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Sébastien Martin and Zsuzsanna Róka
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Abstract

We present a Mixed Integer Linear Programming (MILP) approach in order to model the
non-linear problem of minimizing the tire noise function. In a recent work, we proposed an exact
solution for the Tire Noise Optimization Problem, dealing with an APproximation of the noise
(TNOP-AP). Here we study the original non-linear problem modeling the EXact - or real - noise
(TNOP-EX) and propose a new scheme to obtain a solution for the TNOP-EX. Relying on the
solution for the TNOP-AP, we use a Branch&Cut framework and develop an exact algorithm to
solve the TNOP-EX. We also take more industrial constraints into account. Finally, we compare
our experimental results with those obtained by other methods.

Keywords: Mixed integer linear programming; branch-and-cut; tire shape optimization

1 Introduction

The reduction of tire noise in the vehicle interior has been a major field of research in the tire
industry for many years. After the tire engineers have determined every aspect of a new tire
prototype concerning the driving and safety characteristics, the last degree of freedom is the final
design of the so-called pitch sequence. In [16], T. A. Williams provides a historical overview of
the approaches used by different companies, based on some U.S. Patent documents, from 1934 to
1994. First studies show that the noise optimization does not give good results when the number
of pitch types is small (a mono-space sequence is the noisiest) and the tire mold is difficult when
this number is large. A realistic tire size is a sequence of around 60–70 pitches, hence a complete
search is not feasible because of an exponential computational time. First methods concerned
patented single pitch sequences and a randomization of the sequence design. In the 1990’s, some
heuristic optimization algorithms were used in [9], based on genetic algorithms. In [11], the road
surface is also taken into account when modeling the noise of certain pitch patterns. In [14], the
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authors explain the sound generation mechanisms of a tire as well as the mathematical noise model.
Further works deal with application of intelligent heuristic optimization algorithms (such as genetic
algorithms and algorithms based on neural networks) on problems with one pitch sequence, with
multiple pitch sequences, and on tires with spikes (cf. [1], [2] and references within those articles).
An approach based on artificial immune systems combined with genetic algorithms is presented
in [4] and [13]. In [10], a pitch sequence with five pitch types and 50 pitches is optimized using a
genetic algorithm. There, by contrast with other approaches, the noise of the tire pattern is assessed
via an image based algorithm. During the optimization procedure, the only free parameter is the
pitch sequence. The quality of each sequence is assessed via a spectral analysis of the candidate
sequences. The optimization of the pattern of a single pitch via particle swarm (PSO) is studied
in [5].

The tire noise is approximated by a mathematical function, based on Fourier coefficients com-
puted on a space of functions that is not a vector space and hence cannot be linearized in a natural
way. Nevertheless, a pitch sequence has to satisfy some constraints (pitch length ratios, number of
pitches, etc.), and a Mixed Integer Linear Programming (MILP) approach can be considered once
a convenient noise approximation is defined.

In a previous work [2], we proposed in a very first approach a linear approximation of the tire
noise and a MILP solving the tire noise optimization problem: the noise value computed for a given
sequence is only an approximation of the modeled real noise and the sequences we found are in
general not the optimal ones. Nevertheless, the ratio between the computed value and the modeled
real noise is bounded by

√
2.

In the present paper, we deepen our study and focus on the modeled real noise. The MILP
defined in [2] only allows for an approximated solution. Here we complete the MILP with a Branch-
and-Cut algorithm to obtain the optimal solution. Furthermore, we add some new constraints to
the MILP such as incompatibility or symmetry breaking etc. We also present a graph model of the
problem, in particular the tire optimization problem can be interpreted as a path problem. For an
easier understanding, we clarify the notations of [2] and present the mathematical model in more
detail. We conclude with some experimental results.

2 The Tire Noise Optimization Problem

2.1 Brief description of the problem

The surface of a tire consists of different tracks, each track built out of a sequence of pitches of
different sizes (see Figure 1a). A pitch is considered as the juxtaposition of an elevated part and a
low part, called groove. The tire noise is produced by the grooves when coming into contact with
the road surface. All pitches have the same height h and the groove is a constant fractional part
q of the pitch length (Figure 1b). Let P := {1, . . . , r} be the finite set of pitch types with lengths
l̄1 < . . . < l̄r. Then, a pitch sequence can be modeled by an integer vector on P . For instance, for
|P | = 3, the pitch sequence of Figure 1c is modeled by (3, 2, 3, 1, . . .).

