m− r + 1)

〈∇ejϕ, p+(ej) ·D−ϕ〉
)

+2
n∑
j=1

<e
(

1
4(r + 1)(m− r + 1)

〈p−(ej) ·D+ϕ, p+(ej) ·D−ϕ〉
)

= |∇ϕ|2

− 1
4(r + 1)2

n∑
j=1

〈p+(ej) · p−(ej) ·D+ϕ,D+ϕ〉

− 1
4(m− r + 1)2

n∑
j=1

〈p−(ej) · p+(ej) ·D−ϕ,D−ϕ〉
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− 1
r + 1

|D+ϕ|2 −
1

m− r + 1
|D−ϕ|2

= |∇ϕ|2

+
1

2(r + 1)
|D+ϕ|2 +

1
2(m− r + 1)

|D−ϕ|2

− 1
r + 1

|D+ϕ|2 −
1

m− r + 1
|D−ϕ|2,

that is,

|T (r)ϕ|2 = |∇ϕ|2 − 1
2(r + 1)

|D+ϕ|2 −
1

2(m− r + 1)
|D−ϕ|2. (3.14)

Let r ∈ {0, 1 . . . ,m} be the smallest integer for which Ker(D2−λ2Id)∩Γ(ΣrM) 6=
0. Let ψ ∈ Γ(ΣrM) be a non-zero eigenvector for D2 associated to the eigen-
value λ2. Since [D2, D±] = 0, both D+ψr and D−ψr lie in Ker(D2 − λ2Id),
in particular D−ψr = 0 by the choice of r. Independently, there exists on
ΣM a parallel field j of complex antilinear automorphisms commuting with
the Clifford multiplication by vectors (see e.g. [104, Lemma 1]), in particu-
lar [Ω·, j] = [D, j] = 0, so that j(Ker(D2 − λ2Id)) ⊂ Ker(D2 − λ2Id) and
j(ΣlM) = Σm−lM for every l ∈ {0, . . . ,m}. Thus the existence of j imposes
r ≤ m− r, hence r ≤ m−1

2 for m odd. If m is even, then r = m
2 cannot happen

since otherwise D+ψ = D−ψ = Dψ = 0 would hold, which would contradict
(3.1) together with S > 0, therefore r ≤ m−2

2 for m even.
We are now ready to prove the estimate. Integrating (3.14) and using Schrödinger-
Lichnerowicz’ formula (1.15), we obtain

‖T (r)ψ‖2 = (D2ψ,ψ)− (
S

4
ψ,ψ)− 1

2(r + 1)
‖Dψ‖2

≤ (
2r + 1

2(r + 1)
λ2 − 1

4
inf
M

(S))‖ψ‖2,

from which one deduces that λ2 ≥ 2(r+1)
4(2r+1) infM (S). The r.h.s. of that inequality

decreases with r, so that it is bounded from below by the corresponding expres-
sion for r = m−1

2 in case m is odd and for r = m−2
2 in case m is even. Inequality

(3.10) follows.
Assume now (3.10) to be an equality for some eigenvalue λ. If infM (S) = 0 then
(Mn, g) has a non-zero parallel spinor, as already proved in Theorem 3.1.1. If
infM (S) > 0, then for any eigenvector ψ for D associated to the eigenvalue λ, one
has on the one hand ψ = ψm−1

2
+ψm+1

2
if m is odd and ψ = ψm−2

2
+ψm

2
+ψm+2

2

if m is even, on the other hand T (r)ψr = 0 for r = m±1
2 and r = m±2

2 for m odd
and even respectively. Redenoting ψm−1

2
by ψ and ψm+1

2
by φ, we obtain (3.11)

in case m is odd. If m is even then redenoting ψm−2
2

by ψ one obtains (3.12).
Conversely, mimiking the proof of Proposition A.4.1, it is elementary to show
that, if (3.11) is satisfied by some non-zero (ψ, φ), then ψ + φ is an eigenvector
for D associated to the eigenvalue λ and S = 4nλ2

n+2 , therefore (3.10) is an equal-
ity. Similarly, if n

2 is even and (3.12) is satisfied by some non-zero ψ, then the

scalar curvature of (Mn, g) is equal to 4(n−2)λ2

n , therefore (3.10) is an equality. �
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A pair of spinors (ψ, φ) satisfying (3.11) for some non-zero real number λ is
called a real Kählerian Killing spinor. As for Killing spinors (see Proposition
A.4.1), it is not too difficult to show that, if a non-zero real Kählerian Killing
spinor exists on a given complete Kähler spin manifold and associated to some
(non-zero) real λ, then this manifold has odd complex dimension and is Einstein
with positive scalar curvature (in particular it is closed). However, the precise
classification of those Kähler spin manifolds carrying non-trivial real Kählerian
Killing spinors is more technical, even if it turns out to provide simpler results.
The idea to achieve it, due to A. Moroianu [203], can be summarised as follows:
Show the existence of a suitable S1-bundle over such a manifold where the pull-
back of the real Kählerian Killing spinor induces a non-zero real Killing spinor;
then show that, among the possible holonomies listed in C. Bär’s classification
(Theorem A.4.3), only those associated to a so-called regular 3-Sasaki structure
can occur on that S1-bundle. We refer to [203] for details and mention that, be-
fore [203] was published, partial results had been obtained by K.-D. Kirchberg
[160, 161, 162] and O. Hijazi [135], see references in [203].
The even-complex-dimensional case turns out to be more involved since the un-
derlying manifold is no more Einstein. In dimension n = 4, arguments from
complex geometry and based on Kirchberg’s work [163, Thm. 15] allowed T.
Friedrich [90, Thm. 2] to prove that, if (M4, g, J) carries a non-zero spinor ψ
satisfying (3.12), then up to rescaling the metric (M4, g, J) must be holomor-
phically isometric either to S2×S2 or to S2×T2, both with product metric and
spin structure, where T2 carries a flat metric and the trivial spin structure. In
higher dimensions, if a non-zero spinor ψ exists satisfying (3.12), then A. Mo-
roianu showed [206] that the Ricci tensor of (Mn, g) is parallel and has exactly
two eigenvalues. This implies that the universal cover of M is holomorphically
isometric to the Riemannian product N × R2, where N is a closed Kähler spin
manifold admitting a non-zero real Kählerian Killing spinor, see [206] for details.
This result had been formulated by A. Lichnerowicz [184] where there remained
however gaps in the proof.
We formulate the precise statements on the characterization of the limiting-case
of (3.10).

Theorem 3.2.5 Let (Mn, g, J) be a closed n(≥ 4)-dimensional Kähler spin
manifold with positive scalar curvature.

1. If n
2 is odd, then (3.10) is an equality for some eigenvalue λ of D if and

only if (Mn, g, J) is holomorphically isometric to CP
n
2 in case n

2 ≡ 1 (4)
or to the twistor-space of a quaternionic Kähler manifold with positive
scalar curvature in case n

2 ≡ 3 (4) (K.-D. Kirchberg [161] for n = 6, A.
Moroianu [203] for n ≥ 6).

2. If n
2 is even, then (3.10) is an equality for some eigenvalue λ of D if and

only if (Mn, g, J) is isometric to Γ\N × R2, where N is a simply-connected
closed Kähler manifold admitting a non-zero real Kählerian Killing spinor
(ψ, φ) and Γ is generated by (γj , τj), j = 1, 2, where the τj’s are trans-
lations of R2 and the γj’s are commuting holomorphic isometries of N
preserving its spin structure and (ψ, φ) (T. Friedrich [90] for n = 4, A.
Moroianu [206] for n ≥ 8).

Beware that, in case n
2 is even, the Kähler manifold must not be holomorphically
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isometric to the quotient Γ\N × R2 endowed with the Kähler structure induced
from that of N . A simple criterion for holomorphicity is given in [206, Lemma
7.6].

The last class of manifolds with a non-trivial parallel form having been handled
is that of quaternionic-Kähler manifolds, which carry a canonical parallel 4-form.
The following theorem was proved by O. Hijazi and J.-L. Milhorat [139, 140, 141]
for n = 8, 12 and by W. Kramer, U. Semmelmann and G. Weingart in the ge-
neral case [167, 168]:

Theorem 3.2.6 Any eigenvalue λ of D on an n(≥ 8)-dimensional closed qua-
ternionic-Kähler spin manifold (Mn, g) with positive scalar curvature satisfies

λ2 ≥ n+ 12
4(n+ 8)

S, (3.15)

where S is the scalar curvature of M . Moreover, this inequality is an equality
for some eigenvalue λ if and only if (Mn, g) is isometric to the quaternionic
projective space HP

n
4 .

Here it should be noticed that every quaternionic Kähler manifold of even
quaternionic dimension is spin whereas only the quaternionic projective space
is spin if n

4 is odd; moreover, every quaternionic Kähler manifold is Einstein,
hence has constant scalar curvature, see references in [168].

Sketch of proof of Theorem 3.2.6: We follow the proof detailed in [168], which
relies on the representation theory of Sp1×Spk. Denote n

4 by m. A quaternionic
structure on (Mn, g) is given by a triple (I, J,K) of parallel orthogonal endo-
morphisms of TM with I2 = J2 = K2 = −IdTM and IJ = −JI = K. Each
of those endormorphisms is a Kähler structure on TM with associated Kähler
form, so that one may define the so-called fundamental form

Ω := ΩI ∧ ΩI + ΩJ ∧ ΩJ + ΩK ∧ ΩK

on TM . The 4-form Ω is parallel and can be shown to act on ΣM so as to split
it into

ΣM =
m⊕
r=0

ΣrM,

with ΣrM := Ker(Ω · −(6m− 4r(r+ 2))Id) ⊂ ΣM [140]. As in the Kähler case,
the Clifford multiplication sends T ∗M ⊗ ΣrM into Σr−1M ⊕ Σr+1M . Decom-
posing Ker(µ)|T∗M⊗ΣrM

into irreducible components under Sp1 × Spm−1, one
obtains four twistor operators associated to the orthogonal projections of ∇2ϕ
onto the irreducible components [168, p.745]. Taking ϕ ∈ Γ(ΣrM) to be an
eigenvector for D2 and applying Schrödinger-Lichnerowicz’ formula (1.15) lead
to the desired inequality, see [168, Sec. 4] for the rather technical proof where
the authors determine all Weitzenböck formulas involving Dirac and twistor op-
erators.
The equality case in the inequality is sharp for HPm [195]. Conversely, if it
is sharp, then the spinor bundle of M carries a particular (non-zero) section
called quaternionic Killing spinor [167, p.340]. This spinor induces a non-zero
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real Killing spinor on the total space of the SO3-principal bundle associated to
the quaternionic Kähler structure and for a suitable metric [167, p.344]. Then
Bär’s classification (Theorem A.4.3) of manifolds with real Killing spinors forces
M to be isometric to HPm, we refer to [167, Sec. 7] for the details. �

3.3 Improving Friedrich’s inequality in a confor-
mal way

N. Hitchin [152] noticed in the Riemannian setting (as well as H. Baum [52] in
the pseudo-Riemannian one) that the fundamental Dirac operator is conformally
covariant, see Proposition 1.3.10. This was the starting point for the following
result.

Theorem 3.3.1 (O. Hijazi [132]) Let (Mn, g) be an n(≥ 2)-dimensional clo-
sed Riemannian spin manifold and u ∈ C∞(M,R), then any eigenvalue λ of D
on (Mn, g) satisfies

λ2 ≥ n

4(n− 1)
inf
M

(Se2u), (3.16)

where S is the scalar curvature of (Mn, g := e2ug). Moreover, (3.16) is an
equality for some eigenvalue λ if and only if u is constant and (Mn, g) carries
a non-zero real Killing spinor.

Proof: We use the notations of Proposition 1.3.10. For any ϕ ∈ Γ(ΣM) one has
from (3.3) applied to ψ := e−

n−1
2 uϕ,∫

M

(
|Dψ|2 − n

4(n− 1)
S |ψ|2

)
vg =

n

n− 1

∫
M

|P ψ|2vg ≥ 0.

Proposition 1.3.10 states that Dψ = e−
n+1

2 uDϕ, so that choosing ϕ to be a non-
zero eigenvector for D associated to the eigenvalue λ one obtains Dψ = λe−uψ
and the inequality (3.16). Furthermore, if (3.16) is an equality for some eigen-
value λ of D on (Mn, g), then for any non-zero eigenvector ϕ for D associated
to λ, the identity P ψ = 0 holds, where ψ := e−

n−1
2 uϕ. This implies in turn

∇Xψ = −λe
−u

n
X ·ψ

for every X ∈ TM . Elementary computations as in the proof of Proposition
A.4.1 but carried out on (Mn, g) (see e.g. [138, Prop. 5.12]) show that necessar-
ily du = 0, thus u is constant and therefore ϕ is a real Killing spinor on (Mn, g).
The converse statement follows from the characterization of the equality case in
(3.1). This concludes the proof. �

Corollary 3.3.2 Any eigenvalue λ of D on an n-dimensional closed Rieman-
nian spin manifold (Mn, g) satisfies:

i) (C. Bär [38]) For n = 2,

λ2 ≥ 2πχ(M2)
Area(M2, g)

, (3.17)
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where χ(M2) is the Euler characteristic of M2. Moreover, (3.17) is an
equality for some eigenvalue λ of D if and only if (M2, g) is isometric
either to S2 with constant curvature metric or to T2 with flat metric and
trivial spin structure.

ii) (O. Hijazi [132]) For n ≥ 3,

λ2 ≥ n

4(n− 1)
µ1, (3.18)

where µ1 denotes the first eigenvalue of the scalar conformal Laplace op-
erator 4n−1

n−2∆ + S. Moreover, (3.18) is an equality for some eigenvalue λ
of D if and only if (Mn, g) carries a non-zero real Killing spinor.

Proof: We deduce both (3.18) and (3.17) from (3.16) and from the following
transformation formula for scalar curvature after conformal change of the metric:

Se2u = S + 2(n− 1)∆u− (n− 1)(n− 2)|grad(u)|2, (3.19)

for g := e2ug and u ∈ C∞(M,R). This is applied to a conformal metric g for
which Se2u is constant on M .
i) Let u0 ∈ C∞(M,R) solve ∆u0 =

R
M
Svg

2Area(M2,g) −
S
2 (such a solution exists

because the r.h.s. has vanishing integral). Since in dimension n = 2 the formula
(3.19) reads Se2u0 = S + 2∆u0 one obtains Se2u0 =

R
M
Svg

Area(M2,g) . Applying now
the Gauss-Bonnet Theorem, (3.16) becomes

λ2 ≥ 1
2

∫
M
Svg

Area(M2, g)
=

2πχ(M2)
Area(M2, g)

,

which is (3.17). If now (3.17) is an equality for some eigenvalue λ of D, then by
construction of u0 the scalar curvature S must be constant and non-negative.
Since we explicitly know the Dirac spectra of S2 (see Theorem 2.1.3) and of T2

(see Theorem 2.1.1), we can compare the smallest non-negative Dirac eigenvalue
with the lower bound in (3.17) and state that equality always occurs for S > 0
and occurs on T2 only when fixing the trivial spin structure.
ii) We can assume that µ1 > 0. From Courant’s nodal domain theorem (see e.g.
[77, p.19]) every non-zero eigenfunction h0 for L := 4n−1

n−2∆ + S associated to
its smallest eigenvalue µ1 cannot vanish, hence may be assumed to be positive.
In particular µ1 = h−1

0 Lh0. But in dimension n ≥ 3 the formula (3.19) can be
rewritten under the following form: for any positive smooth function h on Mn,

Sh
4

n−2 = h−1Lh,

where S is the scalar curvature of (Mn, g := h
4

n−2 g). Thus, choosing g0 := h
4

n−2
0 g

on Mn, one obtains Sh
4

n−2
0 = µ1, which together with Theorem 3.3.1 implies

(3.18). The characterization of the equality case in (3.18) follows from Theorem
3.3.1 as well. �

Another proof of (3.18) involving Kato type inequalities can be found in [74].

Inequality (3.18) improves Friedrich’s inequality (3.1) for n ≥ 3 since obvious-
ly µ1 ≥inf

M
(S). It also proves the existence in dimension n ≥ 3 of an explicit

conformal lower bound for the spectrum of D2:
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Corollary 3.3.3 (O. Hijazi [134]) For any Riemannian metric g on a closed
n(≥ 3)-dimensional spin manifold Mn,

λ1(D2
M,g)Vol(M, g)

2
n ≥ n

4(n− 1)
Y (M, [g]), (3.20)

where λ1(D2
M,g) denotes the smallest non-negative eigenvalue of D2 associated

to the metric g and Y (M, [g]) is the Yamabe invariant of M w.r.t. the conformal
class of g.

Proof: Recall that the Yamabe invariant of Mn w.r.t. [g] is the conformal in-
variant defined by

Y (M, [g]) := inf
f∈C∞(M,R)\{0}

{∫
M

(4n−1
n−2∆gf + Sgf)fvg

(
∫
M
f

2n
n−2 vg)

n−2
n

}
.

Hölder’s inequality gives
∫
M
f2vg ≤ (

∫
M
f

2n
n−2 vg)

n−2
n · Vol(Mn, g)

2
n . Assuming

Y (M, [g]) > 0 (otherwise (3.20) is trivially satisfied), one obtains

µ1Vol(Mn, g)
2
n ≥ Y (M, [g]),

which with (3.18) implies the result. �

Note however that (3.18) is not itself conformal. We also mention that inequa-
lity (3.18) can be combined with lower bounds of µ1 to provide an estimate of
λ1(D2

M,g) in terms of the total Q-curvature in dimension n = 4 and of the first
eigenvalue of the so-called Branson-Paneitz operator in dimension n ≥ 5, see
[149, Sec. 4]. The a priori existence of a qualitative conformal lower bound for
the Dirac spectrum was proved independently by J. Lott [187] using the bound-
edness of particular Sobolev embeddings. More precisely, if the Dirac operator
of a given closed Riemannian spin manifold (Mn, g) is invertible, then there
exists a positive constant c depending only on the conformal class of g such that
[187, Prop. 1]

λ1(D2
M,g)Vol(M, g)

2
n ≥ c (3.21)

for any metric g conformal to g on Mn.

C. Bär’s estimate (3.17) gives a topologically invariant lower bound on the
Dirac spectrum. Surprisingly enough this contrasts with the situation of the
scalar Laplacian on S2 for which this invariant provides an upper bound for the
first non-zero eigenvalue in one of the corresponding estimates established by J.
Hersch (see reference in [45]) and which reads

λ1(∆S2,g)Area(S2, g) ≤ 8π, (3.22)

where λ1(∆S2,g) denotes the smallest positive eigenvalue of the scalar Laplace
operator ∆ on (S2, g). For lower bounds in higher genus, where (3.17) is trivial,
see Section 3.6.

As noticed in the proof of Corollary 3.3.2, one has from the Gauss-Bonnet Theo-
rem in dimension 2 the following identity: 2πχ(M2)

Area(M2,g) = 2
4(2−1)

R
M2 Svg

Area(M2,g) . Can
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one improve Friedrich’s inequality (3.1) in dimension n ≥ 3 by replacing infM (S)
by 1

Vol(M,g)

∫
M
Svg? B. Ammann and C. Bär showed [18] that this is not the case

at all: on any compact spin manifold of dimension n ≥ 3 and for any positive
integer k there exists a sequence of Riemannian metrics for which the kth Dirac
eigenvalue remains bounded whereas the averaged total scalar curvature tends
to infinity. We refer to [45] for a detailed and illustrated proof.

3.4 Improving Friedrich’s inequality with the e-
nergy-momentum tensor

The main idea to prove inequality (3.1) was to split the spinorial Levi-Civita
connection in a clever way so as to make the term which is dropped off after
integration and application of the Schrödinger-Lichnerowicz formula as small as
possible. This led to the introduction of the Penrose operator. In an equivalent
way, this means deforming the Levi-Civita connection in the direction of IdTM ,
i.e., defining TXϕ := ∇Xϕ+ fX ·ϕ for some real or complex-valued function f
to be fixed later, see T. Friedrich’s method of proof in Section 3.1. O. Hijazi’s
idea for the following result is to introduce a different Penrose-like operator,
deforming the Levi-Civita connection in the direction of some symmetric 2-
tensor tensor Tψ associated to an eigenvector ψ:

Theorem 3.4.1 (O. Hijazi [136]) Let λ be an eigenvalue of the fundamental
Dirac operator on a closed n(≥ 2)-dimensional closed Riemannian spin manifold
(Mn, g) and ψ be a non-zero eigenvector for D to the eigenvalue λ. Then

λ2 ≥ inf
Mψ

(
S

4
+ |Tψ|2

)
, (3.23)

where Tψ(X,Y ) := 1
2<e

(
〈X · ∇Y ψ + Y · ∇Xψ, ψ

|ψ|2 〉
)

for all X,Y ∈ TM and
Mψ := {x ∈M |ψ(x) 6= 0}. If furthermore (3.23) is an equality then ψ solves

∇Xψ = −Tψ(X) · ψ (3.24)

for all X ∈ TM .

Proof: Define the following modified connection ∇̂ on ΣM (and outside the zero
set of ψ, of which measure vanishes) by

∇̂Xψ := ∇Xψ + Tψ(X) · ψ

for every X ∈ TM . We compute in a local orthonormal frame {ej}1≤j≤n:

|∇̂ψ|2 =
n∑
j=1

|∇̂ejψ|2

=
n∑
j=1

|∇ejψ|2 + |Tψ(ej)|2|ψ|2 + 2<e
(
〈∇ejψ, Tψ(ej) · ψ〉

)
= |∇ψ|2 + |Tψ|2|ψ|2 − 2

n∑
j,k=1

Tψ(ej , ek)<e
(
〈ek · ∇ejψ,ψ〉

)
= |∇ψ|2 − |Tψ|2|ψ|2
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since from its definition the tensor Tψ is symmetric. Integrating and applying
the Schrödinger-Lichnerowicz formula (1.15) leads straightforward to the in-
equality, of which limiting-case implies ∇̂ψ = 0. This concludes the proof. �

The tensor Tψ is sometimes called the energy-momentum tensor associated to
ψ, see e.g. [50, Sec. 6] for a justification of its name.

The lower bound in (3.23) for the eigenvalue λ has the obvious disadvantage
to depend on the eigenvector ψ to λ, hence Theorem 3.4.1 does not directly
provide a geometric lower bound for the Dirac spectrum. Note however that
(3.23) improves Friedrich’s inequality (3.1) whatever the tensor Tψ could be:
one can indeed write Tψ = (Tψ)0 + trg(Tψ)

n g, where (Tψ)0 denotes the trace-free
part of Tψ. Since Dψ = λψ one has in any local o.n.b. {ej}1≤j≤n of TM :

trg(Tψ) =
n∑
j=1

<e
(
〈ej · ∇ejψ,

ψ

|ψ|2
〉
)

= <e
(
〈Dψ, ψ

|ψ|2
〉
)

= λ,

so that |Tψ|2 = |(Tψ)0|2 + λ2

n and

λ2 ≥ inf
Mψ

( n

4(n− 1)
S +

n

n− 1
|(Tψ)0|2︸ ︷︷ ︸
≥0

)
,

which implies (3.1).

One can also remark that the proof of Theorem 3.4.1 only needs ψ to be eigen
for D2, which is weaker than ψ be eigen for D. However the comparison with
Friedrich’s inequality as just above is in this case not available.

Closed spin manifolds carrying a non-zero eigenvector ψ of D satisfying (3.24)
have not been completely classified yet. From the above comparison with Frie-
drich’s inequality (3.1) they contain all manifolds carrying non-zero real Killing
spinors. Recent works [122, 107], where examples of manifolds are given where
(3.23) is sharp but not (3.1) (e.g. Heisenberg manifolds, see [107, Ex. 6.4]), show
that they form a strictly larger family.

Besides we mention that Theorem 3.4.1 was generalized by T. Friedrich and
E.-C. Kim [96, Lemma 5.1] and by G. Habib [122, Thm. 2.2.1] (see also [125]).
More recently, an analogous ansatz was successfully carried out by T. Friedrich
and E.C. Kim [97, Thm. 1.1] where the lower bound for the Dirac spectrum
depends on the spectrum of a Dirac-type operator associated to a so-called
nondegenerate Codazzi tensor, we refer to [97] for details.
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3.5 Improving Friedrich’s inequality with other
curvature components

In case the scalar curvature of a compact spin manifold is not everywhere po-
sitive one can try to look for lower eigenvalue bounds involving the Ricci and
Weyl components of the curvature tensor. The proof of the following theorems
relies on the application of the Schrödinger-Lichnerowicz formula (1.15) after a
suitable choice of Penrose-like operator involving those tensors, see e.g. [165] for
the highly technical details.

Theorem 3.5.1 (T. Friedrich and K.-D. Kirchberg [99]) Any eigenvalue
λ of D on an n(≥ 2)-dimensional closed Riemannian spin manifold (Mn, g) with
divergence-free curvature tensor, vanishing scalar curvature and nowhere-vani-
shing Ricci-curvature satisfies:

λ2 >
1
4

infM |Ric|2√
n−1
n infM |Ric| − κ0

,

where κ0 denotes the smallest eigenvalue of the Ricci tensor Ric on M .

Examples of closed Riemannian manifolds satisfying the assumptions of Theo-
rem 3.5.1 and where the lower bound can be explicitly computed can be found
among the following families, see [99, Ex. 1-4] and [164, Ex. 4.1 & 4.2]: (lo-
cal) Riemannian products of Einstein manifolds, warped products of S1 with
an Einstein manifold with positive scalar curvature, warped products on Rie-
mannian surfaces, conformally flat manifolds. Note however that Einstein mani-
folds themselves or manifolds whose Ricci tensor vanishes somewhere cannot be
handled by Theorem 3.5.1. This was the motivation of T. Friedrich and K.-D.
Kirchberg for obtaining a lower bound involving the Weyl tensor only. The best
result in this direction was obtained by K.-D. Kirchberg, generalizing an earlier
one by T. Friedrich and himself [98, Thm. 3.1]:

Theorem 3.5.2 (K.-D. Kirchberg [165]) Any eigenvalue λ of D on an n(≥
2)-dimensional closed Riemannian spin manifold (Mn, g) with divergence-free
Weyl-tensor and µ > 0 satisfies:

λ2 ≥ 1
8(n− 1)

(
(2n− 1) inf

M
(S) +

√
inf
M

(S)2 +
n

n− 1
(
4ν0

µ
)2

)
, (3.25)

where ν0 ≥ 0 and µ are conformal invariants depending on the Weyl tensor
only.

Recall that every Einstein Riemannian manifold has divergence-free Weyl ten-
sor. In case infM (S) > 0 inequality (3.25) obviously enhances Friedrich’s in-
equality (3.1). In case infM (S) ≤ 0 it is easy to see that the lower bound in
(3.25) is positive if and only if ν0 >

(n−1)µ
2 | infM (S)|. However, it is up to now

not known if (3.25) can be an equality [165, Rem. 4.2.ii)].
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Theorems 3.5.1 and 3.5.2 actually follow from a whole series of estimates [99,
165] involving curvature tensors and that can be applied to produce fine vani-
shing theorems for the kernel of the Dirac operator.

3.6 Improving Friedrich’s inequality on surfaces
of positive genus

C. Bär’s inequality (3.17) does not give any information on the spectrum of
D on compact Riemannian surfaces with nonpositive Euler characteristic, i.e.,
with positive genus. Estimates on such surfaces have to depend on the choice of
spin structure, as the example of the 2-torus already shows: for its trivial spin
structure (i.e., for the spin structure coming from the trivial lift of the lattice-
action to the spin level, see Proposition 1.4.2) it admits harmonic spinors - for
flat hence any metrics because of (1.16) - but not for any other spin structure
[89].

The first estimate to have been proved is a qualitative one and dates back to
J. Lott’s work [187] providing lower bounds for general conformally covariant
elliptic self-adjoint linear differential operators. In the case of surfaces it states
that, if the Dirac operator of a given closed oriented surface (M2, g) is invertible,
then there exists a positive constant c such that, for any metric g conformal to
g on M2 (see (3.21)):

λ1(D2
M,g)Area(M, g) ≥ c.

The constant c expresses the boundedness of particular Sobolev embeddings
hence cannot be made explicit in general.

The first successful attempt in looking for a geometric estimate is due to B.
Ammann [14]. His lower bound, which was proved for the 2-torus, involves the
so-called spinning systole spin-sys(M) of a closed oriented surface M with pos-
itive genus which is defined to be the minimum of the lengths of all noncon-
tractible loops (in our convention, loops are simply closed curves) along which
the induced spin structure is non trivial. Recall that the systole of M is defined
to be the minimum of the lengths of all noncontractible loops in M .

Theorem 3.6.1 (B. Ammann [14]) Let g be an arbitrary Riemannian me-
tric on the 2-torus M := T2 carrying a non-trivial spin structure. Assume that
‖Kg‖L1(T2,g) < 4π, where Kg ist the Gauss curvature of (T2, g). Then there
exists for each p > 1 a constant Cp > 0 depending on ‖Kg‖L1(T2,g), ‖Kg‖Lp(T2,g),
the area and the systole of (T2, g) such that any eigenvalue λ of D satisfies

λ2 ≥
sup
p>1

Cp

spin-sys(T2)2
.

Moreover this inequality is an equality if and only if g is flat, the lattice is
generated by an orthogonal pair and the spin structure is the (1, 0)- or (0, 1)-
one.
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Sketch of proof of Theorem 3.6.1: The proof of the inequality combines the
following steps. First one chooses a flat metric g0 := e2ug in the conformal
class of g. Using the min-max principle (see e.g. Lemma 5.0.2) it can be easily
proved that λ2 ≥ e2 max(u)λ2

0, where λ0 > 0 is the smallest Dirac eigenvalue
(in absolute value) on (T2, g0) and for the same spin structure. Now the Dirac
spectrum of (T2, g0) for any spin structure is explicitly known (see Theorem
2.1.1), in particular the following equality holds

λ2
0Area(T2, g0) = 4π2‖χ‖2L2(T2,g0),

where χ ∈ H1(T2,Z2) is the cohomology class representing the spin structure
(it is non-zero if the spin structure is non-trivial). Obviously Area(T2, g) ≥
e−2 min(u)Area(T2, g0) so that one obtains a lower bound of λ in terms of the
area of (T2, g), of the L2-norm of χ and of the so-called oscillation osc(u) :=
max(u)−min(u) of u on T2. On the other hand the L2-norm of χ can be proved
to be only dependent of the conformal class of g and can be estimated against
an expression involving the spinning systole, the area and osc(u) [14, Sec. 4].
What remains - the whole work - is to estimate osc(u) against the desired geo-
metric data. For an illustrated proof of this Sobolev-type inequality we refer to
[14, Sec. 6]. The limiting-case occurs if and only if osc(u) = 0 (i.e., g is flat)
and the estimate of osc(u) is sharp, which yields strong conditions on the lattice
defining the flat metric g, see [14]. �

Another and completely different approach was developed by B. Ammann and
C. Bär in [19]. It aimed at obtaining a lower bound in terms of a geometric
invariant called the spin-cut diameter δ(M). This is a positive number which
is associated to the surface M and its spin structure. The idea is simple: apply
(3.17) to the surface obtained from the genus g surface M by cutting g suitable
loops out of M . Here “suitable” means the following: on the one hand one has
to choose the loops such that the resulting surface M̃ is diffeomorphic to an
open subset of S2 - actually to a 2-sphere with 2g disks removed; this is the
case as soon as the Z2-homology classes associated to those loops form a basis
of H1(M,Z2). On the other hand the cut-out-process must also respect the spin
structures in the sense that the restrictions of the original one and of the one
from S2 have to coincide on M̃ . This however is only possible if the so-called
Arf-invariant (which associates to each spin structure on M the number 1 or
−1, see [19, Def. p.430]) of the spin structure of M is 1 [19, Cor. 3.3]. The spin-
cut diameter can then be defined from the distances between the cut-out loops,
see [19, Def. p.433]. For M = T2 the Arf-invariant of the trivial spin structure
is −1 and it is 1 for the other ones. In the latter case, extending by means of
suitable cut-offs an eigenvector on M to the S2 obtained by adding two disks to
the gluing of a finite number of copies of M̃ (which is then a cylinder) one can
prove the following result [19, Sec. 5]:

Theorem 3.6.2 (B. Ammann and C. Bär [19]) Let M := T2 be the 2-torus
with arbitrary Riemannian metric and non-trivial spin structure. Then any
eigenvalue λ of D satisfies

|λ| ≥ sup
k∈N
k 6=0

(
− 2
kδ(T2)

+

√
π

kArea(T2)
+

2
k2δ(T2)2

)
, (3.26)
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where δ(T2) is the spin-cut diameter of T2 associated to this spin structure.

The supremum in the lower bound is attained for k =
[

4(
√

2+1)Area(T2)
πδ(T2)2

]
or

k =
[

4(
√

2+1)Area(T2)
πδ(T2)2

]
+ 1. It is positive and for the boundary T2

ε of an ε-tubular

neighbourhood of a circle of radius 1
ε it is asymptotic to

√
π

Area(T2
ε)

when ε tends

to 0. Therefore Theorem 3.6.2 can be viewed as a generalization of Corollary
3.3.2.ii) for T2 with non-trivial spin structure.

In genus g ≥ 1 one can apply the same argument to the S2 obtained by adding
disks to a clever gluing of 2g + 1 copies of M̃ and prove [19, Sec. 6]:

Theorem 3.6.3 (B. Ammann and C. Bär [19]) Let M be a closed Rieman-
nian surface of positive genus g with spin structure whose Arf-invariant equals
1. Then any eigenvalue λ of D satisfies

|λ| ≥ 2
2g + 1

·
√

π

Area(M)
− 1
δ(M)

. (3.27)

Although the lower bound need this time not be positive there exist examples
for which it is: as above, consider an ε-tubular neighbourhood Mε of a closed
plane curve with exactly g − 1 intersections and such that, w.r.t. any allowed
spin structure, δ(Mε) ∼

ε→0

cst
ε (fix for instance the diameter equal to 1

ε ). Then

the lower bound is asymptotic to 2
2g+1 ·

√
π

Area(Mε)
for ε→ 0. In the case where

g = 1 the k-dependent expression in the r.h.s. of (3.26) is for k = 2 greater than
the r.h.s. of (3.27), so that (3.26) is better than (3.27).
Combining Theorems 3.6.2 and 3.6.3 with the extrinsic upper bound (5.19) for
the smallest Dirac eigenvalue for surfaces embedded in R3 one obtains a lower
bound of the Willmore functional, see [19, Thm. 7.1]. Besides, we mention that
Theorems 3.6.2 and 3.6.3 can be extended to complete surfaces with finite area
[19, Thm. 8.1].

3.7 Improving Friedrich’s inequality on bound-
ing manifolds

In case M bounds a compact spin manifold M̃ the input of extrinsic geome-
trical data - such as the mean curvature of M in M̃ - can improve Friedrich’s
inequality (3.1). The main step consists in solving a suitable boundary value
problem, see also Chapter 4. The following theorem was proved by O. Hijazi,
S. Montiel and X. Zhang in [146] for c = 0 and by O. Hijazi, S. Montiel and A.
Roldán in [144] for c < 0. Recall that D2 is the operator acting on the sections
of Σ := ΣM or Σ := ΣM ⊕ΣM and which is defined by D2 := D for n even or
D2 := D ⊕−D for n odd respectively, see Proposition 1.4.1.

Theorem 3.7.1 Let Mn = ∂M̃ , where M̃ is a compact Riemannian spin ma-
nifold. Assume that, for a constant c ≤ 0, the scalar curvature S̃ of M̃ and the
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mean curvature H of M in M̃ w.r.t. the inner normal satisfy S̃ ≥ (n + 1)nc
and H ≥

√
−c respectively. Then for any eigenvalue λ of D,

|λ| ≥ n

2
inf
M

(
√
H2 + c). (3.28)

Moreover (3.28) is an equality if and only if H is constant, the manifold (M̃, g)
admits a non-trivial

√
c

2 - or −
√
c

2 -Killing spinor and the eigenspace of D2 to the
eigenvalue n

2 infM (
√
H2 + c) coincides with (K0)|M for c = 0 and with⊕

j=0,1

(Id + (−1)ji(H −
√
H2 + c)ν·)K

(−1)j
√
c

2
(M̃, g)|M if H >

√
−c⊕

j=0,1

K
(−1)j

√
c

2
(M̃, g)|M if H =

√
−c

for c < 0, where K±
√
c

2
(M̃, g) denotes the space of ±

√
c

2 -Killing spinors on

(M̃, g).

Proof in the case c = 0: Denote by ∇̃ the spinorial Levi-Civita connection of M̃ .
The Schrödinger-Lichnerowicz formula for the Dirac operator D̃ of (M̃, g) and
elementary computations as in Section 1.3 show that, for any ϕ ∈ Γ(ΣM̃),

|D̃ϕ|2 = <e
(
〈D̃2ϕ,ϕ〉

)
+ divfM (V )

(1.15)
= <e

(
〈∇̃∗∇̃ϕ,ϕ〉

)
+
S̃

4
|ϕ|2 + divfM (V )

= |∇̃ϕ|2 +
S̃

4
|ϕ|2 + divfM (V +W ), (3.29)

where V and W are the vector fields on M̃ defined by the relations g(V,X) :=
<e
(
〈X ·D̃ϕ, ϕ〉

)
and g(W,X) := <e

(
〈∇̃Xϕ,ϕ〉

)
for all X ∈ TM̃ respectively

(remember that we denote by “ · ” the Clifford multiplication of M̃ and not that
of M). Splitting |∇̃ϕ|2 as in (A.11) one comes to

S̃

4
|ϕ|2 − n

n+ 1
|D̃ϕ|2 = −|P̃ϕ|2 − divfM (V +W ),

where P̃ is the Penrose operator of (M̃n+1, g), see Appendix A. Let ν be the
inner unit normal vector field of M in M̃ . Integrating the last identity and
applying Green’s formula one obtains∫

fM
(
S̃

4
|ϕ|2 − n

n+ 1
|D̃ϕ|2

)
v

fM
g = −

∫
fM |P̃ϕ|

2v
fM
g

−
∫

fM divfM (V +W )vfM
g

= −
∫

fM |P̃ϕ|
2v

fM
g −

∫
M

g(V +W, ν)vg

= −
∫

fM |P̃ϕ|
2v

fM
g
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−
∫
M

<e
(
〈ν ·D̃ϕ, ϕ〉+ 〈∇̃νϕ,ϕ〉

)
vg

(1.22)
= −

∫
fM |P̃ϕ|

2v
fM
g

+
∫
M

<e
(
〈D2ϕ,ϕ〉 −

nH

2
|ϕ|2

)
vg.

Since D2 is formally self-adjoint (Proposition 1.3.4) one comes to∫
fM
(
S̃

4
|ϕ|2 − n

n+ 1
|D̃ϕ|2

)
v

fM
g = −

∫
fM |P̃ϕ|

2v
fM
g

+
∫
M

(
〈D2ϕ,ϕ〉 −

nH

2
|ϕ|2

)
vg. (3.30)

Let λ be an eigenvalue of D. The spectrum of D2 being the symmetrized of that
of D w.r.t. the origin (for n even it follows from (1.10) that the spectrum of D is
already symmetric w.r.t. the origin) there always exists a non-zero eigenvector
ψ for D2 associated to the eigenvalue |λ|. The crucial point is now the existence
of a smooth solution φ to the boundary value problem with APS-boundary
condition ∣∣∣∣ D̃φ = 0 on M̃

π≥0φ = ψ on M,
(3.31)

where π≥0 : Γ(Σ) → Γ(Σ) denotes the L2-orthogonal projection onto the
eigenspaces of D2 to nonnegative eigenvalues, see Section 1.5 and Chapter 4.
Since S̃ ≥ 0 and H ≥ 0 the identity (3.30) with ϕ := φ implies

0 ≤
∫

fM
S̃

4
|φ|2vfM

g =
∫

fM
(
S̃

4
|φ|2 − n

n+ 1
|D̃φ|2

)
v

fM
g

≤
∫
M

(
〈D2φ, φ〉 −

nH

2
|φ|2

)
vg

≤
∫
M

(
〈D2π≥0φ, π≥0φ〉 −

nH

2
|π≥0φ|2

)
vg

=
∫
M

(|λ| − nH

2
)|ψ|2vg

from which the inequality follows.
In case the lower bound is attained the mean curvature H of M must be con-
stant, φ = π≥0φ on M and P̃ φ = 0 on M̃ , where φ is any section of ΣM̃ solving
(3.31) for any given eigenvector ψ of D2 associated to the eigenvalue |λ|. In
particular ψ = φ|M with ∇̃φ = 0 on M̃ , i.e., every eigenvector ψ of D2 associ-
ated to the eigenvalue |λ| must be the restriction on M of parallel spinor on M̃
(note that the existence of a non-zero parallel spinor on M̃ implies S̃ = 0, see
Proposition A.4.1). Moreover (1.22) already implies that the restriction of any
parallel spinor onto a hypersurface with constant mean curvature is an eigen-
vector of D to the eigenvalue nH

2 . Therefore the eigenspace of D2 associated
to the eigenvalue nH

2 exactly coincides with (K0)|M . The other implication is
trivial.
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For the proof in the case c < 0, which is based on the same argument for a
Schrödinger operator associated to D, we refer to [144]. �

In case M̃ ⊂ M̃n+1(c), where M̃n+1(c) is a spaceform with constant curvature
c ≤ 0, Gauss’ equations imply in particular (n2 )2(H2 + c) ≥ n

4(n−1)S, hence
(3.28) improves (3.1) under the supplementary assumption H ≥

√
−c.

There exists a conformal version of (3.28) in terms of the so-called Yamabe re-
lative invariant, see [148].

The characterization of the equality case in (3.28) provides a short proof of
Alexandrov’s theorem (see reference in [146]) on constant mean curvature em-
bedded hypersurfaces in the Euclidean and hyperbolic spaces respectively [146,
Thm. 8]:

Theorem 3.7.2 (A.D. Alexandrov) Every closed embedded hypersurface with
constant mean curvature in Rn+1 or Hn+1 is a round geodesic hypersphere.

Proof in the case c = 0: Let M be such a hypersurface. It is embedded so that on
the one hand it bounds a compact domain M̃ (in particular it is orientable hence
spin, see Proposition 1.4.1); on the other hand, it can be shown that necessarily
H ≥ 0 by a result of S. Montiel and A. Ros (see reference in [146]). Moreover
the assumption H constant implies that (3.28) is an equality, in which case
every non-zero eigenvector of D2 associated to the eigenvalue nH

2 must be the
restriction onto M of a parallel spinor on M̃ (Theorem 3.7.1). But considering
the spinor field

x 7−→ ϕx := νx · φ+Hx · φ,

on M̃ , where ν is the inner unit normal and φ a parallel spinor on M̃ ⊂ Rn+1,
one notices that

D2ϕ = D2(ν · φ) +HD2(x · φ)
(1.19)

= −ν ·D2φ+HD2(x · φ)
(1.22)

= −ν ·D2φ+H(
nH

2
x · φ− ∇̃ν(x · φ)− ν · D̃(x · φ))

= −nH
2
ν · φ+H(

nH

2
x · φ− ν · φ+ (n+ 1)ν · φ)

=
nH

2
(ν · φ+Hx · φ)

=
nH

2
ϕ,

i.e., ϕ is an eigenvector for D2 associated to the eigenvalue nH
2 . Therefore ϕ

must be either identically zero or non-zero and parallel. The first possibility
already implies that M must be a geodesic sphere. The second one means that,
for every X ∈ TM ,

0 = ∇̃Xϕ = −A(X) · φ+HX · φ.

Since φ has no zero on M̃ one deduces that A = HIdTM , i.e., that M must be
totally umbilical in M̃ hence in Rn+1. This concludes the proof for c = 0. For
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c < 0 we refer to [144]. �

Another clever application of Theorem 3.7.1 is:

Theorem 3.7.3 (O. Hijazi and S. Montiel [142]) Let (M̃n+1, g) be a com-
plete Riemannian spin manifold with nonnegative Ricci curvature, mean convex
boundary ∂M̃ and nonnegative Einstein-tensor along the normal direction of
∂M̃ . Then (M̃n+1, g) is isometric to a Euclidean ball.

As a corollary, any Ricci-flat complete spin manifold with boundary isometric
to the round sphere Sn is already isometric to a Euclidean ball. Recently rigidity
results have been obtained by S. Raulot [219] under weaker assumptions on the
boundary. We also mention that it remains open whether analogous estimates
on the boundary of positively-curved domains can be obtained.
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Chapter 4

Lower eigenvalue estimates
on compact manifolds with
boundary

The study of the Dirac operator on compact spin manifolds M with boundary
was initiated by Atiyah, Patodi and Singer [30] in the search for index theorems
on such manifolds, see e.g. [62] which is a comprehensive reference on the subject.
In order to be able to talk about eigenvalues of the Dirac operator of M in this
context, elliptic boundary conditions have to be introduced as we have seen in
Section 1.5. Following [85] a whole bunch of spectral properties of the Dirac
operator have recently been proved using varied boundary conditions, leading
sometimes to very beautiful geometric results, such as those already presented in
Section 3.7. In this chapter we mainly show that, under any of the four boundary
conditions introduced in Section 1.5, some kind of Friedrich’s inequality (3.1)
holds on M although the lower bound is not always attained according to the
boundary condition chosen. For readers interested in more details and references
we suggest [143].

4.1 Case of the gAPS boundary condition

Remember that the generalized Atiyah-Patodi-Singer (gAPS) boundary condi-
tion is defined by BgAPS := π≥β , i.e., it is the L2-orthogonal projection onto
the (Hilbert) direct sum of the eigenspaces of the boundary Dirac operator D
to the eigenvalues not smaller than a fixed β ≤ 0. The following theorem is a
particular case of [78, Thm. 3.1] which is itself a generalization of [147, Thm. 4]
(see also [201, Thm. 16.5]).

Theorem 4.1.1 Let (Mn, g) be an n(≥ 2)-dimensional compact Riemannian
spin manifold with non-empty boundary ∂M . Assume that ∂M has non-negative
mean curvature w.r.t. the inner normal. Then any eigenvalue λ of the funda-
mental Dirac operator D of (Mn, g) under the gAPS boundary condition satisfies

λ2 >
n

4(n− 1)
inf
M

(S),

71
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where S is the scalar curvature of (Mn, g).

Proof: There exists a non-zero smooth solution ϕ ∈ Γ(ΣM) to the boundary
value problem ∣∣∣∣ Dϕ = λϕ on M

π≥β(ϕ|∂M ) = 0 on ∂M.

Since π≥β(ϕ|∂M ) = 0 and ϕ|∂M 6= 0 (otherwise a unique continuation prop-
erty for the Dirac operator D [62, Sec. 1.8] would give ϕ = 0 on M) one has∫
∂M
〈D2ϕ,ϕ〉v∂Mg < β

∫
∂M
|ϕ|2v∂Mg ≤ 0, so that (3.30) with H ≥ 0 (beware the

different notations, in particular for the boundary Dirac operator D2) implies∫
M

(
S

4
|ϕ|2 − n− 1

n
|Dϕ|2

)
vg < 0,

which straightforward implies the inequality. In particular it cannot be sharp. �

4.2 Case of the CHI boundary condition

The chirality (CHI) boundary condition is defined by BCHI := 1
2 (Id − ν · G),

where ν is the inner unit normal and G is an endomorphism-field of ΣM (whose
restriction on ∂M is also denoted by G) which is involutive, unitary, parallel
and anti-commuting with the Clifford multiplication on M .

Theorem 4.2.1 (O. Hijazi, S. Montiel and A. Roldán [143])
Let (Mn, g) be an n(≥ 2)-dimensional compact Riemannian spin manifold with
non-empty boundary ∂M . Assume that ∂M has non-negative mean curvature
w.r.t. the inner normal. Then any eigenvalue λ of the fundamental Dirac ope-
rator D of (Mn, g) under the CHI boundary condition satisfies

λ2 ≥ n

4(n− 1)
inf
M

(S), (4.1)

where S is the scalar curvature of (Mn, g). Moreover, (4.1) is an equality if and
only if (Mn, g) is isometric to the half sphere with radius n

2|λ| .

Proof: There exists a non-zero smooth solution ϕ ∈ Γ(ΣM) to the boundary
value problem ∣∣∣∣ Dϕ = λϕ on M

(Id− ν · G)(ϕ|∂M ) = 0 on ∂M.

From (1.22) and the definition of G it can be easily proved that D2G = GD2, so
that, if ψ := ϕ|∂M then∫

∂M

〈D2ψ,ψ〉v∂Mg =
∫
∂M

〈D2(ν · Gψ), ψ〉v∂Mg

(1.23)
= −

∫
∂M

〈ν ·D2(Gψ), ψ〉v∂Mg

= −
∫
∂M

〈ν · G(D2ψ), ψ〉v∂Mg

= −
∫
∂M

〈D2ψ, ν · Gψ〉v∂Mg

= −
∫
∂M

〈D2ψ,ψ〉v∂Mg ,
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that is,
∫
∂M
〈D2ψ,ψ〉v∂Mg = 0. Formula (3.30) together with the assumption

H ≥ 0 imply ∫
M

(
S

4
|ϕ|2 − n− 1

n
|Dϕ|2

)
vg ≤ 0,

which leads to (4.1).
If inequality (4.1) is an equality, then (3.30) implies on the one hand that ϕ
must be a Killing spinor to the real Killing constant −λn (it is an eigenvector of
D lying in the kernel of the Penrose operator P of (Mn, g), see Appendix A)
and on the other hand H = 0, i.e., the boundary ∂M must be minimal in M .
Moreover, f := 〈Gϕ,ϕ〉 defines a smooth real function on M whose differential
is given on any X ∈M by

X(f) = 〈∇X(Gϕ), ϕ〉+ 〈Gϕ,∇Xϕ〉

= 〈G(−λ
n
X · ϕ), ϕ〉 − λ

n
〈Gϕ,X · ϕ〉

= −λ
n

(〈Gϕ,X · ϕ〉+ 〈X · ϕ,Gϕ〉)

= −2λ
n
<e (〈Gϕ,X · ϕ〉) .

Hence the Hessian of f evaluated on any X,Y ∈ TM is given by

Hess(f)(X,Y ) = −2λ
n
<e (〈∇X(Gϕ), Y · ϕ〉+ 〈Gϕ, Y · ∇Xϕ〉)

=
2λ2

n2
<e (〈G(X · ϕ), Y · ϕ〉+ 〈Gϕ, Y ·X · ϕ〉)

=
2λ2

n2
<e (〈Gϕ,X · Y · ϕ〉+ 〈Gϕ, Y ·X · ϕ〉)

= −4λ2

n2
〈Gϕ,ϕ〉g(X,Y ),

i.e., Hess(f) = − 4λ2

n2 fg. On the other hand neither λ nor the function f vanish,
since (1.26) implies∫

M

〈Dϕ,Gϕ〉 − 〈ϕ,D(Gϕ)〉vg =
∫
∂M

〈ψ, ν · Gψ〉v∂Mg ,

i.e., 2λf =
∫
∂M
|ψ|2v∂Mg , which does not vanish because of the unique conti-

nuation property mentioned above. Hence Reilly’s characterization of the hemi-
sphere (see reference in [143]) implies that (Mn, g) is isometric to a hemisphere
with radius n

2|λ| . Since the standard sphere for its canonical spin structure and
metric with constant sectional curvature 1 carries non-zero − 1

2 and 1
2 -Killing

spinors (see e.g. Examples A.1.3.2) the other implication is trivial. �

In the context of manifolds with non-empty boundary the conformal covarian-
ce of the fundamental Dirac operator also improves the Friedrich-type lower
bound (4.1). For the CHI boundary condition S. Raulot proved in [217, 218]
a Hijazi-type inequality (3.18), which in dimension 2 is equivalent to a Bär-
type inequality (3.17) and where the lower bound is the smallest eigenvalue of
the Yamabe operator under a suitable boundary condition. Moreover, the lower
bound is attained exactly for the round hemispheres in Rn+1.
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4.3 Case of the MIT bag boundary condition

Remember that the “MIT bag” (denoted by MIT) boundary condition is by
definition the endomorphism-field of Σ given by BMIT := 1

2 (Id − iν·), where ν
is the inner unit normal of the boundary.

Theorem 4.3.1 (O. Hijazi, S. Montiel and A. Roldán [143])
Let (Mn, g) be an n(≥ 2)-dimensional compact Riemannian spin manifold with
non-empty boundary ∂M . Assume that ∂M has non-negative mean curvature
w.r.t. the inner normal. Then any eigenvalue λ of the fundamental Dirac ope-
rator D of (Mn, g) under the MIT bag boundary condition satisfies

|λ|2 > n

4(n− 1)
inf
M

(S), (4.2)

where S is the scalar curvature of (Mn, g).

Proof: There exists a non-zero smooth solution ϕ ∈ Γ(ΣM) to the boundary
value problem ∣∣∣∣ Dϕ = λϕ on M

(Id− iν·)(ϕ|∂M ) = 0 on ∂M.

Defining ψ := ϕ|∂M , one has∫
∂M

〈D2ψ,ψ〉v∂Mg =
∫
∂M

〈D2(iν · ψ), ψ〉v∂Mg

(1.23)
= −

∫
∂M

〈iν ·D2(ψ), ψ〉v∂Mg

= −
∫
∂M

〈D2(ψ), iν · ψ〉v∂Mg

= −
∫
∂M

〈D2ψ,ψ〉v∂Mg ,

that is,
∫
∂M
〈D2ψ,ψ〉v∂Mg = 0. Formula (3.30) together with the assumption

H ≥ 0 imply ∫
M

(
S

4
|ϕ|2 − n− 1

n
|Dϕ|2

)
vg ≤ 0,

which leads to (4.2).
If (4.2) is an equality, then again ϕ must be a −λn -Killing spinor on (Mn, g).
Since in that case =m(λ) > 0 (see Section 1.5), one deduces from Proposition
A.4.1 that λ ∈ iR∗+ and hence S = 4n−1

n λ2 < 0, contradiction. Therefore (4.2)
is always a strict inequality. �

Assuming the stronger condition H > 0 on ∂M , Theorem 4.3.1 can be improved.
More precisely, using a suitable modified connection (or Penrose-like operator)
S. Raulot showed the following:

Theorem 4.3.2 (S. Raulot [216, 218]) Let (Mn, g) be an n(≥ 2)-dimensio-
nal compact Riemannian spin manifold with non-empty boundary ∂M . Assume
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that ∂M has positive mean curvature w.r.t. the inner normal. Then any eigen-
value λ of the fundamental Dirac operator D of (Mn, g) under the MIT bag
boundary condition satisfies

|λ|2 ≥ n

4(n− 1)
inf
M

(S) + n=m(λ) inf
∂M

(H). (4.3)

Moreover, (4.3) is an equality if and only if the mean curvature of the boundary
is constant and (Mn, g) admits a non-zero imaginary Killing spinor.