In this paper, we only study single track tires, thus the tire profile can be considered as a step
function. The modeled exact tire noise is then defined as a scalar multiple of the largest Fourier
coefficient in absolute value of that function (see Section 2.2.1 for a formal definition). From now
on, we mean by tire noise the modeled exact tire noise.

The Tire Noise Optimization Problem for the EXact noise (TNOP-EX) consists in finding a
pitch sequence producing the lowest noise, respecting given parameters provided by engineers. For
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Figure 1: (a) Tracks and pitches, (b) a pitch of size l̄i and (c) a pitch sequence representing a tire
track

the basic model, they are:

• the number of different pitch types

• the length ratios of the different pitch types

• the total number of pitches composing the tire.

Notice that the length of each type is not given as an absolute physical number in SI unit, but
as a relative length ratio between the types. Note also that only the total number of pitches is fixed
but not the number of pitches of each type, therefore the length of the pitch sequence, corresponding
to the tire circumference, can vary. However, this circumference can always be normalized to some
standard industrial tire size since the tire noise only depends on the relative pitch lengths.

To ensure stability in driving and wearing, we also consider other constraints such as:

ctMinMaxOcc: the minimal and maximal number of occurrences of each
pitch type in a pitch sequence is bounded

ctIncompatibility: pitches of given types cannot be neighbors in a sequence
(e.g. the shortest and the longest ones)

ctMaxSeq: the length of a subsequence of pitches of the same type is
bounded.

2.2 Definition of a discrete model

Here we describe a continuous mathematical model for the tire noise and its discretization. In
particular, we define length units to transform the relative ratios into integral pitch length thus
allowing for a MILP model. Notice that this MILP provides an approximated noise value. The
Tire Noise Optimization Problem for this APproximated noise is denoted TNOP-AP.

2.2.1 The noise function

The model we study is based on the computation of the Fourier coefficients an, bn, cn of a given
function depending on the profile of the tire. Recall that, if f is a T -periodic function of one real
variable, then formally, for all n ∈ N,
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an(f) :=
2

T

∫ T

0
f(x) cos(

2πn

T
x) dx

bn(f) :=
2

T

∫ T

0
f(x) sin(

2πn

T
x) dx

cn(f) :=
1

T

∫ T

0
f(x)e

−2iπn
T

x dx =
1

2
(an(f)− ibn(f)).

Originally (see e.g. [3]), the real noise produced by a tire with one track is proportional to

2 max
n≥1

(|cn(f)|),

where f is the profile function of the track.
Variable-rescaling does not change the value of the Fourier coefficients: if f is a T -periodic

function, then for any real positive number δ, the function fδ(x) := f(δx) is T
δ -periodic and, for

every n ∈ N, we have cn(fδ) = cn(f) (in particular an(fδ) = an(f) as well as bn(fδ) = bn(f)). This
property has the following important consequence: instead of fixing the circumference T of the tire
and let the pitch-lengths vary according to the number of pitches N present on the track, we may
fix the pitch-lengths once for all and let the total circumference vary in terms of N ; the computed
Fourier coefficients (and therefore the noise) will not change under that transformation.

Another important assumption deals with relative pitch length ratios that we assume to be
rational, hence allowing the pitch lengths to be integers (see Section 2.2.3). When we denote a
length by an integer, we implicitly assume it is expressed as an integer number of a fixed unit length
that we do not need to make precise for the computations.

It is worth noticing that several models exist for the profile function. For instance, in [14], the
profile function is described as a finite sum of Dirac functions (actually distributions) at positions
t1 < . . . < tN , where N is the number of pitches. In that case the modulus of the Fourier coefficient
cn is given by

|cn| =
1

T

√√√√( N∑
i=1

cos(
2πn

T
ti)

)2

+

(
N∑
i=1

sin(
2πn

T
ti)

)2

, n ∈ {1, . . . , 200}.

Remark that, in real life, a tire track can be considered as a sequence of N = 60 pitches at most.
As explained in Section 4, the estimated noise can be computed before the n = 3.5Nth Fourier
coefficient.

Trying to calculate the impact of exactly one pitch at a certain position tm (1 ≤ m ≤ N) we
can write |cn| = 1

T

√
C2 + S2, with

C =

m−1∑
i=1

cos(
2πn

T
ti) + cos(

2πn

T
tm) +

N∑
i=m+1

cos(
2πn

T
ti)

S =

m−1∑
i=1

sin(
2πn

T
ti) + sin(

2πn

T
tm) +

N∑
i=m+1

sin(
2πn

T
ti),

where m corresponds to the position of the pitch and n to the measured frequency.