Besides, as for the CHI boundary condition, there exists a Hijazi-type conformal
lower bound for the Dirac spectrum under MIT bag boundary condition, which
was proved by S. Raulot in [217, 218] but which is never sharp.

4.4 Case of the mgAPS boundary condition

The modified generalized Atiyah Patodi Singer (mgAPS) boundary condition is
defined by BmgAPS := BgAPS(Id + ν·), where BgAPS = π≥β is the generalized
Atiyah Patodi Singer boundary condition and ν is the inner unit normal to the
boundary. It depends in particular on a parameter β ≤ 0. The following theorem
is a particular case of [78, Thm. 3.3] which itself generalizes [143, Thm. 5].

Theorem 4.4.1 Let (Mn, g) be an n(≥ 2)-dimensional compact Riemannian
spin manifold with non-empty boundary ∂M . Assume that ∂M has non-negative
mean curvature w.r.t. the inner normal. Then any eigenvalue λ of the funda-
mental Dirac operator D of (Mn, g) under the mgAPS boundary condition to β
satisfies

λ2 ≥ n

4(n− 1)
inf
M

(S), (4.4)

where S is the scalar curvature of (Mn, g). Furthermore (4.4) is an equality if
and only if (Mn, g) carries a non-zero α-Killing spinor for real α < β

n−1 and
∂M is minimal in M .

Proof: There exists a non-zero smooth solution ϕ ∈ Γ(ΣM) to the boundary
value problem ∣∣∣∣ Dϕ = λϕ on M

π≥β(Id + ν·)(ϕ|∂M ) = 0 on ∂M.
(4.5)

Again if we prove that
∫
∂M
〈D2ψ,ψ〉v∂Mg = 0, where ψ := ϕ|∂M , then (3.30)

together with the assumption H ≥ 0 will provide the inequality. Denoting by
(· , ·)∂M :=

∫
∂M
〈· , ·〉v∂Mg one has

2(D2ψ,ψ)∂M =
(
{Id + ν·}D2ψ, {Id + ν·}ψ

)
∂M

=
(
π<β({Id + ν·}D2ψ), π<β({Id + ν·}ψ)

)
∂M

(1.23)
=

(
D2(π<β({Id− ν·}ψ)), π<β({Id + ν·}ψ)

)
∂M

,
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where we used the notations of Section 1.5. But π≥β(ψ + ν · ψ) = 0 implies

π<β(ψ − ν · ψ)
(1.23)

= π<βψ − ν · π>−βψ
= π≤−βψ − π[β,−β]ψ − ν · π>−βψ
= ν · π≥βψ − π[β,−β]ψ − ν · π>−βψ
= ν · π[β,−β]ψ − π[β,−β]ψ,

in particular π<β(ψ − ν · ψ) = 0, which implies (D2ψ,ψ)∂M = 0 and (4.4).
If (4.4) is an equality, then H = 0 and ϕ must be a α-Killing spinor on (Mn, g)
with α := −λn ∈ R. Moreover (1.22) with H = 0 and for the restriction ψ on
∂M of an α-Killing spinor ϕ on M implies

D2(ψ + ν · ψ) = (n− 1)α(ψ + ν · ψ). (4.6)

Since ψ + ν · ψ 6= 0 (the eigenvalues of the pointwise Clifford action by ν are
±i), the mgAPS boundary condition then requires (n− 1)α < β. Conversely, if
(Mn, g) has minimal boundary and carries a non-zero α-Killing spinor ϕ with
real α < β

n−1 , then on the one hand Proposition A.4.1 implies that (Mn, g) is
Einstein with scalar curvature 4n(n−1)α2 > 0, on the other hand Dϕ = −nαϕ
on M . Furthermore the identity (4.6) holds on ∂M so that ϕ solves (4.5), hence
−nα is an eigenvalue of D w.r.t. the mgAPS boundary condition. This shows
the characterization of the limiting-case of (4.4) and concludes the proof. �



Chapter 5

Upper eigenvalue bounds
on closed manifolds

In this chapter we turn to the very different game of looking for upper eigenvalue
bounds for the fundamental Dirac operator. We concentrate on two methods for
obtaining them. The first method, due to C. Vafa and E. Witten [236], consists
in comparing D to another Dirac-type operator D of which kernel is non trivial
for index-theoretical reasons, then in estimating the zero-order difference D−D
by geometric quantities. As a result, those bound from above a topologically
determined number of eigenvalues of D. This method was applied to prove
Theorems 5.1.1, 5.2.1 and 5.2.2. The second method relies on the min-max
principle, which is a general variational principle characterizing eigenvalues of
self-adjoint elliptic operators, see e.g. [77, pp.16-17]:

Lemma 5.0.2 (min-max principle) Let (Mn, g) be a closed Riemannian spin
manifold. Order the eigenvalues of D2 (which are exactly the squares of the
eigenvalues of D) into a nondecreasing sequence λ1(D2) ≤ . . . ≤ λk(D2) ≤
λk+1(D2) ≤ . . .. Then, for every k ≥ 1,

λk(D2) = min
Ek

{
max
ϕ∈Ek
ϕ6=0

∫
M
〈D2ϕ,ϕ〉vg∫
M
|ϕ|2vg

}
,

where the minimum runs over all k-dimensional vector subspaces Ek of Γ(ΣM).
In particular one has, for every non-zero ϕ ∈ Γ(ΣM),

λ1(D2) ≤
∫
M
〈D2ϕ,ϕ〉vg∫
M
|ϕ|2vg

, (5.1)

with equality if and only if D2ϕ = λ1(D2)ϕ.

Applying this method means choosing ϕ such that the r.h.s. of (5.1) can be

computed in terms of geometric quantities. The quotient
R
M
〈D2ϕ,ϕ〉vgR
M
|ϕ|2vg is called

the Rayleigh quotient of D2 evaluated at ϕ.

77
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5.1 Intrinsic upper bounds

The following theorem, which can be formulated under weaker assumptions
(see [54, Prop. 1]), is an application of Vafa-Witten’s method. The upper bound
which is derived only depends on the sectional curvature of M .

Theorem 5.1.1 (H. Baum [54]) Let (Mn, g) be even-dimensional, closed with
positive sectional curvature KM . Then the first eigenvalue λ1 of D satisfies

|λ1| ≤ 2
n
2−1

√
n

2
·
√

max
M

(KM ).

The inequality in Theorem 5.1.1 is sharp for M = S2, however it is not clear if
it can be sharp for any other manifold. If n is odd one can apply Theorem 5.1.1
to the product of the manifold with a circle. In that case H. Baum proved in
[54, Cor. 2] an analogous estimate, however under the supplementary assump-
tions that KM is pinched and M is simply-connected. Moreover Theorem 5.1.1
improves a qualitative result by J. Lott [187, Prop. 4] valid on S2.

Sketch of proof of Theorem 5.1.1: Construct a suitable map ι of degree 1 from M
into a round sphere of suitable radius and such that the derivative of this map
does not deviate too far from the identity. This goes as follows: fix a point p ∈M
and take for ι the composition of the exponential map of the (n-dimensional)
round sphere of radius 1√

KM (p)
with the inverse of the exponential map of M at

p. Of course the exponential map of M at p is only invertible on its injectivity
domain; furthermore one has to control the behaviour of the exponential far
from p by introducing a smoothing function in the definition of ι. Actually that
smoothing function may be chosen such that ι can be extended by a constant to
a smooth function on the whole of M . Then the norm of the derivative of ι can
be estimated against

√
KM , which together with Theorem 5.2.1 below leads to

the result. �

Another way to obtain upper bounds consists in comparing the Dirac spectra for
different metrics and applying the min-max principle. The remarkable property
of conformal covariance of the Dirac operator allows this method to work. The
first result is this direction is due to J. Lott [187, Prop. 3].

Theorem 5.1.2 (J. Lott [187]) Let (Mn, g) be an n(≥ 2)-dimensional closed
spin manifold. Then for any conformal class of Riemannian metrics [g] on Mn,
there exists a finite positive constant b([g]) such that

λ1(D2
g ) ≤ b([g]) sup

M
(−Sg) (5.2)

for any g ∈ [g] with scalar curvature Sg < 0.

Proof: Fix g0 ∈ [g] with Sg0 < 0 on Mn. For some u ∈ C∞(Mn,R), let g =
e2ug0 ∈ [g] with Sg < 0. As in Proposition 1.3.10, we denote by ϕ 7→ ϕ the
unitary isomorphism Σg0M −→ ΣgM . Choose ψ0 to be a non-zero eigenvector
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for Dg0 associated to the eigenvalue λ1(Dg0) and set ψ := e−
n−1

2 uψ0. The min-
max principle together with (1.16) imply

λ1(D2
g ) ≤

∫
M
|Dgψ|2vg∫
M
|ψ|2vg

=

∫
M
e−(n+1)u|Dg0ψ0|2enuvg0∫
M
e−(n−1)u|ψ0|2enuvg0

≤ λ1(D2
g0

) · supM (|ψ0|2)
infM (|ψ0|2)

·
∫
M
e−uvg0∫

M
euvg0

. (5.3)

We now estimate the quotient of integrals on the r.h.s. with the help of (3.19).
Namely (3.19) reads

Sge
u = Sg0e

−u + 2(n− 1)e−u∆g0u− (n− 1)(n− 2)e−u|gradg0
(u)|2g0

,

so that integrating one obtains∫
M

Sg0e
−uvg0 =

∫
M

Sge
uvg0

+(n− 1)
∫
M

−2e−u∆g0u+ (n− 2)e−u|gradg0
(u)|2g0

vg0

=
∫
M

Sge
uvg0 + n(n− 1)

∫
M

e−u|gradg0
(u)|2g0

vg0 ,

where we have used ∆g0(e−u) = −e−u∆g0u− e−u|gradg0
(u)|2g0

. We deduce that∫
M
e−uvg0∫

M
euvg0

≤ supM (−Sg)
infM (−Sg0)

·
∫
M
−Sg0e

−uvg0∫
M
−Sgeuvg0

=
supM (−Sg)
infM (−Sg0)

(
1 + n(n− 1)

∫
M
e−u|gradg0

(u)|2g0
vg0∫

M
Sgeuvg0

)
≤ supM (−Sg)

infM (−Sg0)
,

which together with (5.3) gives the result. �

On surfaces, Lott’s estimate (5.2) only applies if the genus is at least 2. For
genus 0 or 1 the use of (3.19) can be avoided through the fact that eigenvectors
associated to the lowest Dirac eigenvalue have constant length:

Theorem 5.1.3 (I. Agricola and T. Friedrich [2]) Let M2 := S2 or T2 with
arbitrary Riemannian metric g. Let u ∈ C∞(M2,R) be such that g0 := e−2ug
has constant curvature.

i) The smallest eigenvalue of D2
g satisfies

λ1(D2
g )Area(M2, g) ≤ λ1(D2

g0
)Area(M2, g0) +

1
4

∫
M2
|gradg0

(u)|2g0
vg0 . (5.4)

ii) The smallest eigenvalue of D2
g satisfies

λ1(D2
g ) ≤ λ1(D2

g0
)

∫
M2 e

−uvg0∫
M2 euvg0

. (5.5)
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iii) The smallest positive eigenvalue of D2
T2,g on T2 endowed with trivial spin

structure satisfies

λ2(D2
T2,g) ≤

∫
T2 e
−3u{λ2(D2

T2,g0
) + |gradg0

(u)|2g0
}vg0∫

T2 e−uvg0

. (5.6)

Proof: Let ψ0 be a non-zero eigenvector for DM,g0 associated to the eigenvalue
λ1(DM,g0) in i), ii) and to the eigenvalue λ2(DM,g0) in iii) respectively. If M =
S2 then the spinor ψ0 is a real Killing spinor, hence has constant length on S2.
If M = T2, the formula (2.1) implies that all eigenvectors of D have constant
length on T2. Therefore we may assume that |ψ0| = 1 on M2. As in Proposition
1.3.10, we denote by ϕ 7→ ϕ the unitary isomorphism Σg0M −→ ΣgM .
i) Set ψ := ψ0. Identity (1.16) gives

DM,gψ = e−u(DM,g0ψ0 +
1
2

gradg0
(u) · ψ0)

= e−u(λ1(DM,g0)ψ +
1
2

gradg0
(u) · ψ0),

where we have denoted by “·” the Clifford multiplication on Σg0M . We deduce
that

|DM,gψ|2 = e−2u
(
λ1(D2

M,g0
)|ψ0|2 +

1
4
|gradg0

(u) · ψ0|2

+ λ1(DM,g0)<e(〈ψ0, gradg0
(u) · ψ0〉

)
= e−2u

(
λ1(D2

M,g0
) +

1
4
|gradg0

(u)|2g0

)
.

The min-max principle together with vg = e2uvg0 provides

λ1(D2
M,g) ≤

∫
M2 |DM,gψ|2vg∫

M2 |ψ|2vg

=

∫
M2{λ1(D2

M,g0
) + 1

4 |gradg0
(u)|2g0

}vg0

Area(M2, g)
,

which leads to (5.4).
ii) Set ψ := e−

u
2 ψ0. Then identity (1.16) implies that

DM,gψ = e−
3u
2 DM,g0ψ0

= λ1(DM,g0)e−
3u
2 ψ0,

so that |DM,gψ|2 = λ1(D2
M,g0

)e−3u and, by the min-max principle,

λ1(D2
M,g) ≤

∫
M2 |DM,gψ|2vg∫

M2 |ψ|2vg
= λ1(D2

M,g0
)

∫
M2 e

−uvg0∫
M2 euvg0

,

which is (5.5).
iii) Set ψ := e−

3u
2 ψ0. On the one hand,

DT2,gψ
(1.16)

= e−u(DT2,g0(e−
3u
2 ψ0) +

e−
3u
2

2
gradg0

(u) · ψ0)
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(1.11)
= e−u

(
− 3

2
e−

3u
2 gradg0

(u) · ψ0 + e−
3u
2 DT2,g0ψ0

+
e−

3u
2

2
gradg0

(u) · ψ0

)
= e−u · e− 3u

2 (λ2(DT2,g0)ψ0 − gradg0
(u) · ψ0).

On the other hand, ψ is L2-orthogonal to the kernel of DT2,g, which is spanned by
e−

u
2 σ±, where σ± are non-zero parallel spinors on (T2, g0) with σ± ∈ Γ(Σ±T2):

indeed ψ0 is L2-orthogonal to σ±, so that∫
T2
〈ψ, e−u2 σ±〉vg =

∫
T2
e−2u〈ψ0, σ

±〉vg

=
∫

T2
〈ψ0, σ

±〉vg0

= 0.

We deduce that

λ2(D2
T2,g) ≤

∫
T2 |DT2,gψ|2vg∫

T2 |ψ|2vg

=

∫
T2 e
−2u · e−3u{λ2(D2

T2,g0
) + |gradg0

(u)|2g0
}vg∫

T2 e−uvg0

=

∫
T2 e
−3u{λ2(D2

T2,g0
) + |gradg0

(u)|2g0
}vg0∫

T2 e−uvg0

,

which shows (5.6) and concludes the proof. �

As a consequence of (5.4), if M2 = S2, then [2, Thm. 2]

λ1(D2
S2,g)Area(S2, g)− 4π ≤

inf
Φ∈Conf(S2,[g0])

{1
4

∫
S2
|gradg0

(uΦ)|2g0
vg0 , Φ∗g0 = e−2uΦg

}
, (5.7)

where Conf(S2, [g0]) denotes the group of conformal transformations of (S2, g0).
Note that the l.h.s. of (5.7) is non-negative because of (3.17). Beware that the
r.h.s. of (5.7) is not a conformal invariant, since the product λ1(D2

S2,g)Area(S2, g)
is not bounded in the conformal class of g [27, Thm. 1.1]. As an application of
(5.7), the smallest eigenvalue of D2 of a one-parameter-family of ellipsoids can
be asymptotically estimated: given a > 0, let Ma := {x ∈ R3 |x2

1 +x2
2 + x2

3
a2 = 1}

carry the induced metric from R3, then [2, Thm. 5]

lim
a→0

λ1(D2
Ma

) ∈ [2,
3
2

+ ln(2)] and lim
a→∞

λ1(D2
Ma

) ≤ 1
4
. (5.8)

Both estimates provide much sharper upper bounds as C. Bär’s one (5.19) in
terms of the averaged total squared mean curvature.
In the case of the 2-torus and with the notations of Theorem 2.1.1, the smallest
eigenvalue of D2

T2,g w.r.t. the (δ1, δ2)-spin structure and flat metric is not greater
than 4π2| 12 (δ1γ∗1 + δ2γ

∗
2 )|2, so that by (5.5) it satisfies [2, Thm. 4]

λ1(D2
T2,g)Area(T2, g) ≤ π2|δ1γ∗1 + δ2γ

∗
2 |2
∫

T2 e
−uvg0∫

T2 euvg0

. (5.9)
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Of course (5.9) is empty if δ1 = δ2 = 0, in which case only (5.6) gives information
on the first positive eigenvalue. Besides, inequality (5.9) provides asymptotical
estimates of the smallest eigenvalue of D2 on round tori: given 0 < r < R, let
T2
r,R denote the tube of radius r about a circle of radius R. If T2

r,R carries the
induced metric and the (1, 0)-spin structure, then [2, p.5]

lim
r→0

λ1(D2
T2
r,R

)Area(T2
r,R) = lim

R→∞
λ1(D2

T2
r,R

)Area(T2
r,R) = 0

and in case it carries the (0, 1)-spin structure,

lim
r
R→1

λ1(D2
T2
r,R

)Area(T2
r,R) ≤ π2.

For both the (1, 0)- and (0, 1)-spin structures (however not for the (1, 1)-one)
these estimates enhance those obtained from (5.19) below.

In higher dimensions another general upper bound in terms of the sectional cur-
vature can be obtained from the min-max principle. In the following theorem
we denote by Br(p) the geodesic ball of radius r > 0 around some point p ∈M
and, provided r is smaller than the injectivity radius radinj(Mn, g) of the Rie-
mannian manifold (Mn, g), by 0 < µ1(Br(p)) ≤ µ2(Br(p)) ≤ . . . the spectrum
of the scalar Laplace operator with Dirichlet boundary condition on Br(p). For
any x ≥ 0 and t > 0 we also define

fx(t) :=


1−cos(

√
xt)√

x sin(
√
xt)

if x > 0

t
2 if x = 0.

Theorem 5.1.4 (C. Bär [39]) Let (Mn, g) be an n(≥ 2)-dimensional closed
Riemannian spin manifold and assume that there exist nonnegative real con-
stants ρ1, ρ2, κ such that the sectional curvature of (Mn, g) lies everywhere in
[κ − ρ1, κ + ρ2]. Let N := 2[n2 ]. Then the jN th eigenvalue in absolute value of
the Dirac operator D of (Mn, g) satisfies

|λjN (D)| ≤ n
√
κ

2
+ inf
p∈M

inf
r

{√
µj(Br(p))

+ (n− 1)(1 +
2
3

√
[
n− 2

2
])(ρ1 + ρ2)fκ+ρ2(r)

}
, (5.10)

where the second infimum ranges over r ∈ ]0,min{radinj(Mn, g), π√
κ+ρ2

}[. More-
over, (5.10) is an equality for (Mn, g) = (Sn, can), j = 1 and ρ1 = ρ2 = 0.

Sketch of proof of Theorem 5.1.4: First consider a geodesic ball Br(p) of radius
0 < r < radinj(Mn, g). Since Br(p) is convex its spinor bundle can be trivialized
by a pointwise orthonormal family ϕ1, . . . , ϕN . Let {fj}j≥1 be a Hilbert basis of
L2(Br(p),C) made out of eigenfunctions for the scalar Laplace operator ∆ with
Dirichlet boundary condition on Br(p), in particular ∆fj = µj(Br(p))fj with
fj |∂Br(p)

= 0 holds. Then {fjϕk}1≤j,1≤k≤N is a Hilbert basis of L2(ΣBr(p)).
Since D2

Br(p) is of Laplace type (see Schrödinger-Lichnerowicz’ formula (3.2))
one may talk about its eigenvalues with respect to the Dirichlet boundary con-
dition and the min-max principle also applies. Fix 1 ≤ k ≤ N and j ≥ 1, then
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using the formal self-adjointness of the Dirac operator we have

(D2
Br(p)(fjϕk), fjϕk)

‖fjϕk‖2
=

‖DBr(p)(fjϕk)‖2

‖fj‖2
(1.11)

= ‖dfj · ϕk + fjDBr(p)ϕk‖2

= ‖dfj‖2 + 2<e
(
dfj · ϕk, fjDBr(p)ϕk

)
+‖fjDBr(p)ϕk‖2

≤ µj(Br(p)) + 2‖dfj‖ · ‖fjDBr(p)ϕk‖
+ sup
Br(p)

(|DBr(p)ϕk|2)

≤ µj(Br(p)) + 2
√
µj(Br(p)) · sup

Br(p)

(|DBr(p)ϕk|)

+ sup
Br(p)

(|DBr(p)ϕk|2)

=
(√

µj(Br(p)) + sup
Br(p)

(|DBr(p)ϕk|)
)2

,

therefore the min-max principle implies

λjN (D2
Br(p)) ≤

(√
µj(Br(p)) + sup

Br(p)

(|DBr(p)ϕk|)
)2

.

The second step in the proof, which is the main and the most technical one,
consists in estimating the supremum on the r.h.s. by geometric data. This can be
done essentially by controlling the growth of the pointwise norm along geodesics
and applying Rauch’s comparison theorem, we refer to [39, Lemma 1] and [39,
Sec. 4]. The third and last step consists in comparing the eigenvalues of D2

with those of D2
Br(p) subject to Dirichlet boundary condition: the monotonicity

principle (see e.g. [77, Cor. 1 p.18]) implies that

λj(D2) ≤ λj(DBr(p))2.

This proves the inequality (5.10).
If (Mn, g) = (Sn, can), then on the one hand |λ1(DSn)| = . . . = |λN (DSn)| = n

2
(see Theorem 2.1.3) and on the other hand the choice ρ1 = ρ2 = 0 provides
inf
p∈M

inf
r

{√
µ1(Br(p))

}
in the r.h.s. of (5.10). Since µ1(Br(p)) −→

r→π
0 (see e.g.

[77, Thm. 6 p.50]), we conclude that equality holds in (5.10). �

5.2 Extrinsic upper bounds

In this section we assume the existence of some map from the manifold M to
another manifold and want to derive upper eigenvalue estimates in terms of
geometric invariants associated to this map. The first situation which has been
studied is the case where there exists a map of sufficiently high degree from M
into the round sphere of same dimension.
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Theorem 5.2.1 (H. Baum [54]) Let (Mn, g) be an even-dimensional closed
Riemannian spin manifold and assume the existence of a smooth map ι :
Mn −→ Sn with degree

deg(ι) ≥ 1 + 2
n
2−1

k−1∑
j=1

mj

for some positive integer k, where mj is the multiplicity of the jth eigenvalue of
D2. Then the kth eigenvalue λk of D satisfies

|λk| ≤ 2
n
2−1

√
n

2
·max
x∈M

‖dxι‖.

The inequality in Theorem 5.2.1 is sharp for M = S2 and ι = Id (but of course
only for k = 1). It is unclear if it can be sharp in higher dimensions.

Sketch of proof of Theorem 5.2.1: The proof is based on Vafa-Witten’s method.
Consider the tensor-product bundle S := ΣM ⊗ ι∗(ΣSn). Define the tensor-
product connection of∇ (on ΣM) with on the one hand the pull-back-connection
ι∗(∇ΣSn) and on the other hand with a flat connection coming from a trivial-
ization of ΣSn through ± 1

2 -Killing spinors, see Example A.1.3.2. One obtains
two different covariant derivatives on S to which two different Dirac-type oper-
ators (called twisted Dirac operators) may be associated. The latter one (i.e.,
involving the flat connection on ι∗(ΣSn)) is by construction just the direct sum
of 2[n2 ] = rk(ΣSn) copies of D. Applying the Atiyah-Singer index theorem for
twisted Dirac operators and computing explicitly the Chern character of both
positive and negative half-spinor bundles of Sn (remember that n is assumed
to be even) the dimension of the kernel of the other twisted Dirac operator can
be bounded from below by a positive constant depending on the Â-genus of
TM and the degree of ι. A further observation shows that this lower bound
may be made dependent of deg(ι) only. The assumption on deg(ι) plugged into
Vafa-Witten’s method then ensures that |λk| is not greater than the norm of the
difference of both Dirac operators, which can be itself easily estimated against
the supremum norm of dι. This concludes the sketch of proof of Theorem 5.2.1.�

Turning to the case where M is isometrically immersed into some Euclidean
space, upper eigenvalue bounds can be found in terms of the second fundamental
form of the immersion. The first result in this direction is due to U. Bunke.

Theorem 5.2.2 (U. Bunke [69]) Assume that (Mn, g) is even-dimensional,
closed, and that there exists an isometric immersion ι : M −→ RN for some
positive integer N . Then there is a topologically determined number of eigenva-
lues λ of D satisfying

λ2 ≤ 2
n
2 max
x∈M

(‖IIx‖2),

where II is the second fundamental form of ι.

It is not clear whether the estimate in Theorem 5.2.2 can be sharp or not, since
it is a strict inequality even for the standard immersion of Sn in Rn+1. It has
been improved by C. Bär in [43] (see (5.19)). His idea consists in choosing the
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restriction of particular spinor fields (such as parallel or Killing spinors) onto
the hypersurface as test-spinors in view of the min-max principle. We formulate
a general statement, from which all known estimates à la Reilly will follow. The
notion of twistor-spinor is explained in Appendix A.

Theorem 5.2.3 Let (Mn, g) be closed, n ≥ 2 and assume that there exists an
isometric immersion M ι−→ M̃n+1, where (M̃n+1, g) admits a non-zero twistor-
spinor ψ. If the spin structure on M coincides with the one induced by ι, then
the smallest eigenvalue of D2 satisfies

λ1(D2) ≤ inf
f∈C∞(M,R)

f 6=0

(n2
∫
M

(H2 +R(ι))f2|ψ|2vg
4
∫
M
f2|ψ|2vg

+

∫
M
|df |2|ψ|2vg∫

M
f2|ψ|2vg

)
, (5.11)

where H := − 1
n tr(∇̃ν) is the mean curvature of ι and

R(ι) :=
1

n(n− 1)

(
S̃ − 2r̃ic(ν, ν)

)
.