4



The specific harmonic cannot be calculated up to a position tm because of the squares in the
expression, which means we have to multiply e.g. the expression for an out, when we can compute
a2
n/4 as

1

T 2

(
m−1∑
i=1

cos(
2πn

T
ti) + cos(

2πn

T
tm) +

N∑
i=m+1

cos(
2πn

T
ti)

)2

which makes everything dependent with everything (the part before position tm has to be multiplied
with the part after tm, with contribution at tm itself).

As mentioned in Section 1, several further models have been described in the literature. Here
we are interested in the model that was proposed in [3] and [2]. The profile function f is provided
by the profile of the tire, i.e. the step function given by the pitch sequence. In that case, the Fourier
coefficients of a given track may be explicitly computed in terms of the pitch sequence of the track.
From now on, we assume there are N pitches on the given track. We denote by l(1), . . . , l(N) the
lengths of the successive pitches of a given pitch sequence. Then, for any n ≥ 1,

an(f) =
h

nπ
·
N∑
j=1

sin(Mj,n)− sin(Nj,n) (1)

bn(f) = − h

nπ
·
N∑
j=1

cos(Mj,n)− cos(Nj,n), (2)

where

Mj,n :=
2nπ

T
·

j−1∑
p=1

l(p) + (1− q)l(j)

 and

Nj,n :=
2nπ

T
·
j−1∑
p=1

l(j) = Mj,n − (1− q)2nπ

T
l(j).

In particular,

cn(f) =
ih

2nπ
·
N∑
j=1

e−iMj,n − e−iNj,n . (3)

It is important to notice a few symmetry properties of the Fourier coefficients.

• The modulus of each Fourier coefficient cn is invariant under translation, that is, applying a
circular permutation to the pitches does not change the value of |cn|. Note however that |an|
and |bn| change in general under such transformations. As a consequence, for the computation
of the real noise involving |cn|, we can assume that the first pitch in the sequence is of the
first pitch type.

• Taking the mirror image of a given profile function keeps an unchanged while turning each
bn into −bn, in particular it fixes |an| and |bn| – and thus also |cn|.
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In order to handle the noise with Mixed Integer Linear Programming (MILP), the authors of [2]
defined the approximated noise of a given one-tracked-tire to be proportional to

max
n≥1

(max(|an(f)|, |bn(f)|)) ,

where neither squares nor square-roots enter. Though a priori different, both formulae are roughly
equivalent in the following sense: for any real numbers a, b,

max(|a|, |b|) ≤
√
a2 + b2 ≤

√
2 ·max(|a|, |b|). (4)

Therefore, the noises computed by both formulae cannot be too far from each other, the ratio
between both lying in [1,

√
2]. Moreover, max(|a|, |b|) =

√
a2 + b2 if and only if a = 0 or b = 0 and√

a2 + b2 =
√

2 ·max(|a|, |b|) if and only if |a| = |b|.

2.2.2 Fourier precision

In theory, all Fourier coefficients must be computed in order to determine the noise produced by
a one-tracked-tire. However, it is sufficient to compute the cn coefficients only for n bounded in
terms of N . A regular tire composed of N pitches has a peak at the frequency of N as well as
at multiples of N , so called harmonics. Humans are able to hear only frequencies between 20 Hz
and 20 kHz, so only the first harmonics of the tire signal are in the main human audible frequency
range, and at most the second harmonics come close to the 20kHz frequency border. Furthermore,
the amplitude of higher frequencies of a regular signal decreases quickly, so there is no need to
compute more than 1.5 to 3.0 times N coefficients, around 200 (= n) in the case of a realistic tire
pattern with N = 60 pitches.

Moreover, because of the very specific profile functions we deal with, it is an easy consequence
of (3) that, for every n ≥ 1,

|cn(f)| ≤ Nh

nπ
,

where h > 0 is the pitch height. In particular, if N is fixed, then |cn| (as well as |an| and |bn|) is
an O

(
1
n

)
and thus is small for large n.