Proof: As in Section 1.4 we denote by “·” the Clifford multiplication on (M̃n+1, g)
and by “ ·

M
” the one on (Mn, g). In analogy with Proposition 1.4.1 we also denote

by D2 the operator

D2 :=
∣∣∣∣ D if n is even
D ⊕−D if n is odd

where D is the fundamental Dirac operator of (Mn, g).
Since M is a Riemannian hypersurface of M̃ , the operator D2

2 can be related
with the square of another Dirac operator, namely the Dirac-Witten operator
introduced by E. Witten in his proof of the positive mass theorem [241] and
defined by

D̂ :=
n∑
j=1

ej · ∇̃ej

in any local orthonormal basis {ej}1≤j≤n of TM : let ϕ ∈ Γ(ΣM̃|M ), then

D2ϕ
(1.21)

=
n∑
j=1

ej · ν · ∇̃ejϕ−
1
2

n∑
j=1

ej · ν ·A(ej) · ν · ϕ

= −ν · D̂ϕ+
nH

2
ϕ, (5.12)

so that

D2
2ϕ

(1.23)
= ν ·D2(D̂ϕ) +D2(

nH

2
ϕ)

(1.11)
= ν ·D2(D̂ϕ) +

n

2
(grad(H) · ν · ϕ+HD2ϕ)

(5.12)
= (D̂ +

nH

2
ν·)D̂ϕ+

n

2
grad(H) · ν · ϕ+

nH

2
D2ϕ

= D̂2ϕ+
n2H2

4
ϕ+

n

2
grad(H) · ν · ϕ. (5.13)
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Since ψ is a twistor-spinor on (M̃n+1, g) one has, in any local orthonormal basis
{ej}1≤j≤n of TM ,

D̂2ψ = D̂(
n∑
j=1

ej · ∇̃ejψ)

= − 1
n+ 1

n∑
j=1

D̂(ej · ej · D̃ψ)

=
n

n+ 1
D̂(D̃ψ)

(A.4)
=

n

n− 1

n∑
j=1

(−1
2
ej · R̃ic(ej) · ψ +

S̃

4n
ej · ej · ψ)

=
n

n− 1

( S̃
2
ψ +

1
2
ν · R̃ic(ν) · ψ − S̃

4
ψ
)

=
n

n− 1

(1
4

(S̃ − 2r̃ic(ν, ν))ψ +
1
2
ν · R̃ic(ν)T · ψ

)
=

n

n− 1

(n(n− 1)
4

R(ι)ψ +
1
2
ν · R̃ic(ν)T · ψ

)
=

n2

4
R(ι)ψ +

n

2(n− 1)
ν · R̃ic(ν)T · ψ, (5.14)

where we denoted by R̃ic(ν)T :=
∑n
j=1 r̃ic(ν, ej)ej the tangential projection of

R̃ic(ν). Combining (1.13) (which obviously holds for D2
2 instead of D2), (5.13)

and (5.14) we obtain, for every f ∈ C∞(M,R),

D2
2(fψ) = f(D̂2ψ +

n2H2

4
ψ +

n

2
grad(H) · ν · ψ)

−2(∇̃grad(f)ψ −
A(grad(f))

2
· ν · ψ) + (∆f)ψ

=
n2

4
(H2 +R(ι))fψ +

nf

2
grad(H) · ν · ψ +

nf

2(n− 1)
ν · R̃ic(ν)T · ψ

+
2

n+ 1
grad(f) ·DfMψ +A(grad(f)) · ν · ψ + (∆f)ψ. (5.15)

We deduce that

<e(〈D2
2(fψ), fψ〉) =

n2

4
(H2 +R(ι))f2|ψ|2 +

2f
n+ 1

<e(〈grad(f) ·DfMψ,ψ〉)
+f(∆f)|ψ|2

=
n2

4
(H2 +R(ι))f2|ψ|2 − g(fgrad(f), grad(|ψ|2))

+f(∆f)|ψ|2,

so that, integrating over M and applying Green’s formula,∫
M

〈D2
2(fψ), fψ〉vg =

n2

4

∫
M

(H2 +R(ι))f2|ψ|2vg

−
∫
M

δ(fgrad(f))|ψ|2vg +
∫
M

f(∆f)|ψ|2vg
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=
n2

4

∫
M

(H2 +R(ι))f2|ψ|2vg

+
∫
M

|grad(f)|2|ψ|2vg. (5.16)

The result straightforward follows from the min-max principle. �

In particular, if (M̃n+1, g) admits an (m ≥ 2)-dimensional space of twistor-
spinors then

λ1(D2) ≤ inf
ψ twistor-spinor

ψ 6=0

{r.h.s. of (5.11)}.

The case n = 1 - the “baby case” - should not be of interest since the spectrum
of S1 for both spin structures is explicitly known (see Theorem 2.1.1). However
similar results turn out to hold - at least for M̃ = R2 or S2 - and to follow from
very elementary geometric properties of plane or space curves:

Proposition 5.2.4 Let M be a closed regular curve in (M̃2, g) := (R2, can)
or (S2, can). Then the smallest eigenvalue λ1(D2) of the square of the Dirac
operator on M for the induced metric and spin structure satisfies

λ1(D2) ≤ 1
4L

∫ L

0

(H(t)2 + κ)dt

where H is the curvature of M parametrized by arc-length in M̃ , L := Length(M)
and κ denotes the sectional curvature of (M̃2, g).
Moreover this inequality is an equality if and only if M is a simply-parametrized-
circle in M̃ .

Proof: First we may assume that M := c([0, L]), where c : R −→ M̃ is an L-
periodic arc-length-parametrized curve in M̃ . In other words M is isometric to
S1(L) := {z ∈ C s.t. |z| = L

2π}. Therefore the smallest eigenvalue of D2 w.r.t.
the δ-spin structure (where δ = 0 for the trivial spin structure and 1 for the
non-trivial one, see Example 1.4.3.1) is λ1(D2) = δπ2

L2 . We separate the two
cases.
• Case κ = 0: Let nc ∈ Z be the turning number of c. It is easy to show that the
induced spin structure of M in R2 is the trivial one in case nc is even and the
non-trivial one otherwise. If nc is even then the inequality is trivial and cannot
be an equality, so that we assume that nc is odd. From the elementary formula

nc =
1

2π

∫ L

0

H(t)dt

and the Cauchy-Schwarz inequality we deduce that

λ1(D2) =
π2

L2

≤ π2

L2
n2
c

=
π2

L2
· 1

4π2
(
∫ L

0

H(t)dt)2
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≤ 1
4L2
· L ·

∫ L

0

H2(t)dt

=
1

4L

∫ L

0

H2(t)dt,

which proves the inequality. The equality holds if and only if H is constant and
|nc| = 1, hence we obtain the statement in that case.
• Case κ = 1: Let µc be the bridge number and H̃ be the curvature of c as space
curve. From H̃2 = H2 + 1 and

µc ≤
1

2π

∫ L

0

H̃(t)dt

we obtain exactly as above

λ1(D2) ≤ π2

L2
µ2
c

≤ 1
4L2

(
∫ L

0

H̃(t)dt)2

≤ 1
4L

∫ L

0

H̃2(t)dt

=
1

4L

∫ L

0

(H2(t) + 1)dt,

which shows the inequality. As before the equality only holds if H is constant
and µc = 1, hence we obtain the statement in that case and conclude the proof.�

Corollary 5.2.5 Under the assumptions of Theorem 5.2.3, the smallest eigen-
value λ1 of D2 satisfies:

λ1(D2) ≤
n2
∫
M

(H2 +R(ι))|ψ|2vg
4
∫
M
|ψ|2vg

. (5.17)

If furthermore ψx 6= 0 for every x ∈M , then [100, Thm. 3.1 p.44]

λ1(D2) ≤ n2

4Vol(M)

∫
M

(H2 +R(ι))vg +
1

Vol(M)

∫
M

|d(ln(|ψ|))|2vg. (5.18)

Proof: Both results follow directly from Theorem 5.2.3: considering the expres-
sion inside the infimum of the r.h.s. of inequality (5.11) one just has to choose
f to be a non-zero constant in the first case and to be 1

|ψ| in the second one. �

Corollary 5.2.5 provides the following estimates which were proved by C. Bär
[43, Cor. 4.2 & 4.3] for hypersurfaces of the Euclidean space Rn+1 or of the
round sphere Sn+1 and by N. Ginoux [100, 102, 101] for hypersurfaces of the
hyperbolic space Hn+1: let M̃n+1(κ) := Rn+1 if κ = 0, Sn+1 if κ = 1 and Hn+1

if κ = −1, then for any closed hypersurface M of M̃n+1(κ) carrying the induced
metric and spin structure,

λ1(D2) ≤ n2

4Vol(M)

∫
M

(H2 + κ)vg (5.19)
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if κ ≥ 0,

λ1(D2) ≤ n2

4
(max
M

(H2)− 1) (5.20)

and

λ1(D2) ≤ n2

4Vol(M)

∫
M

(H2 − 1)vg +
1

Vol(M)
inf

ψ∈ eK± i2
ψ 6=0

(∫
M

|d(ln(|ψ|))|2vg
)

(5.21)
if κ = −1 (the space K̃± i

2
refers here to the space of ± i

2 -Killing spinors on

Hn+1). Indeed M̃n+1(κ) carries at least one non-zero ±
√
κ

2 -Killing spinor ψ
(which is in particular a twistor-spinor and vanishes nowhere), see e.g. [59, 66]
and Examples A.1.3. Moreover R(ι) = κ and, if κ ≥ 0, then Proposition A.4.1
implies that |ψ| is constant on M̃n+1(κ).
The inequalities (5.19) and (5.20) actually hold for higher eigenvalues of D2,
since the space of ±

√
κ

2 -Killing spinors on M̃n+1(κ) is 2[n+1
2 ]-dimensional and

the upper bound in (5.19) or (5.20) does not depend on the Killing spinor ψ,
see [43, 102].

The inequalities (5.19), (5.20) and (5.21) are equalities for all geodesic hyper-
spheres in M̃n+1(κ), see [43], [102] and [101] respectively. For κ ≤ 0 the question
remains open whether those are the only hypersurfaces enjoying this property.
For κ = 1, generalized Clifford tori in Sn+1 as well as minimally embedded
S3
/Q8

(where Q8 denotes the finite group of quaternions) in S4 also satisfy the
limiting-case in (5.19) and it is conjectured that this actually holds for every
homogeneous hypersurface in the round sphere, see [103, 106].

For n = 2 the upper bound in (5.19) is nothing but the so-called Willmore
functional of the immersion M ↪→ M̃3(κ). Combining the estimate (5.19) with
lower bounds of the Dirac spectrum (see Section 3.6) B. Ammann [9] and C.
Bär [43] proved the Willmore conjecture (“

∫
M
H2vg ≥ 2π2 for every embedded

torus M in R3”) for particular metrics.

Note 5.2.6 Could (5.18), (5.20) and (5.21) be enhanced in

λ1(D2) ≤ n2

4Vol(M)

∫
M

(H2 +R(ι))vg? (5.22)

They are already of that form as soon as there exists a twistor-spinor ψ on
(M̃n+1, g) with constant norm on M (in (5.18) or (5.21)) or if the mean curva-
ture H of ι is constant (in (5.20)) respectively. Both conditions are very strong;
for example the level sets of the norm of a non-zero imaginary Killing spinor on
Hn+1 are either geodesic hyperspheres or horospheres. Since however (5.19) is
already of the form (5.22) and since an analog of (5.22) for the smallest positive
Laplace-eigenvalue holds in virtue of a work by A. El Soufi and S. Ilias (see
reference in [101]), it is natural to ask if (5.22) could hold in full generality, i.e.,
for every n ≥ 2, for any isometric immersion Mn → M̃n+1 into any Riemannian
spin manifold (M̃n+1, g) admitting a non-zero twistor-spinor. This is unfortu-
nately false, at least in dimension n = 2: indeed the integral

∫
M2(H2 +R(ι))vg
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- the Willmore functional - is a conformal invariant, i.e., it only depends on the
conformal class of g. However, the product λ1(D2

M,g)Area(M2, g) is in general
not bounded on a conformal class (take e.g. M = S2) [27].
In dimension n ≥ 3 one could look for a sequence {fn}n∈N of smooth real-valued
functions on M which would converge in L2-norm towards f := 1

|ψ| (provided the

twistor-spinor ψ has no zero on M) and such that dfn
L2

−→ 0 as n→ +∞. In that
case {fn}n∈N would be bounded in the Sobolev space H1,2(M), so that there
would exist a subsequence {fϕ(n)}n∈N converging weakly in H1,2(M) towards
some F ∈ H1,2(M). In particular {fϕ(n)}n∈N would converge weakly towards
F in L2(M) as well as {dfϕ(n)}n∈N towards dF . From the uniqueness of the
weak limit one would conclude that F = f and dF = 0 almost everywhere, in
particular df = 0 almost everywhere, that is, df = 0, which does not hold in
general as explained just above.
Nevertheless, it is not excluded in case M is a closed hypersurface of the hyper-
bolic space Hn+1 that

λ1(D2) ≤ n2

4Vol(M)

∫
M

(H2 − 1)vg

holds.



Chapter 6

Prescription of eigenvalues
on closed manifolds

From its definition the Dirac spectrum a priori depends on the metric, the spin
structure and of course the underlying manifold. In a very formal manner, the
Dirac spectrum can be thought of as a functor from the category of closed Rie-
mannian spin manifolds to that of real discrete sequences with closed image
and unbounded on both sides. In this chapter, we investigate this functor, in
particular its injectivity and surjectivity. In other words, does its Dirac spec-
trum determine a given Riemannian spin manifold? For a given real sequence as
above, is there a Riemannian spin manifold whose spectrum coincides with this
sequence? If the answer to the former question is definitely negative (Section
6.1), only partial results have been found regarding the latter in the case where
the whole spectrum is replaced by a finite set of eigenvalues. In this situation
one has to distinguish between the eigenvalue 0 - whose associated eigenvectors
are called harmonic spinors - and the other ones. We shall see in Section 6.2
that, in dimension n ≥ 3 (the case of surfaces must be handled separately), the
metric can in general be modified so as to make 0 a Dirac eigenvalue, whereas
generic metrics just have as many harmonic spinors as the Atiyah-Singer-index
theorem forces them to do. If the finite set of real numbers does not contain 0
(and is symmetric about 0 if n 6≡ 3 (4)), then it is always the lower part of the
Dirac spectrum of a given metric on a fixed spin manifold (Section 6.3).

6.1 Dirac isospectrality

The question we address in this section is: do closed Riemannian spin manifolds
which are Dirac isospectral (i.e., which show the same Dirac spectrum) have
to be isometric, and if not are they at least diffeomorphic or homeomorphic?
Note here that we a priori have to require the isometry condition to take the
spin structure into account, that is, isometries are supposed to preserve both
the orientation and the spin-structure.
From Weyl’s asymptotic formula (see e.g. [20, Thm. 2.6]), the Dirac spectrum
determines the dimension and the volume of the underlying manifold. A sharper
insight in the formula shows for example that, in dimension 4, the Euler char-
acteristic of the manifold is determined by its Dirac spectrum as soon as the

91
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scalar curvature is assumed to be constant [57]. However, the Dirac spectrum in
general determines neither the isometry class nor the topology of the manifold.
To illustrate this, we describe different families of examples, evolving from the
“simplest” to the most sophisticated ones where even the explicit knowledge of
the Dirac spectrum is not needed.

The founding result for isospectrality issues is indisputably J. Milnor’s famous
one-page-long article (see reference in [17]), where the author describes two
Laplace-isospectral but non-isometric 16-dimensional tori. The idea is the fol-
lowing. The spectrum of the scalar Laplace operator on a flat torus Γ\R

n is
{4π2|γ∗|2, γ∗ ∈ Γ∗}, where we keep the notations of Theorem 2.1.1. For any
r ≥ 0, the multiplicity of the eigenvalue 4π2r2 is the number of γ∗ ∈ Γ∗ with
|γ∗| = r. Now it is a surprising fact that there exist two lattices Γ1,Γ2 in R16

which induce non-isometric metrics on T16 but such that, for every r ≥ 0, the
sets {γ∗ ∈ Γ∗1, |γ∗| = r} and {γ∗ ∈ Γ∗2, |γ∗| = r} have the same cardinality
(see reference in Milnor’s article). Therefore the flat tori Γ1

\R16 and Γ2
\R16

possess the same Laplace spectrum, however they are not isometric. From The-
orem 2.1.1, the Dirac spectrum of a flat torus with trivial spin structure is
{±2π|γ∗|, γ∗ ∈ Γ∗}, hence the same argument shows that the Dirac spectra of

Γ1
\R16 and Γ2

\R16 also coincide, at least for the trivial spin structure.

On positively curved spaceforms, Theorem 2.1.4 straightforward results in the
following criterion for producing isospectrality.

Theorem 6.1.1 (C. Bär [41]) For n ≥ 3 odd let Γ1,Γ2 ⊂ SOn+1 be finite
subgroups acting freely on Sn. For j = 1, 2 let εj : Γj −→ Spinn+1 be a group
homomorphism such that ξ ◦ εj is the inclusion map Γj ⊂ SOn+1 and consider
the induced spin structure on Γj\S

n. Assume the existence of a bijective map
f : Γ1 −→ Γ2 such that, for every γ1 ∈ Γ1, the elements ε1(γ1) and ε2(f(γ1))
are conjugated in Spinn+1.
Then the spaceforms Γ1

\Sn and Γ2
\Sn are Dirac isospectral.

Proof: Both the character as well as the determinant remain unchanged under
conjugation, hence Theorem 2.1.4 implies that the corresponding series F±(z)
giving the multiplicities of the Dirac eigenvalues ±(n2 +k) are the same for Γ1

\Sn

and Γ2
\Sn. �

For three positive integers a, b, r with a, b odd, we denote by Γ(a, b, r) the ab-
stract group generated by two elements A,B satisfying the relations Aa = Bb =
1 and BAB−1 = Ar. It is an exercise to prove that, if Γ(a, b, r) is embedded in
SOn+1 so as to act freely on Sn, then the corresponding spaceform has a unique
spin structure [41, Lemma 7]. A more detailed study shows that, for a good
choice of a, b, r and n (as in Corollary 6.1.2 below), the group Γ(a, b, r) can be
embedded in two different ways in SOn+1 so as to satisfy the assumptions of
Theorem 6.1.1 but such that the corresponding spaceforms are not isometric
[41, Sec. 5].

Corollary 6.1.2 (C. Bär [41]) Let n ≡ 3 (8), n ≥ 19. Let a be a prime num-
ber with a ≡ 1 (n+1

4 ), let b := (n+1
4 )2 and let r be chosen such that its mod a class
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is of order n+1
4 in (Za)×. Then there exist two Dirac isospectral non-isometric

spaceforms diffeomorphic to Γ(a, b, r)\S
n.

Returning to the flat setting, Bieberbach manifolds (quotients of Rn through
Bieberbach groups, i.e., discrete co-compact and freely acting subgroups of the
isometry group of Rn) provide a large family of manifolds where the Dirac
spectrum can be theoretically computed - and hence the isospectrality question
be answered. As already mentioned in Section 2.1, the complexity of Bieberbach
groups in n dimensions grows up abruptly with n, which makes the computation
of the Dirac spectrum tedious. For particular holonomies it remains possible and
whole families of Dirac isospectral examples can be obtained. As an interesting
fact, even pairwise non-homeomorphic ones can be fished out. To state the
result we need to introduce the following notations, which are those of [194].
Fix an integer n ≥ 3. For non-negative integers j, h with n − 2j − h > 0 and
j+h ∈ 2N \ {0}, define in the canonical basis {e1, . . . , en} of Rn the orthogonal
involution Bj,h by

Bj,h := diag
(( 0 1

1 0

)
, . . . ,

(
0 1
1 0

)
︸ ︷︷ ︸

j

,−1, . . . ,−1︸ ︷︷ ︸
h

, 1, . . . , 1
)

and set Γj,h := Span(Bj,h · ( en2 + Id), e1 + Id, . . . , en + Id). The subgroup Γj,h
of the isometry group of Rn is orientation-preserving and co-compact, therefore
the quotient

Mn
j,h := Γj,h\R

n

is a compact orientable flat manifold with holonomy group Z2. Moreover it
can be shown that Mn

j,h is spin and that its first homology group with integer
coefficients is H1(Mn

j,h) = Zn−j−h ⊕ (Z2)h [193, Prop. 4.1]. In particular, the
quotients corresponding to different pairs (j, h) as above are not homeomorphic
to each other. Set, for fixed k ∈ {0, 1},

F+
k := {Mn

j,h |
j + h

2
≡ k (2)}.

Among the 2n−j spin structures on some fixed Mn
j,h ∈ F

+
k , we shall only con-

sider the two so-called εk-ones, which are defined in [193, Prop. 4.2] and [194, eq.
(4.13)] and which can be roughly described as follows with the help of Proposi-
tion 1.4.2: lift the translations e1+Id, . . . , en−1+Id to 1 ∈ Spinn and Bj,h ∈ SOn

to one of its both pre-images through the double covering ξ. This assignment
fixes exactly two spin structures since with those assumptions the lift of en + Id
must be (−1)k, see [193, Prop. 4.2] for details.

Theorem 6.1.3 (R. Miatello and R. Podestá [194]) For a fixed integer n ≥
3 consider the Mn

j,h’s defined above.

i) All elements of the family {(Mn
j,h, ε0) |Mj,h ∈ F+

0 } are pairwise Dirac
isospectral closed flat Riemannian spin manifolds, which are pairwise non-
homeomorphic as soon as the pairs (j, h) are different.

ii) If n 6≡ 3 (4) then all elements of the family {(Mn
j,h, ε1) |Mn

j,h ∈ F
+
1 } are

pairwise Dirac isospectral closed flat Riemannian spin manifolds, which
are pairwise non-homeomorphic as soon as the pairs (j, h) are different.
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In [194] Theorem 6.1.3 comes as a corollary of a whole series of computations of
spectra on the Mj,h’s, one of which motivation is to compare Dirac isospectrality
with other isospectrality issues. The results are obtained in a much more gen-
eral setting where one twists the spinor bundle by a vector bundle associated to
some representation of the group Γj,h. We refer to [194] for further statements
and the proof of Theorem 6.1.3.

In another direction, one can try to generalize Milnor’s result, replacing flat tori
by compact quotients of nilpotent Lie groups. Initiated for Laplace isospectrality
issues (see references in [17]), this ansatz has turned out to provide very rich
families of manifolds on which, among others, Dirac isospectrality can be tested.
In that case there also exists a general criterion for isospectrality, see [17, Thm.
5.1] for a proof.

Theorem 6.1.4 (B. Ammann and C. Bär [17]) Let M := Γ\G and M ′ :=
Γ′\G be spin homogeneous spaces where Γ,Γ′ are co-compact lattices in the
simply-connected Lie group G. If the right-representations of G onto L2(ΣM)
and L2(ΣM ′) are equivalent, then for any left-invariant metric on G, the man-
ifolds M and M ′ are Dirac isospectral.

The independence of the spectrum on the left-invariant metric is a very strong
statement. It allows in particular to produce continuous families of isospectral
metrics, the spin structures staying fixed. Of course the real difficulty consists
in applying Theorem 6.1.4, i.e., in picking groups G so that the equivalence of
the G-representations is satisfied. For nilpotent Lie groups that are strictly non-
singular (i.e., for every z in the center of G and x in its complement, there exists
a y with xyx−1y−1 = z), this condition simplifies in terms of group theoretical
data [17, Thm. 5.3]. The nilpotent Lie groups chosen by R. Gornet provide
concrete examples where this criterion is fulfilled, we refer to [17, Thm. 5.6] for
details and references.

Theorem 6.1.5 (B. Ammann and C. Bär [17]) There exist in dimensions
7 and 8 a continuous family of Dirac isospectral non-isometric closed Rieman-
nian spin manifolds. Each manifold inside a family is diffeomorphic to the same
quotient of some nilpotent Lie group by a co-compact lattice.

6.2 Harmonic spinors

In analogy with the differential-form-setting, a (smooth) spinor field is called
harmonic if and only if it lies in the kernel of the Dirac operator. If the mani-
fold is closed then this space has always finite dimension since each eigenspace
does. For instance, if (Mn, g) has positive scalar curvature, then Theorem 3.1.1
implies that there is no non-zero harmonic spinor on M , as we have seen in Sec-
tion 3.1. The problem we investigate here is: does this dimension depend on the
metric, and if so, how? Before going further on note that it clearly depends on
the choice of spin structure as the elementary example M = Tn with flat metric
already shows: the space of harmonic spinors w.r.t. the trivial spin structure is
2[n2 ]-dimensional whereas it is reduced to 0 for all other ones, see Theorem 2.1.1.
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The first fundamental remark on the dependence of the Dirac kernel in terms
of the metric was formulated by N. Hitchin in [152]: the dimension d of the
kernel of D stays constant under conformal changes. Indeed, using (1.16), if ϕ
is a harmonic spinor on (Mn, g) then so is e−

n−1
2 uϕ on (Mn, g := e2ug) for any

u ∈ C∞(M,R). It can for example be deduced from this fact combined with
Theorem 2.1.3 that, whatever the metric chosen, the 2-sphere S2 does not carry
any non-zero harmonic spinor (there exists only one conformal class as well as
one spin structure on S2). Alternatively this straightforward follows from Bär’s
inequality (3.17) since the lower bound 2πχ(M2) is a topological invariant which
is positive for M2 = S2.

On closed surfaces the presence of a quaternionic structure on the spinor bun-
dle, which commutes with the Dirac operator (see e.g. [104, Lemma 1]), forces
the number d to be even. On the other hand, d is bounded from above inde-
pendently of the metric and spin structure: N. Hitchin proved that d ≤ 2[ g+1

2 ]
for every closed Riemann surface M2 of genus g and, if g ≤ 2 then d does not
even depend on the conformal class [152, Prop. 2.3]. The case of S2 has just
been discussed. For the 2-dimensional torus T2 it can be seen as a consequence
of the conformal property above and of Theorem 2.1.1, which implies that T2

has a 2-dimensional space of harmonic spinors for the trivial spin structure and
no non-zero one otherwise. If g = 2 the independence on the conformal class
follows from [152, Prop. 2.3] or, alternatively, from the following argument: the
Atiyah-Singer-index theorem implies that d

2 ≡ α(M) (2), where α(M) ∈ Z2 is
the α-genus of M2 (see e.g. [48, Sec. 3] for a definition); either α(M) = 1 and it
follows from Hitchin’s upper bound that d = 2 as soon as g ≤ 4, or α(M) = 0
and, for g ≤ 2, one has d = 0.

In higher genus the picture is more complex. As a consequence of [21, Thm.
1.1], for any given spin structure, there exists a conformal class for which d
coincides with the lower bound provided by the Atiyah-Singer-index theorem
(see (6.1) below), hence for which d ∈ {0, 2}. Next one can ask whether d can
be made maximal. To answer this question, it is more convenient to study the
variations of d in terms of the spin structure, the conformal class being fixed.
Recall first that, for any closed surface M2 of genus g, the group H1(M,Z2) is
isomorphic to (Z2)2g, so that M2 has exactly 22g spin structures; in fact, there
are exactly 22g−1 + 2g−1 spin structures with α(M) = 0 (those spin structures
are the induced ones on the boundary M2 if we see M2 as embedded in R3)
and exactly 22g−1 − 2g−1 ones with α(M) = 1 (those do not bound). Moreover,
two spin structures having the same α-genus are spin diffeomorphic (i.e., there
exists an orientation-preserving diffeomorphism of M2 sending the first spin
structure onto the second one), see [177, Sec. 2]. Assuming now the metric on
M2 to be hyperelliptic (i.e., the existence of an isometric involution of M2 with
exactly 2g+2 fixed points), C. Bär and P. Schmutz Schaller [51] have computed
d explicitly for each spin structure and shown the following: if g ≥ 5 or (g ≥ 3
and α(M) = 0) then for any spin structure on the surface M2 of genus g, there
exists a conformal class for which d is “almost” maximal, that is, d = 2[ g+1

2 ] or
d = 2[ g−1

2 ] according to the parity of [ g+1
2 ]. More precisely, if α(M) = 0 and

g ≥ 3, then there exists a conformal class for which d = 2[ g+1
2 ] > 2 if g ≡ 0, 3 (4)

and d = 2[ g−1
2 ] > 2 if g ≡ 1, 2 (4); if α(M) = 1 and g ≥ 5, then there exists a
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conformal class for which d = 2[ g+1
2 ] > 2 if g ≡ 1, 2 (4) and d = 2[ g−1

2 ] > 2 if
g ≡ 0, 3 (4). For g ∈ {3, 4} and α(M) = 1, the number d does not depend on the
conformal class (hence d = 2). The case g ∈ {3, 4} and α(M) = 0, where both
possibilities d = 0 and d = 4 occur, is also illustrated in [15]. Independently
H. Martens showed [192] that, if d = 2[ g+1

2 ], then either M2 is hyperelliptic or
g = 4 or g = 6. For both g = 4 and g = 6 and any non-hyperelliptic conformal
class, there exists exactly one spin structure such that d = 2[ g+1

2 ], see [152, 51].
We summarise the main known results for orientable surfaces.

Theorem 6.2.1 Let M2 be a closed oriented surface of genus g, of α-genus
α(M) ∈ Z2 and let d be the complex dimension of the space of harmonic spinors
on M2 for some conformal class.

i) The integer d is even and satisfies d ≤ 2[ g+1
2 ]. In particular, for any

metric, the 2-sphere S2 has no non-zero harmonic spinor.

ii) If g ≤ 2 and α(M) = 0, then d = 0.

iii) If g ≤ 4 and α(M) = 1, then d = 2.

iv) If α(M) = 0 and g ≥ 3, then there exists a conformal class for which
d = 0 and a conformal class for which

d =
∣∣∣∣ 2[ g+1

2 ] in case g ≡ 0, 3 (4)
2[ g−1

2 ] in case g ≡ 1, 2 (4).

v) If α(M) = 1 and g ≥ 5, then there exists a conformal class for which
d = 2 and a conformal class for which

d =
∣∣∣∣ 2[ g+1

2 ] in case g ≡ 1, 2 (4)
2[ g−1

2 ] in case g ≡ 0, 3 (4).

In particular, the only closed orientable surfaces which do not admit any metric
with non-zero harmonic spinors are those of genus at most 2 and with α(M) = 0.

By contrast, in higher dimensions, if one fixes the manifold and the spin struc-
ture, a given metric admits in general few non-zero harmonic spinors whereas
there exist particular metrics having lots of them. First note that the Atiyah-
Singer-index theorem [31] provides an a priori lower bound for d, since the in-
equality dim(Ker(D)) ≥ |ind(D+)| in even dimensions combined with Theorem
1.3.9 implies that

d = dim(Ker(D)) ≥



|Â(M)| if n ≡ 0 (4)

|α(M)| if n ≡ 1 (8)

2|α(M)| if n ≡ 2 (8)

0 otherwise.

(6.1)

It was first conjectured by C. Bär [42] that (6.1) is an equality for generic metrics,
i.e., metrics belonging to some subset which is open in the C1- and dense in the
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C∞-topology in the space of all Riemannian metrics. In dimensions n = 3 and
4 perturbation methods combined with the formula linking spinors for different
metrics [65] suffice in order to prove the conjecture to hold true (S. Maier [191]).
If the underlying manifold is assumed to be simply-connected, then C. Bär and
M. Dahl [48] proved the conjecture to hold true for all dimensions n ≥ 5. Based
on bordism theory, their argument consists of the three following steps. First,
the conjecture holds true for some generators of the spin bordism ring. Second,
any closed spin manifold is spin bordant to a spin manifold where the conjecture
holds true. By a theorem of Gromov and Lawson, any n(≥ 5)-dimensional closed
simply-connected manifold which is spin bordant to a spin manifold can be
obtained from it by surgeries of codimension at least 3. It remains in the last
step to show that the conjecture survives to surgeries of codimension at least 3.
A set of generators is given by spin manifolds admitting metrics of positive scalar
curvature (for which we already know that Ker(D) = 0) as well as products of
some of the irreducible manifolds of Mc.K. Wang’s classification (see Theorem
A.4.2), on which it can be relatively easily shown that the conjecture holds
true. The second step is a pure argument of bordism theory using a theorem
by S. Stolz (see [48] for references) and the explicit set of generators described
above. The crucial step is the last one, which can be deduced from the following
theorem.

Theorem 6.2.2 (C. Bär and M. Dahl [48]) Let (Mn, g) be a closed Rie-
mannian spin manifold. Let M̃ be obtained from M by surgery of codimension
at least 3. Let ε > 0 and L > 0 with ±L /∈ Spec(D).
Then there exists a Riemannian metric g̃ on M̃ such that the Dirac eigenvalues
of (Mn, g) and (M̃n, g̃) in ]− L,L[ differ at most by ε.

Theorem 6.2.2 is a generalization of an earlier result by C. Bär about the con-
vergence of Dirac spectra on a connected sum in odd dimensions [42, Thm. B].
Coming back to the conjecture, it has been proved by B. Ammann, M. Dahl
and E. Humbert [21] to hold true in full generality. Their argument relies on a
very fine generalization of the surgery theorem (Theorem 6.2.2) to codimension
greater than 1, we refer to [21] for a detailed proof.

At what seems to be the opposite side there have appeared since N. Hitchin’s pi-
oneering article [152] several results showing the existence in certain dimensions
n ≥ 3 of metrics with lots of non-zero harmonic spinors. Already computing
the Dirac spectrum on S3 with Berger metric (and canonical spin structure),
N. Hitchin noticed [152] that, for every N ∈ N, there exists a metric on S3 ad-
mitting at least N linearly independent harmonic spinors. Furthermore he con-
structed with the help of differential topological methods metrics with non-zero
harmonic spinors on all closed spin manifolds Mn of dimension n ≡ 0, 1, 7 (8).
Extending the computation of the Dirac spectrum to all Berger spheres C. Bär
showed [42] the existence of such metrics on all closed spin manifolds Mn with
n ≡ 3, 7 (8). His proof is based on the following simple ideas: first, for any closed
odd-dimensional Riemannian spin manifolds M1 and M2, their connected sum
M1]M2 admits a Riemannian metric for which its Dirac spectrum gets close to
the union of both Dirac spectra of M1 and M2; second, there exists, for any
n ≡ 3 (4), a one-parameter-family of Riemannian metrics on Sn for which at
least one eigenvalue crosses the zero line (put t = 2(m + 1), a1 = a2 = 0 and
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j = m−1
2 in one of both eigenvalues given in Theorem 2.2.2.iii)). We refer to

[42] for a detailed proof. As for the remaining dimensions n ≥ 3, the question of
existence of metrics with non-zero harmonic spinors is still open, although it has
been conjectured by C. Bär [42] that such metrics always exist. For the sphere
Sn, n ≥ 4, the conjecture has been proved to hold true by L. Seeger [227] in case
n = 2m ≥ 4 and by M. Dahl [83] for all n ≥ 5. The latter work, which contains
the results of C. Bär [42] and N. Hitchin [152] on the existence of metrics with
harmonic spinors on all closed spin manifolds of dimension n ≡ 0, 1, 3, 7 (8)
(n ≥ 3), is proved in the following way: one shows that, on a given closed spin
manifold, the space of Riemannian metrics for which the Dirac operator is in-
vertible is disconnected, if non-empty. The argument involves special metrics
with positive scalar curvature on Sn which do not bound any metric with posi-
tive scalar curvature on the unit ball Bn+1 of Rn+1. We refer to [83, Sec. 3] for
a detailed proof.

We summarise the main known results for closed n(≥ 3)-dimensional spin man-
ifolds.

Theorem 6.2.3 Let Mn be a closed n(≥ 2)-dimensional spin manifold and
d(g) be the complex dimension of the space of harmonic spinors on Mn for
some metric g. Then the following holds.

i) There exists a subset in the space of all Riemannian metrics on Mn, which
is open in the C1- and dense in the C∞-topology, such that d(g) coincides
with the lower bound given by (6.1) for every metric g in this subset (B.
Ammann, M. Dahl and E. Humbert [21]).

ii) If n ≡ 0, 1, 3, 7 (8) and n ≥ 3 then there exists a Riemannian metric g on
Mn such that d(g) ≥ 1.

It would be interesting to know whether the following stronger conjecture by C.
Bär [42, p. 41] holds true: on every closed spin manifold of dimension ≥ 3 there
exists a sequence {gm}m of Riemannian metrics for which d(gm) ≥ m for every
m ∈ N.

6.3 Prescribing the lower part of the spectrum

In the last section we have seen that, if n ≥ 3 and n ≡ 0, 1, 3, 7 (8), then any
n-dimensional closed spin manifold admits a metric for which the kernel of the
corresponding Dirac operator is non-trivial. In other words, the eigenvalue 0 can
be always prescribed in those dimensions. What about prescribing the rest of
the spectrum? Although this question remains open, at least the lower part of
the spectrum can be fixed. Note that, in dimension n 6≡ 3 (4), Theorem 1.3.7.iv)
imposes a priori this part to be symmetric about the origin.

Theorem 6.3.1 (M. Dahl [82]) For n ≥ 3 let Mn be any closed spin mani-
fold. Let L > 0 (resp. m ≥ 1) be real (resp. integral) and l1, . . . , lm be non-zero
real numbers. Then the following holds:
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i) If n ≡ 3 (4) and −L < l1 < . . . < lm < L, then there exists a Riemannian
metric on Mn such that Spec(D, g)∩ (]−L,L[\{0}) = {l1, . . . , lm}, where
each of those eigenvalues is simple.

ii) If n 6≡ 3 (4) and 0 < l1 < . . . < lm < L, then there exists a Riemannian
metric on Mn such that Spec(D, g) ∩ (] − L,L[\{0}) = {±l1, . . . ,±lm},
where each of those eigenvalues is simple.

The proof of Theorem 6.3.1 relies on techniques similar to those used for the
construction of metrics with harmonic spinors. Roughly speaking, after possibly
rescaling a fixed given metric on M , one has to add sufficiently many spheres
of different sizes, each having one of the li’s as single and simple eigenvalue
in ] − L,L[. The surgery theorem (Theorem 6.2.2) ensures that the resulting
manifold has the desired eigenvalues modulo a small error. We refer to [82, Sec.
4] for a detailed proof.
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Chapter 7

The Dirac spectrum on
non-compact manifolds

In this chapter we investigate the less familiar situation where the underlying
manifold is non-compact. A good but somewhat not up-to-date reference is [45,
Sec. 8.2]. The Dirac operator of a non-compact Riemannian spin manifold has
in general no well-defined spectrum, even if its square does as a non-negative
operator (Section 7.1). If the Riemannian manifold is complete then its Dirac
spectrum - which is well-defined - is composed of a discrete part and of a dis-
joint union of intervals. After giving examples where the Dirac spectrum can be
explicitly computed (Section 7.2), we survey the different situations where the
geometry or particular analytical properties of the underlying manifold produce
either gaps in their Dirac spectrum (Section 7.3) or the non-existence of one of
both spectral components (Section 7.4).

7.1 Essential and point spectrum

We have seen in Proposition 1.3.5 that the Dirac operator is essentially self-
adjoint as soon as the underlying Riemannian spin manifold is complete. This
provides the existence of a canonical self-adjoint extension of D, which makes
its spectral theory somewhat easier, see below. In case the manifold is not com-
plete, there exists no canonical such extension as we have already seen in Note
1.3.6. However, since the square of D is symmetric and non-negative on its
domain Γc(ΣM) = {ϕ ∈ Γ(ΣM) | supp(ϕ) compact }, it admits a canonical
non-negative self-adjoint extension, as was noticed by C. Bär in [47, Sec. 2]:

Theorem 7.1.1 (Friedrichs’ extension) Let (Mn, g) be any Riemannian spin
manifold. Then the operator D2 has a unique non-negative self-adjoint extension
in H1

D(ΣM) ⊂ L2(ΣM), where H1
D(ΣM) is the completion of Γc(ΣM) w.r.t. the

Hermitian inner product (ϕ,ψ) 7→ (ϕ,ψ)+(Dϕ,Dψ). It is called the Friedrichs’
extension of D.

For the general construction of the Friedrichs’ extension we refer to [239, Thm.
VII.2.11]. Thus one may consider the spectrum of the Friedrichs’ extension of
D2, which we also denote by σ(D2). In general the spectrum of an operator may
be decomposed as follows:

101
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Definition 7.1.2 Let T be a densely defined (unbounded) operator in a Hilbert
space H.

i) The point spectrum of T is the set σp(T ) := {λ ∈ C |Ker(λId−T ) 6= {0}}.

ii) The continuous spectrum of T is the set σc(T ) := {λ ∈ C |Ker(λId−T ) =
{0}, Im(λId− T ) = H and (λId− T )−1 unbounded}.

iii) The residual spectrum of T is the set σr(T ) := {λ ∈ C |Ker(λId − T ) =
{0} and Im(λId− T ) 6= H}.

iv) The essential spectrum of T is the set σe(T ) := {λ ∈ C |λId−T not Fredholm}.

v) The discrete spectrum of T is the set σd(T ) := σp(T ) \ σe(T ).

In particular σ(T ) = σp(T )
⊔
σc(T )

⊔
σr(T ). The point spectrum is the set of

eigenvalues and the discrete spectrum the subset of eigenvalues with finite mul-
tiplicity. Any self-adjoint operator T has real spectrum and no residual spec-
trum. Furthermore, σc(T ) = σe(T ) \ σp(T ) and σe(T ) may be characterized
as the set of λ’s for which an orthonormal sequence (ϕk)k exists satisfying
‖Tϕk−λϕk‖ −→

k→∞
0. The essential spectrum of a self-adjoint elliptic differential

operator remains unchanged after modifying any compact part of the underlying
manifold [44, Prop. 1]:

Proposition 7.1.3 (decomposition principle) Let (M1, g1) and (M2, g2) be
Riemannian spin manifolds. Assume the existence of a spin-structure-preserving
isometry M1 \ K1 −→ M2 \ K2 for some compact subsets Kj ⊂ Mj, j = 1, 2.
Then DM1,g1 and DM2,g2 have the same essential spectrum.

Note that, as a consequence of Theorem 1.3.7, the Dirac operator has no essential
spectrum as soon as the underlying manifold is compact.

7.2 Explicit computations of spectra

We first determine the spectrum of the Euclidean space explicitly.

Theorem 7.2.1 The Dirac operator on (Rn, can) has no point spectrum and
its continuous spectrum is R.

Proof: We adapt [45, Sec. 8.2.2] to the case n ≥ 1. If ϕ ∈ C∞(Rn,Σn) were an
eigenvector of D associated to the eigenvalue λ, then it would be in particular
an eigenvector of D2 = ∆ (acting on Σn ∼= CN , where N = 2[n2 ]) associated
to the eigenvalue λ2. But there is no non-zero square-integrable eigenfunction
for the scalar Laplacian on Rn as a consequence of a result by F. Rellich, see
reference in [157]. Therefore σp(D) = ∅.
Let now λ ∈ Rn be an arbitrary vector. For n = 1 and λ 6= 0 let ϕλ,ε := 1 ∈
C = Σ1 and ε := −sgn(λ). For λ = 0 let ϕλ,ε be any unit-length-element in Σn
and put ε := 0. For n ≥ 2 and λ 6= 0 let ϕλ,ε be any unit-length-elements in
Ker(i λ|λ| ·−εId) for ε = ±1 (see proof of Theorem 2.1.1). Pick χ ∈ C∞(Rn, [0, 1])
with χ(x) = 1 whenever |x| ≤ 1 and χ(x) = 0 whenever |x| ≥ 2. For j ∈ N \ {0}
set

φλj,ε(x) := χ(
x

j
+ 3je1) · ei〈λ,x〉ϕλ,ε
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for all x ∈ Rn, where e1 denotes the first canonical basis vector of Rn. By
construction supp(φλj,ε) ∩ supp(φλj′,ε) = ∅ whenever j 6= j′, so that (φλj,ε)j≥1

forms an orthogonal system in L2(Rn,Σn). In particular setting ψλj,ε := φλj,ε
‖φλj,ε‖

one obtains an orthonormal system (ψλj,ε)j≥1 in L2(Rn,Σn). Next we show that
‖(D− ε|λ|Id)ψλj,ε‖ −→

j→∞
0, which will show ε|λ| ∈ σe(D) and conclude the proof.

It follows from (1.11) that

(D − ε|λ|Id)ψλj,ε =
1

‖φλj,ε‖

(
χ(
x

j
+ 3je1) · (D − ε|λ|)(ei〈λ,x〉ϕλ,ε)

+
1
j

grad(χ)(
x

j
+ ke1) · ei〈λ,x〉ϕλ,ε

)
,

with

D(ei〈λ,x〉ϕλ,ε) =
n∑
l=1

el ·
∂

∂xl
(ei〈λ,x〉ϕλ,ε)

=
n∑
l=1

iλlel · (ei〈λ,x〉ϕλ,ε)

= iλ · (ei〈λ,x〉ϕλ,ε)
= ε|λ|(ei〈λ,x〉ϕλ,ε),

so that

(D − ε|λ|Id)ψλj,ε =
1

j‖φλj,ε‖
grad(χ)(

x

j
+ ke1) · ei〈λ,x〉ϕλ,ε.

A simple transformation formula provides ‖φλj,ε‖ = j
n
2 ‖χ‖L2 , from which

‖(D − ε|λ|Id)ψλj,ε‖ =
1

j · j n2 ‖χ‖L2

(∫
Rn
|grad(χ)(

x

j
+ ke1)|2dx1 . . . dxn

) 1
2

=
1

j · j n2 ‖χ‖L2
· j n2 ‖grad(χ)‖L2

=
‖grad(χ)‖L2

j‖χ‖L2

and the result follow. �

The second family where the spectrum can be explicitly described is that of
hyperbolic spaces, whose Dirac spectra are given in the following table (note
however that 0 is never a Dirac eigenvalue on RHn as claimed in [68, Cor. 4.6]
for n even):

M σp(D) σc(D) references
RHn ∅ R [68], [32]

CHn, n odd ∅ R [76]
CHn, n even {0} ]−∞,− 1

2 ] ∪ [ 1
2 ,∞[ [76]

HHn ∅ R [76]
OH2 ∅ R [76]
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As a generalization, S. Goette and U. Semmelmann have shown [114] that the
point spectrum of D on a Riemannian symmetric space of non-compact type is
either empty or {0}, and in the latter case each irreducible factor of M is of the
form U(p+ q)/U(p)× U(q) with p + q odd. This explains in particular why the
even complex dimensional hyperbolic space stands out as the only one in the
list above having non-empty point spectrum.

7.3 Lower bounds on the spectrum

In general not much can be said on both components of the Dirac spectrum.
However, as in the compact case, a spectral gap about 0 occurs as soon as the
scalar curvature is bounded below by a positive constant, even if the underlying
manifold is not complete:

Theorem 7.3.1 (C. Bär [47]) Let (Mn, g) be any n(≥ 2)-dimensional Rie-
mannian spin manifold, then

min(σ(D2)) ≥ n

4(n− 1)
inf
M

(S), (7.1)

where S is the scalar curvature of (Mn, g).

Proof: Recall that σ(D2) denotes the spectrum of the Friedrichs’ extension of
D2. As in the compact setting, min(σ(D2)) can be characterized as follows, see
e.g. [239]:

min(σ(D2)) = inf
ϕ∈Γc(ΣM)\{0}

{ (D2ϕ,ϕ)
‖ϕ‖2

}
.

For every ϕ ∈ Γc(ΣM) the identity (D2ϕ,ϕ) = ‖Dϕ‖2 holds (Proposition 1.3.4),
moreover (3.3) is valid on every Riemannian spin manifold provided ϕ is smooth
and has compact support, therefore inequality (7.1) is satisfied. �

As a consequence, if furthermore (Mn, g) is complete with scalar curvature uni-
formly bounded below by a positive constant S0, then the spectrum of D satisfies
σ(D) ⊂ ]−∞,−

√
nS0

4(n−1) ]∪ [
√

nS0
4(n−1) ,∞[, see [47, Cor. 3.2]. In analogy with the

compact setting, the equality λ2 = n
4(n−1) infM (S) > 0 for some eigenvalue λ

of D on the complete Riemannian manifold (Mn, g) implies the existence of a
non-zero real non-parallel Killing spinor on (Mn, g) [47, Thm. 3.4], in partic-
ular the manifold must be Einstein and closed (Proposition A.4.1). Here one
should beware that it is a priori not clear whether ‖∇ϕ‖ is finite or not for
a non-zero eigenvector ϕ of D. Nevertheless this can be proved with the help
of standard functional analytical techniques [47, Lemma 3.3]. The finiteness of
‖∇ϕ‖ implies in turn that of ‖Pϕ‖ (see (A.11)), therefore (3.3) makes sense for
ϕ being an eigenvector of D and the statement follows as in the compact setting.

Combining Theorem 7.3.1 with the decomposition principle (Proposition 7.1.3)
provides a positive lower bound on the essential spectrum of D as soon as the
scalar curvature is bounded below “at infinity”: if (Mn, g) is again arbitrary and
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contains a compact subset K for which there exists a positive constant S0 with
infM\K(S) ≥ S0, then min(σe(D2)) ≥ n

4(n−1)S0 [47, Thm. 4.1]. In particular,
the Dirac operator on (Mn, g) has no essential spectrum as soon as the scalar
curvature explodes at infinity [47, Cor. 4.3]. This is a particular situation where
one of both components of the Dirac spectrum does not appear, see Section 7.4
for further results.

A natural question arising from Theorem 7.3.1 is whether conformal lower
bounds for the Dirac spectrum can be obtained as in the compact setting. There
is no complete answer to that question. In the case of surfaces an analog of Bär’s
inequality (3.17) holds, at least when the surface has finite area and can be em-
bedded into S2 so as to inherit its spin structure:

Theorem 7.3.2 (C. Bär [47]) Let (M2, g) be a connected surface of finite
area embedded into S2 and carrying the induced spin structure. Then

min(σ(D2)) ≥ 4π
Area(M2, g)

.

Theorem 7.3.2 follows from (3.17) using the above-mentioned characterization
of min(σ(D2)) and a suitable sequence of metrics so as to make the area of M2

close to that of S2.
In higher dimensions there exists no general analog of Hijazi’s inequality (3.18),
since for example the spectrum of the conformal Laplace operator on the real hy-
perbolic space RHn for n ≥ 3 is [n−1

n−2 ,∞[. However the corresponding inequality
can be obtained under additional geometric assumptions:

Theorem 7.3.3 (N. Große [118]) Let (Mn, g) be any n(≥ 3)-dimensional
complete Riemannian spin manifold with finite volume and let λ ∈ σ(D). As-
sume that either λ ∈ σd(D) or λ ∈ σe(D) and n ≥ 5 as well as S ≥ S0 for some
S0 ∈ R. Then

λ2 ≥ n

4(n− 1)
min(σ(L)), (7.2)

where L := 4(n−1)
n−2 ∆ + S is the conformal Laplace operator and S is the scalar

curvature of (Mn, g).

The two situations according to λ ∈ σd(D) or λ ∈ σe(D) require different
approaches. In the case where λ is a eigenvalue of D, the proof consists in
adapting that of Corollary 3.3.2 using a conformal factor given by the length of
the corresponding eigenvector and cutting off near its zero-set and at infinity.
The second case, where the supplementary assumptions n ≥ 5 and S ≥ S0 are
needed for technical reasons, relies on a Kato-type inequality [118, Lemma 2.1],
we refer to [118, Sec. 4] for details. Moreover, as for inequality (7.1), equality
in (7.2) for some non-zero eigenvalue λ implies the existence of a non-zero real
non-parallel Killing spinor on (Mn, g), in particular (Mn, g) must be Einstein
and closed [118, Thm. 1.1].
Interestingly enough, the analog of the so-called conformal Hijazi inequality
(3.20) also turns out to hold under suitable geometric assumptions. Given an
n-dimensional manifold M with Riemannian metric g and spin structure ε, set

λ+
1 (M, g, ε) := inf

ϕ∈Γc(ΣM)

(Dϕ,ϕ)>0

{ ‖Dϕ‖2
(Dϕ,ϕ)

}
,
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where D := Dg. The corresponding conformal invariant is defined by

λ+
min(Mn, [g], ε) := inf

g∈[g]
Vol(M,g)<∞

λ+
1 (M, g, ε) ·Vol(M, g)

1
n ,

where [g] denotes a Riemannian conformal class on M .

Theorem 7.3.4 (N. Große [118]) Let Mn be any n(≥ 3)-dimensional mani-
fold with Riemannian conformal class [g] and spin structure ε. Assume the exis-
tence of a complete metric with finite volume in [g] as well as λ+

min(Mn, [g], ε) >
0. Then

λ+
min(Mn, [g], ε)2 ≥ n

4(n− 1)
inf
g∈[g]

Vol(M,g)<∞

min(σ(Lg)) ·Vol(M, g)
2
n , (7.3)

where Lg denotes the conformal Laplace operator on (Mn, g).

The assumption λ+
min(Mn, [g], ε) > 0 actually implies σe(Dg) ⊂] − ∞, 0] for

every complete g ∈ [g] with finite volume [118, Lemma 3.3]. As an example, if
(Nn−1, h) is any closed Riemannian spin manifold with positive scalar curvature
and n ≥ 5, then the Riemannian product (N × R, h ⊕ dt2) endowed with the
product spin structure satisfies the assumptions of Theorem 7.3.4, therefore (7.3)
holds [118, Ex. 4.1], where the r.h.s. can be shown to be positive (see reference
in [118]). However the cases n = 3, 4 remain open.

7.4 Absence of a spectral component

There are particular situations where one of both components of the Dirac
spectrum can be excluded out of geometric considerations. This kind of ques-
tion has attracted a lot of attention in the last years. We choose to present here
five different settings with sometimes non-empty mutual intersection. Two of
them deal with manifolds with cusps. A manifold with cusps can be written as
the disjoint union of a compact manifold with non-empty boundary together
with cusps, which are Riemannian manifolds of the form (]0,∞[×N, dt2 ⊕ gt)
for some smooth 1-parameter-family of Riemannian metrics on the manifold N .