2.2.3 Units and integer pitch lengths

Recall that the set of different pitch types P = {1, . . . , r} is finite and l̄1 < . . . < l̄r are the different
pitch lengths. Recall that the ratio of any two pitch lengths is supposed to be rational and hence we
can assume the existence of a largest length (called unit) dividing each pitch length into an integral
number of units. Formally, let l̄i = pi

qi
· l̄r with pi, qi ∈ N and gcd(pi, qi) = 1 for all 1 ≤ i ≤ r (note

that pr = qr = 1). We define the unit length by u := l̄r
lcm(q1,...,qr)

, where lcm (q1, . . . , qr) is the least
common multiple of the integers q1, . . . , qr. From now on, we study tires with reduced pitch lengths
l1 < . . . < lr, where li := l̄i

u ∈ N for all i ∈ {1, . . . , r}. We call lmin := N ·l1 ∈ N and lmax := N ·lr ∈ N
the minimal and maximal tire-length, respectively. From the industrial perspective, the sequence
of pitch lengths is given as a sequence of ratios with respect to the smallest pitch length. Most
of the results presented in Section 4 concern ratios {1.0, 1.25, 1.5} reduced to lengths {4, 5, 6} in
the ILP (here u = 0.25). Notice also that we do not study tires of a fixed length T but tires with
lengths varying from lmin to lmax, while N is fixed.
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3 Optimization models

In the previous section, we described the tire noise optimization problem and the corresponding
model for the approximated noise (TNOP-AP). In this section, we first highlight the link with
scheduling, graph and mathematical programming. We then propose a linear optimization model
for the TNOP-AP. In Section 3.3, we present a method to solve the Tire Noise Optimization
Problem for the real noise, that we call TNOP-EX.

3.1 Graph presentation

In order to illustrate the model, we consider here tires of length T = lmax. From Section 3.2 on,
we let the tire length vary and solve the TNOP-AP for each tire size from lmin to lmax. Recall that
a tire track is a sequence of consecutive pitches of different sizes assumed to be integers. Then,
on each position, a pitch can or cannot start. A sequence of pitches can be seen as a scheduling
problem on a single machine where the pitches are the jobs and the criteria to minimize depends on
the beginning of each pitch. This problem also can be modeled as a graph problem. Let T denote
the length of a tire expressed as an integral number of the above units and let G = (V,A) be the
oriented graph defined as follows:

• V = {vip | ∀i ∈ {1, . . . , T};∀p ∈ {1, . . . , r}} ∪ {s, t} where i denotes a position on the tire and
p denotes a pitch type,

• A = As ∪Aint ∪At, where

As = {(s, v1
p) | p ∈ {1, . . . , r}},

Aint = {(vip, v
i+length(p)
p′ ) | ∀i ∈ {1, . . . , T};∀p, p′ ∈ {1, . . . , r},

i+ length(p) ≤ T},

At = {(vT−length(p)
p , t) | p ∈ {1, . . . , r}}.

An example for a tire of length 6 built of pitches of lengths 2, 3 and 4 is presented on Figure 2
(solid, dashed and dotted arrows, respectively). To each arc a starting at vip in A and each k ∈ N,

we associate a weight (wka(a), wkb (a)), corresponding to the ak- and bk-contributions to the noise
produced by a pitch of type p starting at position i. Actually, wka(a) = Ak,0,i,p and wkb (a) = Bk,0,i,p,
where Ak,0,i,p (resp. Bk,0,i,p) denotes the contribution to the kth Fourier coefficient ak (resp. bk) of
the function having only one pitch of type p starting on the ith unit (see Section 3.2 for the formal
definitions).

Let P be the set of all paths of N pitches starting at s and ending at t. Then, the TNOP-AP
consists in finding a path p ∈ P such that the maximum noise maxk{|

∑
a∈pw

k
a(a)|, |

∑
a∈pw

k
b (a)|}

is minimal.
In the example of Figure 2, the paths of p are highlighted by bold arrows. For

• N = 3 : P = {(s, v1
1)(v1

1, v
3
1)(v3

1, v
5
1)(v5

1, t)}

• N = 2 : P = {(s, v1
1)(v1

1, v
3
3)(v3

3, t),
(s, v1

2)(v1
2, v

4
2)(v4

2, t),
(s, v1

3)(v1
3, v

5
1)(v5

1, t)}.
We propose in the next section a mixed integer linear program based on the path problem

defined above.

7



s

v11 v21 v31 v41 v51 v61

v12 v22 v32 v42 v52 v62
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t

Figure 2: Graph model for a tire of length 6.

3.2 Mixed Integer Linear Program (MILP) solving TNOP-AP

We propose a MILP to solve the problem for a fixed tire length between lmin and lmax, considering
hence some empty unit slots at the end of the sequence. Recall that the noise we compute differs
from the real noise by a factor at most

√
2, as described in Section 2.2.1.