First consider an oriented complete n-dimensional hyperbolic manifold (recall
that a metric is called hyperbolic if it has constant sectional curvature −1).
Assume it to have finite volume. Then M can be shown to possess a finite
number of cusps of the form (]0,∞[×Nn−1, dt2⊕ e−2tgflat) for some flat metric
on some closed manifold Nn−1 (see reference in [44]). If M is spin, then any
spin structure on M induces a spin structure on each cusp and hence on each
Nn−1-factor. We call the spin structure trivial along a cusp if the Dirac operator
of the corresponding N has non-zero kernel and non-trivial otherwise. Since by
the decomposition principle (Proposition 7.1.3) the essential spectrum of D is
unaffected by perturbations on a compact subset, it can be only influenced by
the geometry of the cusps. As a striking fact, it turns out to depend only on
the spin structure on M , where one obtains the following dichotomy as shown
by C. Bär [44, Thm. 1]:
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Theorem 7.4.1 (C. Bär [44]) Let (Mn, g) be an n(≥ 2)-dimensional com-
plete hyperbolic spin manifold of finite volume.

i) If the spin structure of M is trivial along at least one cusp, then σe(D) =
R, in particular σ(D) = σe(D) = R.

ii) If the spin structure of M is non-trivial along all cusps, then σe(D) = ∅,
in particular σ(D) = σd(D).

Explicit 3-dimensional examples constructed out of complements of knots are
given in [44] where both possibilities occur according to the parity of the linking
numbers, see [44, Thm. 4].

Theorem 7.4.1 has been generalized in several ways. W. Ballmann and J. Brüning
[33, Thm. E] have proved that the conclusion of Theorem 7.4.1.ii) holds as soon
as the sectional curvature is assumed to be pinched in ] −∞, 0[ and the cusp
metric is of general warped product type:

Theorem 7.4.2 (W. Ballmann and J. Brüning [33, 34]) Let (Mn, g) be a-
ny n(≥ 2)-dimensional complete Riemannian spin manifold with finitely many
cusps. Assume that, on each cusp, the metric g has sectional curvature in
[−b2,−a2] with 0 < a < b < ∞ and that w.r.t. the induced spin structure
the Dirac operator of (N, gt) has trivial kernel for large enough t.
Then σe(D) = ∅, in particular σ(D) = σd(D).

The case of a non-complete underlying manifold (Mn, g) is somewhat more
delicate to handle since there are no cusps in general. A geometric situation
where Theorem 7.4.1 can be generalized has been discovered by A. Moroianu and
S. Moroianu [207, Thm. 2.1]. Their setting appears as natural when considering
the existence of Poincaré-Einstein metrics, where the metric is required to be
conformal to a product metric at infinity.

Theorem 7.4.3 (A. Moroianu and S. Moroianu [207]) Let Mn be any con-
nected n-dimensional spin manifold with non-empty boundary ∂M . Consider a
Riemannian metric g on M of the form g = dx2 ⊕ g∂M in a neighbourhood
of ∂M , where x : M −→ [0,∞[ is the distance function to ∂M and g∂M is a
Riemannian metric on ∂M . For f ∈ C∞(M \ ∂M, ]0,∞[) which only depends
on x in a neighbourhood of ∂M set g := f2g on M \ ∂M .
If
∫ r

0
f(x)dx = ∞ for some r ∈]0,∞[ and the Dirac operator of (∂M, g∂M ) is

essentially self-adjoint in L2(Σ∂M), then the Dirac operator of (M \∂M, g) has
no point spectrum.

The condition
∫ r

0
f(x)dx = ∞ imposes the boundary ∂M to be at infinite dis-

tance from its complement in M w.r.t. g. Theorem 7.4.3 enhances an earlier re-
sult by J. Lott [188, Thm. 1]. As an application of Theorem 7.4.3, A. Moroianu
and S. Moroianu showed the following: if (Mn, g) is a complete Riemannian
manifold carrying an incomplete vector field which, outside a compact subset,
vanishes nowhere, is conformal and at the same time the gradient of a func-
tion, then σ(D) = σe(D) (see [207, Thm. 4.1]). Note that the incompleteness
assumption on the vector field is essential because of Theorem 7.4.1.ii) (take
e.g. X := e−t ∂∂t along a cusp) [207, Rem. 4.4]). Further applications of Theorem
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7.4.3 as well as references are discussed in [207, Sec. 5].

Theorem 7.4.3 was also inspired by an earlier work of S. Moroianu [210, Thm.
1 & Thm. 2], where the geometric condition

∫ r
0
f(x)dx =∞ is replaced by the

invertibility of the Dirac operator on the boundary as in the spirit of Theorem
7.4.1.ii):

Theorem 7.4.4 (S. Moroianu [210]) Let Mn be any compact connected n-
dimensional spin manifold with non-empty boundary ∂M . Consider a Rieman-
nian metric g on M which in some local coordinates near ∂M is of the form

g = a00(x, y)
dx2

x4
+
n−1∑
j=1

a0j(x, y)
dxdyj
x2

+
n−1∑
i,j=1

aij(x, y)dyidyj ,

where x : M −→ [0,∞[ is the distance function to ∂M , aαβ ∈ C∞(M ×M,R)
with

(
aij(0, y)

)
1≤i,j≤n−1

positive definite. Set g∂M :=
∑n−1
i,j=1 aij(0, y)dyidyj

and, for p > 0, g := x2pg on M \ ∂M .
If a00(0, y) = a0j(0, y) = 1 for every 1 ≤ j ≤ n and the Dirac operator of
(∂M, g∂M ) is invertible, then the Dirac operator of (M \ ∂M, g) is essentially
self-adjoint and has no essential spectrum.

The particular form of the metric near the boundary in Theorem 7.4.4 allows
furthermore the existence of a nice Weyl’s asymptotic estimate for the eigen-
value counting function [210, Thm. 3].

In the radically different situation where the curvature is non-negative, one still
may guarantee the point spectrum to be empty or almost empty. However the
hypotheses needed are much stronger. Let (Mn, g) be geodesically starshaped
w.r.t. some point x0. Assume the scalar curvature of (Mn, g) to be non-negative
and that particular parts of the sectional curvature remain pointwise pinched in
[0, c(n)

r2 ], where r is the distance function from x0 and c(n) is a positive constant
depending explicitly on n. Then σd(D) = ∅ or {0} as shown by S. Kawai [157,
Thm. 3].



Chapter 8

Other topics related with
the Dirac spectrum

We outline the main topics in relation with the spectrum of Dirac operators
that have been left aside in this overview.

8.1 Other eigenvalue estimates

As we have seen in Section 2.2, the Dirac operator on homogeneous spaces can
be described as a family of matrices using the decomposition of the space of L2-
sections of ΣM into irreducible components. What happens if the homogeneity
assumption is slightly weakened? This question has first been addressed by
M. Kraus in the cases of isometric SOn-actions and warped products over S1

respectively. Although the explicit knowledge of the Dirac spectrum becomes
out of reach, the eigenvalues can still be approximated in a reasonable way.

Theorem 8.1.1 (M. Kraus [169, 170]) For n ≥ 2, let g be any Rieman-
nian metric on Sn such that SOn acts isometrically on (Sn, g). Write fn−1

max ·
Vol(Sn−1, can) for the maximal volume of the orbits of the SOn-action. Then
the Dirac spectrum of (Sn, g) is symmetric about the origin,

λ1(D2
Sn,g) ≥

(n− 1)2

4f2
max

and there are at most 2[n2 ] ·
(
n− 1 + k

k

)
eigenvalues of D2

Sn,g in the interval

[ (n−1
2 +k)2

f2
max

,
(n−1

2 +k+1)2

f2
max

[, for every nonnegative integer k.

The proof of Theorem 8.1.1 relies on the following arguments: the SOn-action
allows a dense part of (Sn, g) to be written as a warped product of Sn−1 with an
interval. On this dense part the eigenvalue problem on (Sn, g) translates into a
singular nonlinear differential equation of first order with boundary conditions
at both ends. The rest of the proof involves Sturm-Liouville theory, we refer to
[170] for details.
Note that the inequality in Theorem 8.1.1 is not sharp for the standard metric

109
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on Sn since λ1(D2
Sn,can) = n2

4 (see Theorem 2.1.3). However Theorem 8.1.1
provides sharp asymptotical eigenvalue estimates in the two following situations.
First consider the cylinder Cn(L) :=]0, L[×Sn−1 with half n-dimensional spheres
glued at both ends. Obviously Cn(L) admits an isometric SOn-action for which
fmax = 1, in particular Theorem 8.1.1 implies that λ1(D2

Cn(L)) ≥
(n−1)2

4 . On
the other hand, Cn(L) sits in Rn+1 by construction; now C. Bär’s upper bound
(5.19) in terms of the averaged total squared mean curvature is not greater than

(n− 1)2LVol(Sn−1, can) + n2Vol(Sn, can)
4(LVol(Sn−1, can) + Vol(Sn, can))

,

so that [170]

lim
L→∞

λ1(D2
Cn(L)) =

(n− 1)2

4
.

For the 2-dimensional ellipsoid Ma := {x ∈ R3 |x2
1 +x2

2 + x2
3
a2 = 1} (where a > 0)

the maximal length of S1-orbits is 2π, so that by Theorem 8.1.1 the inequality
λ1(D2

Ma
) ≥ 1

4 holds. Combining this with the upper bound (5.8) provides [169]

lim
a→∞

λ1(D2
Ma

) =
1
4
.

The technique of separation of variables used in the proof of Theorem 8.1.1
also provides a lower eigenvalue bound on warped product fibrations over S1 in
terms of the Dirac eigenvalues of the fibres, see [171, Thm. 2]. As for the case of
higher dimensional fibres over arbitrary base manifolds, the only family which
has been considered so far is that of warped products with fibre Sk with k ≥ 2,
where decomposing the Dirac operator into block operator matrices provides
similar results to those of Theorem 8.1.1, see [173].

Another natural but completely different way to study the Dirac eigenvalues
consists in comparing them with those of other geometric operators. Hijazi’s
inequality (3.18) is already of that kind since µ1 is the smallest eigenvalue of
the conformal Laplace operator. As for spectral comparison results between
the Dirac and the scalar Laplace operators, the first ones were proved by M.
Bordoni. They rely on a very nice general comparison principle between two
operators satisfying some kind of Kato-type inequality. The estimate which can
be deduced reads as follows.

Theorem 8.1.2 (M. Bordoni [63]) Let 0 = λ0(∆) < λ1(∆) ≤ λ2(∆) ≤ . . .
be the spectrum of the scalar Laplace operator ∆ on a closed n(≥ 2)-dimensional
Riemannian spin manifold (Mn, g). Then for any positive integer N [63, Prop.
4.20]

λ2N (D2) ≥ n

4(n− 1)

(
inf
M

(S) +
λk(∆)

2(2[n2 ] + 1)2

)
, (8.1)

where k = [ N

2[n2 ]+1
].

In particular Bordoni’s inequality (8.1) implies Friedrich’s inequality (3.1) as
well as the presence of at most 2[n2 ]+1 eigenvalues of D2 in the interval

[
n

4(n− 1)
inf
M

(S),
n

4(n− 1)

(
inf
M

(S) +
λ1(∆)

2(2[n2 ] + 1)2

)
[,



8.2. SPECTRAL GAP 111

see Section 8.2 for further results on the spectral gap.
Bordoni’s results were generalized by M. Bordoni and O. Hijazi in the Kähler
setting [64], where essentially the Friedrich-like term in the lower bound must
be replaced by the Kirchberg-type one of inequality (3.10) in odd complex di-
mension.
Comparisons between Dirac and Laplace eigenvalues which go the other way
round can be obtained in particular situations. In the case of surfaces, J.-F.
Grosjean and E. Humbert proved the following (see also [22]).

Theorem 8.1.3 (J.-F. Grosjean and E. Humbert [116]) Let [g] be a con-
formal class on a closed orientable surface M2 with fixed spin structure, then
[116, Cor. 1.2]

inf
g∈[g]

(λ1(D2
g )

λ1(∆g)

)
≤ 1

2
, (8.2)

where here λ1(D2
g ) denotes the smallest positive eigenvalue of D2

g .

Inequality (8.2) is optimal and sharp for M2 = S2: indeed for any Riemannian
metric g one has λ1(D2

S2,g) ≥
λ1(∆S2,g)

2 as a straightforward consequence of Bär’s
inequality (3.17) and Hersch’s inequality (3.22). Moreover, (8.2) completes [1]
where I. Agricola, B. Ammann and T. Friedrich prove the existence of a 1-
parameter family (gt)t≥0 of S1-invariant Riemannian metrics on T2 for which,
in the same notations as just above, λ1(∆T2,gt) < λ1(D2

T2,gt
) for any t ≥ 0,

where T2 is endowed with its trivial spin structure. The inequality λk(∆T2,g) ≥
λk(D2

T2,g) for k large enough and for particular metrics g on T2 with trivial spin
structure has been proved independently by M. Kraus [172].
In the case where the manifold sits as a hypersurface in some spaceform, the
best known result is the following.

Theorem 8.1.4 (C. Bär [43]) Let (Mn, g) be isometrically immersed into Rn+1

or Sn+1 and carry the induced spin structure, then [43, Thm. 5.1]

λN (D2) ≤ n2

4

(
sup
M

(H2) + κ
)

+ λ[N−1
2µ ](∆) (8.3)

for every positive N ∈ N, where κ ∈ {0, 1} denotes the sectional curvature of
the ambient space, H denotes the mean curvature of Mn and µ is the integer
defined by µ := [n+1

2 ]− nmod 2.

Inequality (8.3) follows from the min-max principle and from (5.16) where one
chooses f to be an eigenfunction of ∆ and ψ to be the restriction of a non-zero
Killing spinor.

8.2 Spectral gap

Another method to obtain information on the eigenvalues consists in estimating
their difference, which is called the spectral gap. Initiated by H.C. Yang (see
reference in [79]) for the scalar Laplacian, this approach turns out to provide
similar results for the Dirac operator. The proof of the following theorem relies
on the min-max principle and a clever input of coordinate functions of the
immersion into the Rayleigh quotient, see [79] for details.
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Theorem 8.2.1 (D. Chen [79]) Let (Mn, g) be any n-dimensional closed im-
mersed Riemannian spin submanifold of RN for some N ≥ n + 1. Denote the
spectrum of D2 by {λj(D2)}j≥1 and set, for every j ≥ 1,

µj := λj(D2) +
1
4
(
n2 sup

M
(H2)− inf

M
(S)
)
,

where H and S are the mean and the scalar curvature of M respectively. Then
for any k ≥ 1

k∑
j=1

(µk+1 − µj)(µk+1 − (1 +
4
n

)µj) ≤ 0. (8.4)

Note that the codimension of M is arbitrary and that no compatibility condi-
tion between the spin structure of M and that of RN is required. Elementary
computations show that inequality (8.4) implies

µk+1 ≤
1
k

(1 +
4
n

)
k∑
j=1

µj ,

which itself provides

µk+1 − µk ≤
4
nk

k∑
j=1

µj ,

which had been shown independently by N. Anghel [29]. In particular precise
estimates on the growth rate of the Dirac eigenvalues can be deduced. Theorem
8.2.1 has been extended by D. Chen and H. Sun to holomorphically immersed
submanifolds of the complex projective space [80, Thm. 3.2].

8.3 Pinching Dirac eigenvalues

If Friedrich’s inequality (3.1) is an equality for the smallest eigenvalue λ1(D2),
then from Theorem 3.1.1 and Proposition A.4.1 the underlying Riemannian
manifold must be Einstein, which is a quite rigid geometric condition. Does the
manifold remain “near to” Einstein if λ1(D2) - or at least some lower eigen-
value - is close enough to Friedrich’s lower bound? This kind of issue is designed
under the name eigenvalue pinching. It addresses the continuous dependence of
the geometry on the spectrum, in a sense that must be precised. We denote in
the rest of this section by Ksec, diam and S the sectional curvature, diameter
and scalar curvature of a given Riemannian manifold respectively. We also call
two spin manifolds spin diffeomorphic if there exists a spin-structure-preserving
diffeomorphism between them.

The first pinching result for Dirac eigenvalues is due to B. Ammann and C.
Sprouse. It deals with the case where the scalar curvature almost vanishes. Tori
with flat metric and trivial spin structure carry a maximal number of linearly
independent parallel (hence harmonic) spinors. Theorem 8.3.1 below states that,
under boundedness assumptions for the diameter and the sectional and scalar
curvatures, one stays near to a flat torus in case some lower Dirac eigenvalue is
not too far away from 0. Recall that a nilmanifold is the (left or right) quotient
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of a nilpotent Lie group by a cocompact lattice. If a (left or right) invariant
metric is fixed on the nilmanifold, then the trivial lift of the lattice to the spin
group provides a spin structure called the trivial one, see Proposition 1.4.2 for
spin structures on coverings.

Theorem 8.3.1 (B. Ammann and C. Sprouse [28]) Let K, d be positive real
constants, n ≥ 2 be an integer, r := 1 if n = 2, 3 and r := 2[n2 ]−1 + 1 if n ≥ 4.
Then there exists an ε = ε(n,K, d) > 0 such that every n-dimensional closed
Riemannian spin manifold (Mn, g) with

|Ksec(Mn, g)| < K, diam(Mn, g) < d, S(Mn, g) > −ε and λr(D2
Mn,g) < ε

is spin diffeomorphic to a nilmanifold with trivial spin structure.

Theorem 8.3.1 implies the existence of a uniform lower eigenvalue bound for the
Dirac operator in the following family: there exists an ε = ε(n,K, d) > 0 such
that on every n-dimensional closed Riemannian spin manifold (Mn, g) with
|Ksec(Mn, g)| < K, diam(Mn, g) < d, S(Mn, g) > −ε and which is not spin
diffeomorphic to a nilmanifold with trivial spin structure the rth eigenvalue of
D2 satisfies

λr(D2) ≥ ε.

The choice for r, which looks a priori curious, is actually optimal since the
product of a so-called K3-surface with a torus carries exactly r − 1 linearly
independent parallel spinors, see [28, Ex. (2) p.411]. The proof of Theorem 8.3.1
makes use of an approximation result by U. Abresch (see reference in [28]) in
an essential way, we refer to [28, Sec. 7] for details.
Under the supplementary assumption of a lower bound on the volume, the metric
can even be shown to stay near to some with parallel spinors.

Theorem 8.3.2 (B. Ammann and C. Sprouse [28]) Let K, d, V, δ be posi-
tive real constants, n ≥ 2 be an integer, r := 1 if n = 2, 3 and r := 2[n2 ]−1 + 1
if n ≥ 4. Then there exists an ε = ε(n,K, d, V, δ) > 0 such that for every
n-dimensional closed Riemannian spin manifold (Mn, g) with

|Ksec(Mn, g)| < K, diam(Mn, g) < d, S(Mn, g) > −ε, Vol(Mn, g) > V

and λr(D2
Mn,g) < ε, the metric g is at C1,α-distance at most δ to a metric

admitting a non-zero parallel spinor.

The proof of Theorem 8.3.2 relies on a similar general eigenvalue pinching valid
for arbitrary rough Laplacians on arbitrary vector bundles due to P. Petersen
(see reference in [28]) and on the Schrödinger-Lichnerowicz formula (3.2). Pe-
tersen’s method can also be applied to the rough Laplacian associated to the
deformed covariant derivative X 7→ ∇X + ρX· and in this case it provides the
following:

Theorem 8.3.3 (B. Ammann and C. Sprouse [28]) Let K, d, V, ρ, δ be po-
sitive real constants, n ≥ 2 be an integer, r := 1 if n = 2, 3 and r := 2[n2 ]−1 + 1
if n ≥ 4. Then there exists an ε = ε(n,K, d, V, ρ, δ) > 0 such that for every
n-dimensional closed Riemannian spin manifold (Mn, g) with

|Ksec(Mn, g)| < K, diam(Mn, g) < d, Vol(Mn, g) > V, S(Mn, g) ≥ n(n− 1)ρ2
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and λr(D2
Mn,g) <

n2ρ2

4 +ε, the metric g is at C1,α-distance at most δ to a metric
with constant sectional curvature ρ2.

Note that the bound on the sectional curvature is necessary because of Bär-
Dahl’s result [49] discussed in Section 3.2. However the minimal number r nec-
essary for the result to hold can be enhanced.

Theorem 8.3.4 (A. Vargas [237]) The conclusion of Theorem 8.3.3 holds
with

r :=
{

3 if n = 6 or n ≡ 1 (4)
n+9

4 if n ≡ 3 (4).

8.4 Spectrum of other Dirac-type operators

Up to now we have concentrated onto the fundamental (or spin) Dirac operator
on a spin manifold. As already mentioned at the beginning of Chapter 1, Dirac-
type operators may be defined in the more general context where a so-called
Clifford bundle [178, Sec. II.3] is at hand. Roughly speaking, a Clifford bundle
is given by a Hermitian vector bundle together with a covariant derivative and
on which the tangent bundle acts by Clifford multiplication such that all three
objects (Hermitian metric, covariant derivative and Clifford multiplication) are
compatible with each other in the sense of Definition 1.2.2 and Proposition
1.2.3. The associated Dirac operator is defined as the Clifford multiplication
applied to the covariant derivative. One may add a zero-order term and obtain
a so-called Dirac-Schrödinger operator. In this section we discuss spectral re-
sults in relation with the spinc Dirac operator, with twisted Dirac-Schrödinger
operators, with Dirac operators associated to particular geometrically relevant
connections, with the basic Dirac operator and in the pseudo-Riemannian set-
ting.

First, the concept of spin structure may be weakened to that of spinc structure,
whose structure group is the spinc group Spincn := Spinn × S1

/Z2
. Such a struc-

ture comes along with a S1-principal bundle, or equivalently with a complex
line bundle L. We do not want to define spinc structures more precisely but
mention that all spin manifolds are spinc and that all almost-Hermitian mani-
folds have a canonical spinc structure [178, App. D]. Moreover the choice of a
covariant derivative on the line bundle induces a covariant derivative and hence
a Dirac operator on the associated spinor bundle over the underlying manifold.
In that case it can be expected that most of the results valid for the spin Dirac
operator remain valid for the spinc one, except that the curvature of the line
bundle must in some situations be taken into account. For example, M. Herzlich
and A. Moroianu proved the analog of Hijazi’s inequality (3.18) in the spinc

context: denote by ω the curvature form of the line bundle L and by µ1 the
smallest eigenvalue of the scalar operator Lω := 4n−1

n−2∆ + S − 2[n2 ]
1
2 |ω|, then

any eigenvalue λ of the spinc Dirac operator satisfies [130, Thm. 1.2]

λ2 ≥ n

4(n− 1)
µ1.

We note however that little has been done in the spinc context in comparison
with the spin one.
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If the underlying space is again our familiar spin manifold (Mn, g) and if we
choose an arbitrary Riemannian or Hermitian vector bundle E over M , then
the tensor product bundle ΣM ⊗ E carries a canonical Clifford multiplication
(extend the Clifford multiplication by the identity on the second factor). If
we endow E with a metric covariant derivative, then we obtain a structure of
Clifford bundle and an associated Dirac operator called Dirac operator of M
twisted with E. This operator is usually denoted by DE

M . For example, the
Euler operator d+ δ can be seen as the Dirac operator of M twisted with ΣM :
this follows essentially from (1.2) and may actually be stated without any spin
structure onM [178, Sec. II.6]. Another prominent example is the Dirac operator
of a spin submanifold twisted with the spinor bundle of its normal bundle (where
the latter is assumed to be spin). Various studies have been devoted to the
spectrum of twisted Dirac operators, therefore we restrict ourselves to a few
ones which we hope to be representative. We include all that concerns Dirac-
Schrödinger operators, since in that case the zero order term mainly translates
the upper or lower bounds by a constant.
Let first E be as above, M be closed and f be a smooth real function on
M . Denote by κ1 the smallest eigenvalue on M of the pointwise linear operator
−2
∑n
k,l=1 ek ·el ·REek,el , where RE is the curvature tensor of the chosen covariant

derivative on E (and (ek)1≤k≤n is a local o.n.b. of TM). If the inequalities
n(S + κ1) > (n − 1)f2 > 0 hold on M , then any eigenvalue λ of the Dirac-
Schrödinger operator DE

M − f acting on Γ(ΣM ⊗ E) satisfies [108, Prop. 4.1]

λ2 ≥ 1
4

inf
M

(√ n

n− 1
(S + κ1)− |f |

)2

. (8.5)

Inequality (8.5), which can be deduced from a clever choice of modified covariant
derivative, stands for the analog of Friedrich’s inequality in this context, see
[108] for other kinds of estimates and references to earlier works on that topic
(such as [202]). In the particular case where n = 4, f = 0, E is arbitrary and
carries a selfdual covariant derivative, the estimate (8.5) can be enhanced using
the decomposition ΣM = Σ+M ⊕ Σ−M and the vanishing of one half of the
auxiliary curvature term computed from RE : H. Baum proved [55, Thm. 2] that

λ2 ≥ 1
3

inf
M

(S)

for any eigenvalue λ of DE
M , which is exactly Friedrich’s inequality (3.1) for the

eigenvalues of the spin Dirac operator.
Staying in dimension 4, if the spin manifold (M4, g) carries a Hermitian structure
J (i.e., an orthogonal complex structure on TM) then one is led to the Dolbeault

operator
√

2(∂ + ∂
∗
) twisted with E = K

1
2
M , where K

1
2
M is the square-root of

the canonical line bundle KM := Λ2
CT
∗M which determines the spin structure.

Although Kirchberg’s inequality (3.10) does not apply, sharp lower bounds for
the eigenvalues of the Dolbeault operator are still available: B. Alexandrov, G.
Grantcharov and S. Ivanov proved [6, Thm. 2] that

λ2 ≥ 1
6

inf
M

(S)

for any eigenvalue λ of
√

2(∂ + ∂
∗
). Beware that equality cannot occur for a

non-flat Kähler metric because of (3.10). The proof of that inequality relies on
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Weitzenböck formulas and the clever choice of twistor operators associated to
a canonical one-parameter-family of Hermitian connections, we refer to [6] for
details. Besides, we mention that upper eigenvalue bounds for particular twisted
Dirac operators have been obtained in [55], [43] and [104].

From the point of view of geometers investigating the integrability of particular
G-structures, there exists another interesting family of Dirac-type operators
which are usually denoted by D

1
3 and defined by D

1
3 := Dg + T

4 ·, where T is
some given 3-form and Dg is the spin Dirac operator on the Riemannian spin
manifold (Mn, g). For example if (Mn, g) is a so-called reductive homogeneous
space then D

1
3 is the so-called Kostant Dirac operator (see reference in [3]); if

(Mn, g) is a Hermitian manifold then D
1
3 coincides with the Dolbeault-operator

defined just above. In case T is the characteristic torsion of a 5-dimensional
closed spin Sasaki manifold with scalar curvature bounded from below, the use
of suitable deformations of the connection by polynomials of the torsion form
allowed I. Agricola, T. Friedrich and M. Kassuba to prove the following estimates
of any eigenvalue λ of (D

1
3 )2 [3, Thm. 4.1]:

λ ≥

∣∣∣∣∣∣
1
16 (1 + 1

4 infM (S))2 if − 4 < S ≤ 4(9 + 4
√

5)

5
16 infM (S) if S ≥ 4(9 + 4

√
5).

Equality holds if (M5, g) is η-Einstein (see [3] for a definition). Surprisingly
enough the first lower bound depends quadratically on the scalar curvature,
which makes the estimate better for small S. We refer to [3] for the proof. We
also note that in the context of contact metric manifolds (which have a canonical
spinc structure) Weitzenböck formulas for the Dirac operator associated to the
so-called Tanaka-Webster connection have also been produced in order to prove
vanishing theorems [211], however no study of the spectrum is still available.

Sasaki manifolds can also be viewed as particular foliated Riemannian manifolds.
Spin structures can be defined on Riemannian foliations in much the same way
as on the tangent bundle and an associated covariant derivative and Dirac op-
erator may be defined which are called the transversal covariant derivative and
transversal Dirac operator respectively. The transversal Dirac operator, which
acts on the space of basic spinors (spinors whose transversal covariant deriva-
tives vanish along all directions normal to the leaves), is in general not formally
self-adjoint, therefore one considers the symmetrized operator called basic Dirac
operator of the foliation and denoted by Db. It is a not-so-straightforward adap-
tation of the proof of Friedrich’s inequality by G. Habib and K. Richardson to
show that any eigenvalue λ of Db on a closed underlying manifold (Mn, g)
satisfies [126, Eq. (1.1)]

λ2 ≥ q

4(q − 1)
inf
M

(Str),

where q ≥ 2 stands for the codimension of the foliation and Str for its transver-
sal scalar curvature. In case the normal bundle of the foliation carries a Kähler
or a quaternionic Kähler structure, analogs of Kirchberg’s inequality (3.10) and
of (3.15) can also be derived [155, 156, 124, 123, 122].
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To close this section we mention the only result known to us about the spectrum
of the Dirac operator in the pseudo-Riemannian (non-Riemannian) setting. First
spin structures require the pseudo-Riemannian manifold to be simultaneously
space- and time-oriented in order to be well-defined, see [52] or [56, Sec. 2]. In
that case the choice of a maximal timelike subbundle induces an L2-Hermitian
inner product on the space of spinors. Unlike its Riemannian version the as-
sociated (spin) Dirac operator is neither formally self-adjoint w.r.t. that inner
product nor elliptic. However H. Baum could show with the help of suitable
endomorphisms of the spinor bundle commuting or anti-commuting with the
Dirac operator that the point spectrum, the continuous spectrum and the resid-
ual spectrum of the Dirac operator on any even-dimensional pseudo-Riemannian
manifold are symmetric w.r.t. the real and imaginary axes. We refer to [56] for
further statements and the proof.

8.5 Conformal spectral invariants

In this section we are interested in two invariants associated to the Dirac spec-
trum. A good reference for the whole section is [153]. Given a closed spin man-
ifold Mn with fixed conformal class [g] and spin structure denoted by ε, let
λ1(D2

M,g) be the smallest eigenvalue of the square of the Dirac operator of
(Mn, g). The Bär-Hijazi-Lott invariant [13, eq. (2.4.1) p.12] of (Mn, [g], ε) is
the nonnegative real number λmin(Mn, [g], ε) defined by

λmin(Mn, [g], ε) := inf
g∈[g]

(√
λ1(D2

M,g) ·Vol(M, g)
1
n

)
.

Of course the expression on the r.h.s. is chosen so as to remain scaling-invariant.
By definition λmin(Mn, [g], ε) is a conformal invariant. The Bär-Hijazi-Lott in-
variant is tightly connected to and behaves much like the Yamabe invariant. In-
deed, it already follows from Bär’s inequality (3.17) and from Hijazi’s inequality
(3.20) that

λmin(M2, [g], ε)2 ≥ 2πχ(M2) and λmin(Mn, [g], ε)2 ≥ n

4(n− 1)
Y (M, [g])

(8.6)
for every n ≥ 3, where χ(M2) and Y (M, [g]) are the Euler characteristic and
the Yamabe invariant respectively. For M2 = S2 this implies that the Bär-
Hijazi-Lott invariant is positive. More generally, as a consequence of J. Lott’s
estimate (3.21), the Bär-Hijazi-Lott invariant is positive as soon as the Dirac
operator is invertible for some - hence any - metric in the conformal class.
In particular λmin(Mn, [g], ε) vanishes if and only if (Mn, g) admits non-zero
harmonic spinors. Generalizing J. Lott’s Sobolev-embedding techniques [187] to
the case where the Dirac kernel is possibly non-trivial, B. Ammann showed the
positivity of inf

g∈[g]

(√
λ+(D2

M,g) ·Vol(M, g)
1
n

)
to hold true in general [12, Thm.

2.3], where λ+(D2
M,g) denotes the smallest positive eigenvalue of D2

M,g. As an
example, the Bär-Hijazi-Lott invariant of Sn (n ≥ 2) with standard conformal

class [can] and canonical spin structure is given by n
2ω

1
n
n , where ωn is the volume

of Sn carrying the metric of sectional curvature 1 (denoted by “can”): this
follows from Corollaries 3.3.2 and 3.3.3 together with λ1(D2

Sn,can) = n2

4 and
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Y (Sn, [can]) = n(n− 1)ω
2
n
n if n ≥ 3.

In a similar way as for the Yamabe invariant, the Bär-Hijazi-Lott invariant
cannot be greater than that of the sphere: if n ≥ 2 then
inf
g∈[g]

(√
λ+(D2

M,g) ·Vol(M, g)
1
n

)
≤ λmin(Sn, [can]), in particular

λmin(Mn, [g], ε) ≤ λmin(Sn, [can]). (8.7)

This was proved by B. Ammann [12, Thm. 3.1 & 3.2] for n ≥ 3 or M2 = S2

and by B. Ammann, J.-F. Grosjean, E. Humbert and B. Morel [22, Thm. 1.1]
in general. The proof relies on a suitable cut-off argument performed on Dirac
eigenvectors on the gluing of a sphere with large radius to the manifold, see [12,
Sec. 3] and [22] respectively for the details.
The next step would consist in showing that (8.7) is a strict inequality if
(Mn, [g]) is not conformally equivalent to (Sn, [can]). This has been done by
B. Ammann, E. Humbert and B. Morel in the conformally flat setting where
one introduces a further datum, namely the so-called mass endomorphism. The
mass endomorphism of a locally conformally flat Riemannian spin manifold is a
self-adjoint endomorphism field of its spinor bundle and can be locally defined
out of the difference between the Green’s operators for the Dirac operators as-
sociated to the original metric and to the Euclidean one in suitable coordinates,
see [26, Def. 2.10] for a precise definition. The name comes from the correspond-
ing term for the Yamabe operator and which is known to provide the mass of
an asymptotically flat Riemannian spin manifold. Moreover, the mass endomor-
phism is “well-behaved” regarding conformal changes of metric [26, Prop. 2.9].
In case the locally conformally flat manifold (Mn, [g]) has an invertible Dirac
operator (for some hence any metric in the conformal class) and if its mass
endomorphism has a non-zero eigenvalue somewhere on Mn, then [26, Thm.
1.2]

λmin(Mn, [g], ε) < λmin(Sn, [can]). (8.8)

At this point one should beware that the mass endomorphism of (Sn, [can]) van-
ishes and that this does not characterize the round sphere since flat tori also
have vanishing mass endomorphism. We refer to [26] for the details. Interest-
ingly enough, generic metrics on 3-dimensional manifolds have a non-zero mass
endomorphism [128, Thm. 1.1], in particular (8.8) holds for those metrics. For
a generalization of the Bär-Hijazi-Lott invariant to manifolds with non-empty
boundary we refer to [218, 220].
We also mention that the Bär-Hijazi-Lott invariant has been generalized to the
noncompact setting, where it provides an obstruction to the existence of con-
formal spin compactifications of the manifold [117]. More precisely, let Mn be
any n-dimensional manifold with conformal class [g] and spin structure ε and
define λ+

min(Mn, [g], ε) as in Section 7.3. If

lim
r→∞

λ+
min(Mn \Br(p), [g], ε) < λmin(Sn, [can]),

where p ∈ M is arbitrary, then (Mn, [g]) is not conformal to a subdomain
with induced spin structure of a closed spin manifold [119, Thm. 3.0.1] (see
also [117, Thm. 1.4]). The vanishing of λ+

min(Mn, [g], ε) also prevents the exis-
tence of conformal spin compactifications of M , since λ+

min(Mn, [g], ε) > 0 on
closed manifolds [12, Thm. 2.3] and a monotonicity principle holds for λ+

min [119,
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Lemma 2.0.3], see [119, Rem. 3.0.4].

The Green’s operators for the Dirac operator have also revealed as a powerful
tool in general problems from geometric analysis such as the classical Yamabe
conjecture (“find a metric with constant scalar curvature in a fixed conformal
class”). As shown by R. Schoen, the Yamabe conjecture is implied by the pos-
itive mass theorem through the fact that the constant term in the asymptotic
expansion in inverted normal coordinates of the Green’s operator for the con-
formal Laplace operator is proportional to the mass of the conformal blow-up.
Furthermore but independently, E. Witten [241] showed that in the spin setting
the positive mass theorem is in turn implied by the existence of spinor field
which is harmonic and asymptotically constant on the conformal blow-up. Now
it is a striking result by B. Ammann and E. Humbert [23] that the Green’s oper-
ators for the Dirac operator provide such a spinor. More precisely, if (Mn, g) is
closed Riemannian spin manifold with positive Yamabe invariant and which is
locally conformally flat if n ≥ 6, then its conformal blow-up has positive mass.
For positive mass theorems we refer to Section 8.8.

If one lets the conformal class vary on the closed manifold Mn, then one is led
to the so-called τ -invariant of Mn with spin structure ε and which is defined by

τ(Mn, ε) := sup
[g]

(
λmin(Mn, [g], ε)

)
.

The introduction of the spinorial invariant τ is inspired from that of R. Schoen’s
σ-invariant which is defined in dimension 2 by σ(M2) := 4πχ(M2) and in di-
mension n ≥ 3 by

σ(Mn) := sup
[g]

(
Y (Mn, [g])

)
,

where Y (Mn, [g]) denotes the Yamabe invariant on (Mn, [g]). There are at least
two motivations for the study of the τ -invariant. First, the τ -invariant bounds
the σ-invariant from above since it follows from (8.6) that, in every dimension
n ≥ 2,

τ(Mn, ε)2 ≥ n

4(n− 1)
σ(Mn),

with equality for Sn. Therefore upper bounds for τ(Mn, ε) provide upper bounds
for σ(Mn), on which little is known. In an independent context, the inequality
λmin(M2, [g], ε) < 2

√
π = τ(S2) guarantees the existence of a metric g ∈ [g]

for which any simply-connected open subset of (M2, g) can be isometrically
embedded with constant mean curvature into R3 [13, Sec. 5.4] (see also [16]).
Hence it is of geometric interest to know when the inequality τ(M2, ε) < 2

√
π

holds. In case M2 = T2 B. Ammann and E. Humbert have shown [24, Thm.
1.1] that τ(T2, ε) = 2

√
π for any of its non-trivial spin structures ε (obviously

τ(T2, ε0) = 0 for the trivial spin structure ε0). Note that this neither proves nor
contradicts the existence of immersed constant mean curvature tori in R3. As
a generalization, the τ -invariant of Sn−1 × S1 is equal to zero if n = 2 and S1

carries the trivial spin structure and to τ(Sn) otherwise [24, Thm. 1.2]. More
recently, B. Ammann and E. Humbert have shown that the τ -invariant does
not decrease when adding a handle to the manifold [25, Cor. 1.2]. Interestingly
enough, it can be deduced from that fact that the τ -invariant of a closed oriented



120CHAPTER 8. OTHER TOPICS RELATED WITH THE DIRAC SPECTRUM

surface is given by [25, Thm. 1.3]

τ(M2, ε) = (1− α(M)) · 2
√
π,

where α(M) ∈ Z2 is the α-genus of (M2, ε). In particular τ(M2, ε) is always
either equal to 0 or to that of S2 according to the spin structure.

8.6 Convergence of eigenvalues

Given a converging sequence of closed Riemannian spin manifolds, does their
Dirac spectrum have to converge to that of the limit? Three very different con-
texts have up to now been considered where this question can be given sense and
answered. The simplest and historically the first one deals with the behaviour
of the Dirac spectrum of S1-bundles under collapse. In that case the behaviour
depends sensitively of the spin structure as shown by B. Ammann and C. Bär
[17]. Let M denote the total space of an S1-bundle which is simultaneously a
Riemannian submersion with totally geodesic fibres over a base manifold B.
Two kinds of spin structures can be defined on M according to whether the S1-
action can be lifted to the spin level or not; in the former case the spin structure
is called projectable and in the latter it is called non-projectable. Projectable
spin structures on M stand in one-to-one correspondence with spin structures
on B. The main result of [17] states the following about the convergence of the
Dirac spectrum of M as the fibre-length goes to 0: either the spin structure of
M is projectable and there exist Dirac eigenvalues of M converging to those
of B or it is non-projectable and all Dirac eigenvalues of M tend to ∞ or −∞
[17, Thm. 4.1 & 4.5]. As an interesting application, the Dirac spectrum of all
complex odd-dimensional complex projective spaces can be deduced from that
of the Berger spheres (Theorem 2.2.2). Parts of those results have been gener-
alized by B. Ammann to S1-bundles with non-geodesic fibres [7, 8].

The second natural context deals with hyperbolic degenerations, i.e., with se-
quences of closed hyperbolic spin manifolds (Mj)j∈N converging to a non-
compact complete hyperbolic spin manifold M (here a hyperbolic metric is a
metric with constant sectional curvature −1). Those sequences only exist in di-
mensions 2 and 3 and, provided the convergence respects the spin structures in
some sense, the limit manifold must have discrete Dirac spectrum in dimension
3 whereas it may have continuous spectrum in dimension 2, see references in
[214] where a precise description of hyperbolic degenerations is recalled. In case
the limit manifold M is assumed to have discrete Dirac spectrum, F. Pfäffle
proved the convergence of the Dirac spectrum of (Mj)j∈N in the following sense
[214, Thm. 1.2] (see also [213]): For all ε > 0 and Λ ≥ 0, there exists an N ∈ N
such that for all j ≥ N the real number Λ lies neither in the spectrum of D nor
in that of DMj

, both Dirac operators DMj
and D have only discrete eigenvalues

and no other spectrum in [−Λ,Λ], they have the same number m of eigenvalues
in [−Λ,Λ] which can be ordered so that |λ(j)

k − λk| ≤ ε holds for all 1 ≤ k ≤ m.

The diameter of the converging sequence of degenerating hyperbolic manifolds
cannot be controlled since the limit-manifold must have a finite number of so-
called cusps, which by definition are unbounded. The third context to have been
considered precisely deals with the situation where both the diameter and the
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sectional curvature of the converging sequence are assumed to remain bounded.
In that case J. Lott proved the following very general result [189]. Consider a
sequence (gj)j∈N of bundle metrics on the total space of a spin fibre bundle
M over a base spin manifold B. Assume the fibre length to go to 0 as j tends
to ∞ while both the diameter and the sectional curvature of (M, gj) remain
bounded. Then the Dirac spectrum of (M, gj) converges in the sense just above
to that of some differential operator of first order on B which can be explicitly
constructed. Since a precise formulation and the discussion of the results would
require too many details we recommend the introduction of [189].

8.7 Eta-invariants

As we have seen in Theorem 1.3.7, the Dirac spectrum of any closed n-dimen-
sional Riemannian spin manifold is symmetric w.r.t. the origin in dimension
n 6≡ 3 (4). To measure the asymmetry of the Dirac spectrum in case n ≡ 3 (4),
Atiyah, Patodi and Singer introduced [30] the so-called η-invariant of D which
is defined by η(D) := η(0, D), where, for every s ∈ C with <e(s) > n,

η(s,D) :=
∑
λj 6=0

sgn(λj)
|λj |s

.

The λj ’s denote the eigenvalues of D. It is already a non-trivial statement that
s 7→ η(s,D) can be meromorphically extended onto C and is regular at s = 0,
see [30]. Originally the η-invariant was introduced to describe some boundary
term in the Atiyah-Patodi-Singer index theorem [30]. In a simple-minded way,
the η-invariant of D can be thought of as the difference between the number of
positive and that of negative Dirac eigenvalues (of course this has no sense since
both numbers are infinite). In particular the η-invariant of D vanishes as soon
as the Dirac spectrum is symmetric.

Few η-invariants are known explicitly. One of the first computations of η-
invariant goes back to Hitchin [152], where the explicit knowledge of the Dirac
spectrum on the Berger sphere S3 allows the η-invariant to be explicited. This
was generalized onto all Berger spheres by D. Koh [166]. In the flat setting, the
η-invariant can also be deduced from the Dirac spectrum in dimension n = 3
[212] and for particular holonomies in dimension n ≥ 4 [194]. Theorem 2.2.3
provides the η-invariant on particular closed 3-dimensional hyperbolic manifolds
[224]. The most general formula allowing the determination of the η-invariant
has been proved by S. Goette [111, Thm. 2.33] on homogeneous spaces, where
η(D) arises as the sum of three terms: a representation-theoretical expression,
an index-theoretical one and so-called equivariant η-invariants, which can them-
selves be deduced from finer representation-theoretical data [109, 110].

Though unknown in most cases, the η-invariant behaves nicely under connected
sums: roughly speaking, if a closed Riemannian spin manifold is separated in
two pieces M1,M2 by a closed hypersurface N , about which both the metric
and the Dirac operator split as on a Riemannian product, then the η-invariant
of D consists of the sum of the η-invariants of DM1 and DM2 plus the so-called
Maslov-index of a pair of Lagrangian subspaces of Ker(DN ) making DMj self-
adjoint, plus some index-theoretical integers (U. Bunke [70, Thm 1.9]). We refer
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to [70] for an overview of η-invariants of general Dirac-type operators and nu-
merous useful references.

We also mention that some kind of η-invariant can be defined in the non-compact
setting, see [121] and references therein.

8.8 Positive mass theorems

Although this section has more to do with physics as with the Dirac spectrum,
we include it because on the one hand the proofs of the results presented involve
simple spinorial techniques as already used above, and on the other hand posi-
tive mass theorems nowadays play a central role in many other topics of global
analysis such as the Yamabe problem. A good but not up-to-date reference for
that topic is [129].
A positive mass theorem (sometimes called positive energy theorem) is a two-
fold statement reading roughly as follows: Let (Mn, g) be a Riemannian manifold
which is asymptotic to a model manifold (in a sense that must be precised) and
some of which curvature invariant satisfies a pointwise inequality, then some
asymptotic geometric invariant called its mass also satisfies a similar inequality
and, if this latter inequality is an equality, then the whole manifold is globally
isometric to the original model manifold. To fix the ideas we concentrate from
now on onto the original positive mass theorem as proved by R. Schoen and S.-
T. Yau [221, 222] and independently by E. Witten [241] in the spinorial setting,
in particular we leave aside all recent developments in what has become a whole
field of research at the intersection between mathematics and general relativity,
see e.g. [242] for references.

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3. Call it asymptoti-
cally flat of order τ ∈ R if there exists a compact subset K ⊂ M , a positive
real number R and a diffeomorphism M \K −→ {x ∈ Rn, |x| > R} such that
the pushed-out metric fulfills: gij − δij = O(|x|−τ ), ∂gij

∂xk
= O(|x|−τ−1) and

∂2gij
∂xk∂xl

= O(|x|−τ−2) as |x| → ∞, for all 1 ≤ i, j, k, l ≤ n. Given such a manifold
(Mn, g), set

m(g) :=
1

16π
· lim
r→∞

∫
Sr

n∑
i,j=1

(
∂gij
∂xi
− ∂gii
∂xj

)νjdA,

where Sr denotes the Euclidean sphere of radius r about 0 ∈ Rn with outside
unit normal ν and dA its canonical measure. Beware here that in general m(g)
does not make any sense: the integral need not converge, and even if it converges
it depends on the choice of asymptotic coordinates. If however τ > n−2

2 and the
scalar curvature of (Mn, g) is integrable, then a highly non-trivial theorem of R.
Bartnik (see reference in [129]) ensures m(g) to be well-defined. In that case it is
called the ADM-mass of (Mn, g). The canonical example of asymptotically flat
manifold (of any order) is (Rn, can), whose ADM-mass vanishes. The positive
mass theorem states that, with the assumptions above and if the scalar curva-
ture S of (Mn, g) is non-negative, then m(g) ≥ 0 with equality if and only if
(Mn, g) = (Rn, can). This is a very deep statement since it establishes a direct
relationship between the geometry at infinity and the global geometry of M .
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For example, as a consequence, any Riemannian metric on Rn with S ≥ 0 and
which is flat outside a compact subset must be flat. Surprisingly enough, the
positive mass theorem follows from relatively simple considerations involving
some kind of boundary value problem for the Dirac operator, at least in case M
is spin, as shown by E. Witten [241]. Let us sketch his idea.

The first and main step in Witten’s proof consists in choosing any non-zero
“constant” spinor field ψ0 at infinity and exhibiting a sufficiently regular non-
zero spinor field ψ lying in the kernel of D2 and being asymptotic to ψ0. This
can be done by showing the invertibility of D2 between suitable Hölder spaces.
Applying Schrödinger-Lichnerowicz’ formula (1.15), integrating on a Euclidean
ball of (sufficiently large) radius r and using (3.29) together with Green’s formula
one obtains

0 =
∫
Br

〈D2ψ,ψ〉vg =
∫
Br

(|∇ψ|2 +
S

4
|ψ|2)vg −

∫
Sr

〈∇νψ,ψ〉dA,

where ν denotes here the outer unit normal to Sr = ∂Br. The miracle in
Witten’s proof happens here: it can be easily shown that the boundary term∫
Sr
〈∇νψ,ψ〉dA is asymptotic to m(g) times some finite positive constant c as

r goes to ∞. After passing to the limit one is left with m(g) = c(
∫
M

(|∇ψ|2 +
S
4 |ψ|

2)vg, which implies m(g) ≥ 0. The equality m(g) = 0 requires ψ to be par-
allel for any ψ constructed this way, in particular the spinor bundle of (Mn, g)
must be trivialized by parallel spinors, from which the identity (Mn, g) =
(Rn, can) can be deduced. An alternative spinorial proof but with supplemen-
tary assumptions on the dimension or the Weyl tensor has been given by B.
Ammann and E. Humbert [23] using the Green’s operators associated to the
Dirac operator, see Section 8.5.
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Appendix A

The twistor and Killing
spinor equations

In this section we recall basic facts as well as classification results concerning
twistor and Killing spinors on Riemannian spin manifolds. The reader is invited
to refer to [59, 73, 58, 66] for further statements and references.

A.1 Definitions and examples

Definition A.1.1 Let (Mn, g) be a Riemannian spin manifold.

i) A twistor-spinor on (Mn, g) is a section ψ of ΣM solving

Pψ = 0, (A.1)

where PXψ := ∇Xψ + 1
nX ·Dψ for every X ∈ TM .

ii) Given a complex number α, an α-Killing spinor on (Mn, g) is a section ψ
of ΣM solving

∇Xψ = αX · ψ (A.2)

for every X ∈ TM . In case α ∈ R (resp. α ∈ iR∗) an α-Killing spinor is
called real Killing (resp. imaginary Killing) spinor.

The operator P : Γ(ΣM) −→ Γ(T ∗M ⊗ ΣM) is called the Penrose or twistor
operator. It is obtained as the orthogonal projection of the covariant derivative
onto the kernel of the Clifford multiplication µ : T ∗M⊗ΣM −→ ΣM . Obviously
a section of ΣM is a Killing spinor if and only if it is a twistor-spinor which is
an eigenvector of D. Beware that our definition of real Killing spinor contains
that of parallel spinor, compare [59].

Notes A.1.2

1. The name “Killing spinor” originates from the fact that, if α is real, then
the vector field V defined by g(V,X) := i〈ψ,X · ψ〉 for all X ∈ TM , is a
Killing vector field on (Mn, g).
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2. A spinor field ψ is an α-Killing spinor on (Mn, g) if and only if it is an
α
λ -Killing spinor on (Mn, λ2g), for any positive real constant λ.

3. One could give a slightly more general definition of Killing spinor, re-
quiring (A.2) to hold for a given smooth complex-valued function α on
M . If α is real-valued and n ≥ 2, then O. Hijazi has shown [131] that
it must be constant on M , see [138, Prop. 5.12]. On the other hand, H.-
B. Rademacher has proved [215] the existence of (and actually completely
classified) manifolds carrying non-zero α-Killing spinors with non-constant
α ∈ C∞(M, iR), see Theorem A.4.5 below.

On 1-dimensional manifolds M it is a simple exercise to show the following: eve-
ry section of ΣM is a twistor-spinor, therefore this space is infinite-dimensional.
For any α ∈ C the space of α-Killing spinors on (M, g) := (R, can) is C · e−iαt,
thus it is 1-dimensional. As for the circle S1(L) of length L > 0 and carrying
the δ-spin structure with δ ∈ {0, 1} (see Example 1.4.3.1), it admits a non-zero -
and hence 1-dimensional - space of α-Killing spinors if and only if α ∈ πδ

L + 2π
L Z

(in particular α must be real).

Before we proceed to general properties of twistor-spinors in dimension n ≥ 2,
we discuss a few examples.

Examples A.1.3 We describe the twistor spinors on simply-connected space-
forms.

1. Let (Mn, g) := (Rn, can), n ≥ 2, be endowed with its canonical spin
structure. It obviously admits a 2[n2 ]-dimensional space of parallel spinors,
which are the constant sections of Σ(Rn) ∼= Rn × Σn. There exists more-
over a 2[n2 ]-dimensional space of non-parallel twistor-spinors, which are of
the form ϕx := x · ψ for every x ∈ Rn, where ψ is some parallel spinor
on (Rn, can). Since this space stands in direct sum with that of parallel
spinors, we deduce that the space of twistor-spinors on (Rn, can) is at least
2[n2 ]+1-dimensional. We shall show that for n ≥ 3 the space Ker(P ) is ac-
tually at most (hence here exactly) 2[n2 ]+1-dimensional (see Proposition
A.2.1.3.b)), however in dimension n = 2 there are many more twistor-
spinors on Rn (see Proposition A.2.3).

2. Let (Mn, g) := (Sn, can), n ≥ 2, be endowed with its canonical metric
(with sectional curvature 1) and spin structure. Since it is a hypersurface
of (Rn+1, can) with Weingarten-map −IdTM w.r.t. the normal vector field
νx := x we deduce from the Gauss-type formula (1.21) that the restriction
of any parallel spinor (resp. positive half spinor for n odd, see Proposition
1.4.1) onto Sn is a 1

2 -Killing spinor. Therefore the space of 1
2 -Killing spinors

on (Sn, can) is at least 2[n2 ]-dimensional. Using again Proposition 1.4.1, it is
easy to show that the restriction of any spinor of the form x 7→ x ·ψ, where
ψ is parallel on (Rn+1, can) (and positive if n is odd), gives a − 1

2 -Killing
spinor. Therefore the space of − 1

2 -Killing spinors on (Sn, can) is also at
least 2[n2 ]-dimensional. From Propositions A.2.1.4 and A.4.1.2 below we
deduce that both spaces have exactly dimension 2[n2 ] and that the space
of twistor-spinors is exactly the direct sum of them.
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3. Let (Mn, g) := (Hn, can), n ≥ 2, be endowed with its canonical metric
(with sectional curvature −1) and spin structure. It is a hypersurface of
the Minkowski-space (Rn+1, 〈〈· , ·〉〉) with Weingarten-map −IdTM w.r.t.
the normal vector field νx := x. In the Lorentzian setting Proposition
1.4.1 has an analog: there exists an isomorphism ΣM̃|M −→ ΣM (or to a
double copy of it if n is odd) for which quite the same Gauss-type-formula
as (1.21) holds but for which the relation (1.20) becomes X·iν·ϕ = −X ·

M
ϕ

(or −(X ·
M
⊕ −X ·

M
)ϕ if n is odd) for all X ∈ TM and ϕ ∈ ΣM̃|M . As a

consequence the restriction of any parallel spinor (resp. positive half spinor
for n odd) onto Hn is a i

2 -Killing spinor. Analogously the restriction of
any spinor of the form x 7→ x ·ψ, where ψ is parallel on (Rn+1, 〈〈· , ·〉〉) (and
positive if n is odd), gives a− i

2 -Killing spinor. We deduce from Proposition
A.4.1.2 below that there are no other Killing spinors on (Hn, can) than
those constructed and from Proposition A.2.1.3.b) that, if n ≥ 3, then the
space of twistor-spinors is exactly the direct sum of both spaces (for n = 2
see Proposition A.2.3).