We use the following notations:

• N is the number of pitches,

• P = {1, 2, . . . , r} is the set of pitch types and l1 < l2 < . . . < lr are the reduced pitch lengths,
supposed to be integers,

• L = {0, ..., lmax − lmin} denotes the set of possible numbers of empty unit slots at the end,
where lmax and lmin denote respectively the maximal and minimal tire lengths, and |L| is then
the number of possible tire lengths,

• Ljp = {1, ..., lmax− lp− j} denotes the set of positions at which a pitch of type p ∈ P can start
on a sequence with j empty unit slots at the end,

• Tj = lmax − j denotes the length of a tire with j empty unit slots at the end,

• K = {1, . . . , 3N} where 3N denotes the Fourier coefficient precision (see Section 2.2.2),

• Ak,j,i,p denotes the contribution to the kth Fourier coefficient ak of the function having only
one pitch of type p starting on the ith unit and such that the j last units do not bear any
pitch. Formally, they are computed as follows:

A0,j,i,p =
1

Tj
· h · (1− q)lp =

(1− q) · h · lp
(lmax − j)

and for any k ≥ 1,

Ak,j,i,p =
h

kπ
·
(

sin

(
2k((i− 1) + (1− q)lp)π

(lmax − j)

)
− sin

(
2k(i− 1)π

(lmax − j)

))
.

These identities can be deduced from (1) described in Section 2.2.1.
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• Bk,j,i,p denotes the contribution to the Fourier coefficient bk under the same conditions as for
Ak,j,i,p, and they are computed as follows:

Bk,j,i,p = − h

kπ
·
(

cos

(
2k((i− 1) + (1− q)lp)π

(lmax − j)

)
− cos

(
2k(i− 1)π

(lmax − j)

))
.

These identities can be deduced from (2) described in Section 2.2.1.

• minOccp: the minimum number of pitches of type p in a sequence;

• maxOccp: the maximum number of pitches of type p in a sequence;

• maxp: the maximal length of a subsequence composed of pitches of a same type p.

Let us now introduce the binary variables

• xpi ∈ {0, 1}:

xpi =

{
1 if a pitch of type p starts at position i

0 otherwise

for all p ∈ P and i ∈ L0
p

and the continuous variables

• zj ∈ R+: the noise produced by a pitch sequence with j empty units at the end, for all j ∈ L,

• zajk ∈ R: the value of the k-th Fourier coefficient ak of a given pitch sequence with j empty
units at the end, for all j ∈ L and k ∈ K,

• zbjk ∈ R: the value of the k-th Fourier coefficient bk of a given pitch sequence with j empty
units at the end, for all j ∈ L and k ∈ K.

Let us fix the number of empty units j ∈ L at the end of the sequence and hence consider tires
of length Tj . The MILP below solves the TNOP-AP for this fixed tire length.

The objective function zj represents actually the maximum of |zajk| and |zbjk| for all k ∈ K.

Note that thanks to additivity of integration on intervals, the Fourier coefficients zajk and zbjk are
the sums of the contribution of each pitch in the sequence.

Notice that, in order to solve the TNOP-AP, the MILP has to be solved for all j ∈ L.
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Mixed Integer Linear Program (P):

min zj

zajk ≤ z
j ∀k ∈ K, (5)

− zajk ≤ z
j ∀k ∈ K, (6)

zbjk ≤ z
j ∀k ∈ K, (7)

− zbjk ≤ z
j ∀k ∈ K, (8)

zajk =
∑
p∈P

∑
i∈Ljp

Ak,j,i,px
p
i ∀k ∈ K, (9)

zbjk =
∑
p∈P

∑
i∈Ljp

Bk,j,i,px
p
i ∀k ∈ K, (10)

∑
p∈P

xpi ≤ 1 ∀i ∈ {1, . . . , Tj}, (11)

∑
p∈P

∑
i∈Ljp

lpx
p
i = Tj , (12)

r∑
p=1

i−lp>0

xpi−lp =
r∑
p=1

xpi , ∀i ∈ {1, . . . , Tj}, (13)

∑
p∈P

∑
i∈Ljp

xpi = N, (14)

xpi ∈ {0, 1} ∀p ∈ P, ∀i ∈ {1, . . . , Tj − lp + 1}, (15)

zj ≥ 0 (16)

zajk, zb
j
k ∈ R, ∀k ∈ K (17)