Non simply-connected spaceforms may also admit non-zero twistor-spinors. This
is the case if and only if the (or at least some) twistor-spinor on the correspon-
ding model space is preserved by the π1-action, see Proposition 1.4.2. This con-
dition is not always fulfilled: for example there does not exist any non-zero imag-
inary Killing spinor on closed Riemannian spin manifolds (otherwise the Dirac
operator would have a purely imaginary eigenvalue, which cannot be on closed
manifolds). In dimension 2 flat tori together with their trivial spin structure
are the only closed non simply-connected spaceforms admitting twistor-spinors,
which are then parallel. In dimension 3 flat tori together with their trivial spin
structure are also the only closed flat manifolds admitting twistor-spinors [212],
however the quotient of S3 through any of its finite subgroups carries Killing
spinors [13] (for lens spaces it has been proved independently in [87]). The real
projective space RPn admits for every n ≡ 3 (4) non-zero real Killing spinors:
in the notations of Corollary 2.1.5, if the spin structure is fixed by δ = 0, then
there exists a 2

n−1
2 -dimensional space of − 1

2 -Killing spinors if n ≡ 3 (8) and of
1
2 -ones if n ≡ 7 (8) respectively (vice-versa for δ = 1). More generally there ex-
ists a formula for the dimension of the space of Killing spinors on every (closed)
spaceform with positive curvature [41, Thm. 3]. However, up to the knowledge of
the author, there does not exist any full classification of complete (even closed)
flat manifolds admitting parallel spinors in dimension n ≥ 4.

Non conformally flat examples are much more involved, see for instance [174]
where the authors construct on every Cn a half conformally flat (non confor-
mally flat) metric carrying a non-zero space of twistor-spinors. For the reader
interested in twistor-spinors on singular spaces such as orbifolds we suggest [60].

A.2 Elementary properties of twistor-spinors

The following fundamental results on the twistor-spinor-equation are due to H.
Baum, T. Friedrich and A. Lichnerowicz (see [59] for precise references):
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Proposition A.2.1 (see [59]) Let ψ be any twistor-spinor on an n(≥ 2)-di-
mensional Riemannian spin manifold (Mn, g). Then the following holds:

1. For any conformal change g := e2ug of metric on Mn,

P = e
u
2 ◦ P ◦ e−u2 ,

where P := Pg. In particular e
u
2 ψ is a twistor-spinor on (Mn, g).

2. If S denotes the scalar curvature of (Mn, g) then

D2ψ =
nS

4(n− 1)
ψ. (A.3)

3. If n ≥ 3 then:

a) for every X ∈ TM ,

∇X(Dψ) =
n

n− 2

(
− 1

2
Ric(X) · ψ +

S

4(n− 1)
X · ψ

)
. (A.4)

b) dim(Ker(P )) ≤ 2[n2 ]+1.
c) The zero-set of ψ is either discrete in Mn or Mn itself.
d) If (Mn, g) is Einstein with S 6= 0 then ψ is the sum of two non-

parallel Killing spinors.
e) If |ψ| is a non-zero constant then (Mn, g) is Einstein. Moreover either

S = 0 and ψ is parallel or S > 0 and ψ is the sum of two real non-
parallel Killing spinors.

4. If Mn is closed then Ker(P ) is finite dimensional. In the case ψ 6= 0 if
furthermore S is constant then either S = 0 and ψ is parallel or S > 0
and ψ is the sum of two real non-parallel Killing spinors.

Proof:

1. For any ϕ ∈ Γ(ΣM), f ∈ C∞(M) and X ∈ TM one has

PX(fϕ) = ∇X(fϕ) +
1
n
X ·D(fϕ)

(1.11)
= X(f)ϕ+ f∇Xϕ

+
1
n
X · grad(f) · ϕ+

f

n
X ·Dϕ

= X(f)ϕ+
1
n
X · grad(f) · ϕ+ fPXϕ. (A.5)

We deduce from (1.17) and (1.18) that

PXϕ = ∇Xϕ+
1
n
X·Dϕ

= ∇Xϕ−
1
2
X · gradg(u) · ϕ− X(u)

2
ϕ

+
e−u

n
X·(Dϕ+

n− 1
2

gradg(u) · ϕ)

= PXϕ−
1

2n
X · gradg(u) · ϕ− X(u)

2
ϕ, (A.6)
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so that

PX(e
u
2 ϕ)

(A.5)
=

e
u
2

2
X(u)ϕ+

e
u
2

2n
X·gradg(u)·ϕ+ e

u
2 PXϕ

(A.6)
=

e
u
2

2
X(u)ϕ+

e
u
2

2n
X·gradg(u)·ϕ

+e
u
2 (PXϕ−

1
2n
X · gradg(u) · ϕ− X(u)

2
ϕ)

= e
u
2 PXϕ,

which shows 1.

2. Let X,Y ∈ Γ(TM), then

∇X∇Y ψ = − 1
n
∇XY ·Dψ −

1
n
Y · ∇XDψ,

from which we deduce

R∇X,Y ψ = ∇[X,Y ]ψ − [∇X ,∇Y ]ψ

=
1
n

(Y · ∇XDψ −X · ∇YDψ). (A.7)

Let {ej}1≤j≤n be a local orthonormal basis of TM . From (1.9) we obtain

1
2

Ric(X) · ψ =
1
n

n∑
j=1

(ej · ej · ∇XDψ − ej ·X · ∇ejDψ)

=
1
n

(−(n− 2)∇XDψ +X ·D2ψ). (A.8)

Hence

−1
2
Sψ =

1
2

n∑
j=1

ej · Ric(ej) · ψ

(A.8)
=

1
n

n∑
j=1

(−(n− 2)ej · ∇ejDψ + ej · ej ·D2ψ)

= −2(n− 1)
n

D2ψ

which shows 2.

3. Assume n ≥ 3.

a) Coming back to (A.8) using (A.3) we obtain

1
2

Ric(X) · ψ = −n− 2
n
∇XDψ +

S

4(n− 1)
X · ψ

which is the result.
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b) It follows from (A.4) that ψ is a twistor-spinor if and only if the
section ψ⊕Dψ of ΣM⊕ΣM is parallel w.r.t. the covariant derivative

∇TX(ϕ1 ⊕ ϕ2) :=
(
∇Xϕ1 +

1
n
X · ϕ2

)
⊕
( n

n− 2
(
1
2

Ric(X) · ϕ1 −
S

4(n− 1)
X · ϕ1) +∇Xϕ2

)
for all ϕ1, ϕ2 ∈ Γ(ΣM). From rkC(ΣM) = 2[n2 ] we conclude.

c) We compute the Hessian of |ψ|2. Let X,Y ∈ Γ(TM). From

X(|ψ|2) = 2<e (〈∇Xψ,ψ〉)

= − 2
n
<e (〈X ·Dψ,ψ〉)

one has

Hess(|ψ|2)(X,Y ) = − 2
n
<e (〈Y · ∇XDψ,ψ〉+ 〈Y ·Dψ,∇Xψ〉)

(A.4)
=

1
n− 2

<e(〈Y · Ric(X) · ψ,ψ〉)

− S

2(n− 1)(n− 2)
<e(〈Y ·X · ψ,ψ〉)

+
2
n2
<e(〈Y ·Dψ,X ·Dψ〉)

= − |ψ|
2

n− 2
ric(X,Y )

+
( S|ψ|2

2(n− 1)(n− 2)
+

2|Dψ|2

n2

)
g(X,Y ). (A.9)

If ψp = 0 then Hess(|ψ|2)p = 2|Dψ|2p
n2 gp. In the case ψ 6= 0 one must

have (Dψ)p 6= 0 (otherwise the ∇T -parallel section ψ ⊕ Dψ would
vanish at p and hence identically), therefore the Hessian of |ψ|2 is
positive definite at p and the result follows.

d) If (Mn, g) is Einstein then (A.4) becomes

∇XDψ =
n

n− 2
(− S

2n
+

S

4(n− 1)
)X · ψ

= − S

4(n− 1)
X · ψ

for every X ∈ TM . In case S 6= 0 the spinor ψ can be written as
ψ = ψ1 + ψ−1 where

ψ±1 :=
1
2

(
ψ ± 1

λ
Dψ

)

and with λ :=
√

nS
4(n−1) (if S < 0 the square root may be chosen

arbitrarily since changing its sign just exchanges the roles of ψ1 and
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ψ−1). We show that ψ±1 is a ∓λn -Killing spinor on (Mn, g): for every
X ∈ TM ,

∇Xψ±1 =
1
2

(∇Xψ ±
1
λ
∇XDψ)

=
1
2

(
− 1
n
X ·Dψ ± 1

λ
(−λ

2

n
X · ψ)

)
= ∓ λ

2n
X · (ψ ± 1

λ
Dψ)

= ∓λ
n
X · ψ±1,

which shows d).
e) If |ψ| is a non-zero constant then (A.9) implies

ric =
( S

2(n− 1)
+

2(n− 2)|Dψ|2

n2|ψ|2
)
g,

that is, (Mn, g) is Einstein. Moreover from the latter equation the
scalar curvature of (Mn, g) is then given by

S =
4(n− 1)

n
· |Dψ|

2

|ψ|2
≥ 0. (A.10)

If S > 0 then using d) we deduce that ψ = ψ1 + ψ−1 where ψ±1 is
a ∓

√
S

4n(n−1) -Killing spinor with
√

S
4n(n−1) ∈ R. In case S = 0 the

identity (A.10) requires Dψ = 0 and hence ∇ψ = 0, i.e., ψ is parallel
on (Mn, g). This proves e).

4. Assume (Mn, g) to be closed and n ≥ 2. From

|∇ϕ|2 = |Pϕ|2 +
1
n
|Dϕ|2 (A.11)

and

P ∗P
(A.11)

= ∇∗∇− 1
n
D2

(1.15)
=

n− 1
n
∇∗∇− S

4n
Id (A.12)

the operator P ∗P is elliptic, hence its kernel is finite-dimensional. If fur-
thermore ψ 6= 0 and S is constant then integrating the Hermitian product
of (A.3) with ψ one obtains

nS

4(n− 1)

∫
M

|ψ|2vg =
∫
M

〈D2ψ,ψ〉vg

=
∫
M

|Dψ|2vg,

which shows S ≥ 0. On the other hand (A.3) already stands for the
limiting-case in T. Friedrich’s inequality (3.1), so that ψ must either be
parallel (in case S = 0) or the sum of two real Killing spinors (in case
S > 0). This shows 4. and concludes the proof. �
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Note A.2.2 Actually Proposition A.2.1.4 implies that Proposition A.2.1.3.b)
and c) hold on closed M in dimension n = 2 as well: on the one hand we
deduce that the only compact orientable surfaces admitting twistor-spinors are
S2 and T2 carrying any conformal class, the latter one being endowed with its
trivial spin structure. For S2 (resp. T2) that space is 4-dimensional (resp. 2-
dimensional), corresponding to the direct sum of the space of 1

2 -Killing spinors
with that of − 1

2 -ones for the canonical metric (resp. to the space of parallel
spinors for any flat metric in the conformal class). On the other hand the sum
of two Killing spinors on S2 has at most one zero.

For R2 and H2 (see Note A.2.2 for closed M2) one can again make the space of
twistor-spinors explicit, however that space turns out to be infinite-dimensional:

Proposition A.2.3 Let M be any non-empty connected open subset of R2 car-
rying its canonical conformal class and spin structure. Then the space of twistor-
spinors of M for any metric in this conformal class is isomorphic to the direct
sum of the space of holomorphic with that of anti-holomorphic functions on M .
In particular the space of twistor-spinors on R2 and H2 respectively is infinite-
dimensional.

Proof: Since the twistor-spinor-equation is conformally invariant (see Proposi-
tion A.2.1.1) we may assume that g is the canonical flat metric on M . Let
{ϕ+, ϕ−} be a basis of parallel spinors on M w.r.t. g such that ie1 ·e2 ·ϕ± = ±ϕ±
where {e1, e2} denotes the canonical basis of R2. Then there exist functions
f+, f− : M −→ C such that ψ = f+ϕ+ + f−ϕ−. We compute Pψ: for every
X ∈ TM ,

PXψ = X(f+)ϕ+ +X(f−)ϕ− +
1
2
X · (df+ · ϕ+ + df− · ϕ−).

For the Kähler structure J associated to g and the orientation of M one has
however

X · Y · ϕ± =
2∑

j,k=1

g(X, ej)g(Y, ek)ej · ek · ϕ

=
2∑
j=1

g(X, ej)g(Y, ej)ej · ej · ϕ

+(g(X, e1)g(Y, e2)− g(X, e2)g(Y, e1))e1 · e2 · ϕ±
= −g(X,Y )ϕ− g(X, J(Y ))e1 · e2 · ϕ±
= (−g(X,Y )± ig(X,J(Y )))ϕ±
= −2g(X, p±(Y ))ϕ±,

where p±(X) := 1
2 (X ∓ iJ(X)). We deduce that

PXψ = X(f+)ϕ+ − g(X, p+(df+))ϕ+

+X(f−)ϕ− − g(X, p−(df−))ϕ−
= g(X, p−(df+))ϕ+ + g(X, p+(df−))ϕ−.

Therefore Pψ = 0 if and only if p±(df∓) = 0, that is, if and only if f+ is
anti-holomorphic and f− is holomorphic. From (H2, canH2) = ({z ∈ C s.t. |z| <
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1}, 4
(1−|z|2)2 canR2) we conclude the proof. �

Note that Proposition A.2.3 together with Note A.2.2 imply in particular that
Proposition A.2.1.3.c) still holds in dimension n = 2, since holomorphic and
anti-holomorphic functions on a surface vanish either on a discrete subset or
identically.

Corollary A.2.4 ([59]) Let (Mn, g) be an n(≥ 3)-dimensional Riemannian
spin manifold carrying a non-zero twistor-spinor ψ. Then Zψ := {x ∈M |ψ(x) =
0} is discrete in M and (M

n
:= Mn\Zψ, g := 1

|ψ|4 g) admits a real Killing spinor,
which is parallel if Zψ 6= ∅.

Proof: The statement on the zero set of ψ has been proved in Proposition
A.2.1.3.c). From Proposition A.2.1.1 the spinor φ := ψ

|ψ| is a twistor-spinor

on (M
n
, g). In dimension n ≥ 3 since it has constant norm it is the sum of two

real Killing spinors (Proposition A.2.1.3.e)); furthermore

Dφ
(1.18)

= |ψ|2(Dφ− n− 1
2

grad(|ψ|2)
|ψ|2

· φ)

= |ψ|2(−grad(|ψ|)
|ψ|2

· ψ +
1
|ψ|

Dψ − n− 1
2

grad(|ψ|2)
|ψ|2

· φ)

= |ψ|Dψ − n

2
grad(|ψ|2) · φ,

so that, for any p ∈ Zψ, |Dφ|(x) −→
x→p

0 and by (A.10) for g and φ one ob-

tains Sg(x) −→
x→p

0 (both w.r.t. the topology given by g on M). Applying again

Proposition A.2.1.3.e), since Sg is constant it must vanish identically, hence φ
is parallel on (M

n
, g) as soon as Zψ 6= ∅. �

Note that the equivalent statement in dimension n = 2 does not hold because
of Proposition A.2.3.

A.3 Classification results for manifolds with twis-
tor-spinors

Corollary A.2.4 induces a dichotomy in the classification of n(≥ 3)-dimensional
Riemannian spin manifolds M carrying a non-zero twistor-spinor ψ: either Zψ =
∅ and then up to conformal change of metric M belongs to the class of manifolds
admitting Killing spinors (which is studied in greater detail in Section A.4), or
Zψ 6= ∅. In the latter case and for closed M , using the solution to the Yamabe
problem about the existence of a constant scalar curvature metric in a conformal
class A. Lichnerowicz showed:

Theorem A.3.1 (A. Lichnerowicz [183]) Let (Mn, g), n ≥ 2, be a closed
Riemannian spin manifold carrying a non-trivial twistor-spinor ψ with non-
empty zero-set Zψ. Then |Zψ| = 1 and (Mn, g) is conformally equivalent to
(Sn, can).
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A relatively simple proof of Theorem A.3.1 can be found in [176].

For general M W. Kühnel and H.-B. Rademacher proved that the Ricci-flat
metric 1

|ψ|4 g on Mn \ Zψ is either flat or locally irreducible, more precisely:

Theorem A.3.2 (W. Kühnel and H.-B. Rademacher [175]) Let (Mn, g)
be a simply-connected Riemannian spin manifold carrying a non-trivial twistor-
spinor ψ with non-empty zero-set Zψ and assume that the metric is not confor-
mally flat. Then the following holds:

1. Every non-zero twistor-spinor on (Mn, g) vanishes exactly at Zψ.

2. For N := dim(Ker(P )) and the reduced holonomy group Hol := Hol(M
n
, g)

of the Ricci-flat metric g := 1
|ψ|4 g on M

n
:= Mn \ Zψ one has one of the

following:

a) n = 2m ≥ 4, Hol = SUm and N = 2.

b) n = 4m ≥ 8, Hol = Spm and N = m+ 1.

c) n = 7, Hol = G2 and N = 1.

d) n = 8, Hol = Spin7 and N = 1.

Theorem A.3.2, a proof of which can be found in the beautiful paper [176], ac-
tually requires Mc.K. Wang’s classification of manifolds with non-zero parallel
spinors, see Theorem A.4.2 below. Besides, we mention that up to now no exam-
ple with reduced holonomy of type b), c) or d) has been described (an example
with Hol = SUm is constructed in [174]).

A.4 Classification results for manifolds with Killing
spinors

We now come to the geometric properties specifically implied by the existence
of a non-zero Killing spinor (Definition A.1.1.ii)).

Proposition A.4.1 Let (Mn, g) be an n(≥ 2)-dimensional Riemannian spin
manifold admitting a non-zero α-Killing spinor ψ for some α ∈ C.

1. The zero-set of ψ is empty. If furthermore α is real then |ψ| is constant
on M .

2. The space of α-Killing spinors on (Mn, g) is at most 2[n2 ]-dimensional.

3. The manifold (Mn, g) is Einstein with scalar curvature S = 4n(n− 1)α2.
In particular α must be real or purely imaginary.

Proof: By definition ψ is an α-Killing spinor if and only if it is a parallel section
of ΣM w.r.t. the covariant derivative X 7→ ∇X −αX·; moreover that covariant
derivative is metric as soon as α is real. This shows 1. and 2.
Assuming n ≥ 3 it follows from (A.4) that, for every X ∈ TM ,

Ric(X) · ψ = (2(n− 2)α2 +
S

2(n− 1)
)X · ψ
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(remember that ψ is a twistor-spinor satisfying Dψ = −nαψ). Since ψ has no
zero we obtain that (Mn, g) is Einstein with scalar curvature S = 4n(n− 1)α2.
In dimension n = 2 the equation (A.7) for ψ is of the form

R∇X,Y ψ = α2(X · Y − Y ·X) · ψ,

hence comparing with (1.8) we obtain S = 8α2, which concludes the proof of 3.�

In particular Myers’ theorem implies that a complete Riemannian spin manifold
without boundary and carrying a non-zero real Killing spinor must be compact.

Complete simply-connected Riemannian spin manifolds (Mn, g) carrying a non-
zero space of α-Killing spinors have been classified by Mc.K. Wang [238] for
α = 0, C. Bär [40] for α ∈ R∗ and H. Baum [53] for α ∈ iR∗ respectively. First
note that from Note A.1.2 one may assume, up to rescaling the metric, that
α ∈ {± 1

2 , 0,±
i
2}. In the case α = 0, a parallel spinor must be a fixed point of

the action of the lift of the reduced holonomy group to Spinn. Excluding the
trivial example (Mn, g) = (Rn, can), which has a maximal number of linearly
independent parallel spinors, as well as local products (products of manifolds
with parallel spinors carry themselves parallel spinors), the classification can be
deduced from Berger-Simons’ list of Riemannian holonomy groups.

Theorem A.4.2 (McK. Wang[238]) Let (Mn, g) be an (n ≥ 2)-dimensional
simply-connected complete irreducible Riemannian spin manifold without bound-
ary. Let N denote the dimension of Ker(∇). Then the manifold (Mn, g) carries
a non-zero parallel spinor if and only if its reduced holonomy group Hol :=
Hol(M, g) belongs to the following list:

a) Hol = SUm, n = 2m ≥ 4, and in that case N = 2.

b) Hol = Spm, n = 4m ≥ 8, and in that case N = m+ 1.

c) Hol = G2, n = 7, and in that case N = 1.

d) Hol = Spin7, n = 8, and in that case N = 1.

There also exists a classification in the non-flat non-simply-connected case in
terms of lifts the holonomy group to the spin group, see [209] where the proof
of Theorem A.4.2 can also be found.

The classification when α = ± 1
2 relies on Mc.K. Wang’s one using the following

clever remark due to C. Bär and based on a geometric construction by S. Gallot
(see reference in [40]): a spinor field is a 1

2 -Killing spinor on the manifold (Mn, g)
if and only if the induced spinor field on its Riemannian cone (M×R∗+, t2g⊕dt2)
is parallel. Hence C. Bär proved:

Theorem A.4.3 (C. Bär [40]) Let (Mn, g) be an (n ≥ 2)-dimensional sim-
ply-connected closed Riemannian spin manifold. Let p (resp. q) denote the di-
mension of the space of 1

2 - (resp. − 1
2 -) Killing spinors on (Mn, g). Then the

manifold (Mn, g) carries up to scaling a non-zero ± 1
2 -Killing spinor if and only

if it is either the round sphere (Sn, can) (in which case (p, q) = (2[n2 ], 2[n2 ])) or
one of the following:
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a) (4m + 1)-dimensional Einstein-Sasaki, m ≥ 1, and in that case (p, q) =
(1, 1).

b) (4m + 3)-dimensional Einstein-Sasaki but not 3-Sasaki, m ≥ 2, and in
that case (p, q) = (0, 2).

c) (4m+3)-dimensional 3-Sasaki, m ≥ 2, and in that case (p, q) = (0,m+2).

d) 6-dimensional nearly Kähler non-Kähler, and in that case (p, q) = (1, 1).

e) 7-dimensional with a nice 3-form φ satisfying ∇φ = ∗φ but not Sasaki,
and in that case (p, q) = (0, 1).

f) 7-dimensional Sasaki but not 3-Sasaki, and in that case (p, q) = (0, 2).

g) 7-dimensional 3-Sasaki, and in that case (p, q) = (0, 3).

For the definitions of 3-Sasaki structures and nice forms as well as the proof
of Theorem A.4.3 we refer to [40]. Parts of this classification had already been
obtained in [92, 133, 93, 94, 95, 120, 90]. As an interesting fact, two higher
eigenvalues of (n = 4m + 3)-dimensional 3-Sasaki manifolds can be explicitly
computed in terms of the scalar curvature: A. Moroianu showed [205] that on
such manifolds both −

√
nS

4(n−1) − 1 and
√

nS
4(n−1) + 2 are Dirac eigenvalues with

multiplicities at least 3m and m respectively. The proof relies on a clever com-
bination of the Killing vector fields provided by the 3-Sasaki structure and the
Killing spinors.

In the last case (α = ± i
2 ) the classification turns out to rely on totally different

arguments. Studying in detail the level sets of the length function of an imag-
inary Killing spinor H. Baum proved the following theorem, which relies on
Theorem A.4.2 but where the assumption π1(M) = 1 turns out not to be nec-
essary.

Theorem A.4.4 (H. Baum [53]) Let (Mn, g) be an (n ≥ 2)-dimensional con-
nected complete Riemannian spin manifold without boundary. Then (Mn, g) ad-
mits a non-trivial α-Killing spinor with α ∈ iR∗ if and only if it is isometric to
a warped product of the form

(N × R, e4iαth⊕ dt2),

where (Nn−1, h) is a complete connected Riemannian spin manifold carrying a
non-zero parallel spinor.

Of course the n-dimensional real hyperbolic space can be obtained as a warped
product of this form (take (N,h) = (Rn−1, can)); in the disk model, this corre-
sponds to the foliation by horospheres tangential to a fixed point on the bound-
ary at infinity.

It was noticed by O. Hijazi, S. Montiel and A. Roldán [144] that the geometric
part of Theorem A.4.4 - i.e., that (Mn, g) must be a pseudo-hyperbolic space -
follows from a classical argument by Yoshihiro Tashiro (see reference in [144]),
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namely from the existence of a smooth non-zero real-valued function f on M
such that

Hess(f)− fg = 0.

Here, up to rescaling g, the function f := |ψ|2, where ψ is a non-zero α-Killing
spinor on (Mn, g), satisfies that equation (use (A.9) when n ≥ 3). Nevertheless
this argument does not describe the correspondence between spinor fields on M
and those on the warped product, see [53] for a rigorous treatment of that point.

Theorem A.4.4 generalizes to the situation where the constant α is replaced by
a smooth imaginary-valued function, in which case a similar statement on the
structure of the underlying manifold holds.

Theorem A.4.5 (H.-B. Rademacher [215]) Let (Mn, g) be an n(≥ 2)-di-
mensional connected complete Riemannian spin manifold without boundary. For
a given non-zero α ∈ C∞(M, iR) assume the existence of a non-zero section ψ
of ΣM satisfying

∇Xψ = αX · ψ

for all X ∈ TM . Then (Mn, g) is isometric either to the real hyperbolic space
of constant sectional curvature 4α2 (in particular α must be constant) or to
a warped product of the form (N × R, e4i

R t
0 α(s)dsh ⊕ dt2), where (Nn−1, h) is

a complete connected Riemannian spin manifold admitting a non-zero parallel
spinor and α ∈ C∞(R, iR).

Conversely, for any given α ∈ C∞(R, iR) and (Nn−1, h) as above, the warped
product (N×R, e4i

R t
0 α(s)dsh⊕dt2) admits a non-zero section ψ of ΣM satisfying

∇Xψ = αX · ψ for all X ∈ TM , where α is extended by a constant onto the
N -factor. Interestingly enough, there exist compact quotients admitting such
spinors for some necessarily non-constant α’s, see [215, Thm. 1] and references
therein. The proof of Theorem A.4.5 relies on the classification of complete
Riemannian manifolds carrying a non-isometric conformal closed Killing field,
see [215] for details.
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auf der Sphäre und Untersuchungen zum ersten Eigenwert von D auf 5-
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