The objective function and inequalities (5)–(8) ensure that zj is a maximum of the absolute value
of zajk and zbjk for all k ∈ K. Equalities (9) and (10) compute the noise contribution of the sequence
found by the MILP. The inequality (11) ensures that at most one pitch can start at each position.
The equality (12) ensures that the non-empty part is completely filled with pitches, that is, we
take into account all possible combinations having a fixed tire length. The equalities (13) prevent a
pitch from starting inside another pitch, i.e. there is no overlapping. Remark that, this constraint
corresponds to the existence of paths of length N in the graph presented in Section 3.1. The
equality (14) ensures that exactly N pitches compose the tire.
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The above (P) is a model for the basic TNOP-AP problem. We can however easily add some
more constraints such as those mentioned in Section 2.1:∑

i∈Ljp

xpi ≥ minOccp ∀p ∈ P, (18)

∑
i∈Ljp

xpi ≤ maxOccp ∀p ∈ P, (19)

maxp−1∑
k=0

xpi+klp ≤ maxp ∀p ∈ P, ∀i ∈ {1, . . . , Tj − lp + 1}, (20)

x1
i + xri+l1 ≤ 1, ∀i ∈ {1, . . . , Tj − lr − l1 + 1}, (21)

xri + x1
i+lr ≤ 1, ∀i ∈ {1, . . . , Tj − lr − l1 + 1}, (22)

where

• inequalities (18) and (19) correspond to the constraint ctMinMaxOcc,

• inequalities (20) express ctMaxSeq,

• inequalities (21) and (22) translate ctIncompatibility for the incompatibility of the smallest
and the largest pitch types.

3.3 Exact algorithm to solve TNOP-EX

Recall that the MILP (P) presented in the previous section allows to solve TNOP-AP. In this
section, we propose an algorithm based on (P) allowing to find the optimal solution of the TNOP-
EX regarding the real noise (see Section 2.2.1).

From the MILP (P) we use the Branch-and-Cut framework of ILP solvers to ensure that the
solution is optimal for the TNOP-EX. Let zub be an upper bound for the approximated noise. We
initialize zub by the heuristic algorithm described in [3]. During the execution of the Branch-and-
Bound algorithm associated with the solving of (P), for each integral feasible solution x̃ found by
the Branch-and-Bound, the real noise is computed and denoted by noisecn(x̃). If noisecn(x̃) < zub
then the solution found is better, so that we improve the upper bound by setting zub = noisecn(x̃).
As x̃ is momentarily the best solution found, we save it in x∗ and we add the inequalities

zj ≤ zub (23)

and ∑
p∈P

∑
i∈{1,...,Tj}

x̃pi x
p
i ≤ N − 1 (24)

to the current MILP. We then continue the Branch-and-Bound algorithm. The inequality (23)
updates the upper bound of zj . Adding the inequality (24) makes the solution x̃ unfeasible for the
MILP.

This procedure can be easily done using specific callback in the ILP solver (e.g. lazy constraint
callback for CPLEX). The idea of inequalities (23) is similar to the no-good cut inequalities but
we also cut valid solutions in order to converge to the best solution (see e.g. [7]).
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The algorithm stops when no solution exists and the best solution is x∗ with a noise noisecn(x∗).
As we consider the Branch-and-Bound on the MILP (P) allowing to solve TNOP-AP, the linear
relaxation still provides a valid lower bound, and thus all solutions need not be enumerated.

Recall that, as mentioned in Section 2.2.1, the noise is invariant under circular permutations
and, as minOccp > 0 for each p ∈ P , we can always assume that the first pitch is of type p = 1.
Hence, we add to (P) the equality

x1
1 = 1 (25)

as a constraint, breaking some of the symmetries and thus reducing the space of feasible solutions.
Mind that this can only be done for the computation of the exact noise and not for the approximated
noise.

To break the symmetry, we also propose the following method: Given the sequence x̃ associated
to constraint (24), we can add N − 1 constraints (24) associated to each sequence obtained from x̃
by circular permutation. Note that further symmetry-defeating methods have been introduced in
the literature (see e.g. [15], [8]) but those do not apply to our situation since our model does not
allow for these particular symmetries.

4 Implementation and experimental results

In order to compare experimental results produced by the different methods, the tests have been
carried out using the same parameters as for the case of Genetic Algorithms (GA), studied in [1]:

• There are three different pitch types of length ratios 1, 1.25 and 1.5, respectively.

• The height of a pitch is h = 100.

• The groove is q = 0.1.

Notice that these parameters correspond to realistic values, the same pitch types have been
studied in [6], for the Goodyear patent described in [12].

To solve the TNOP-EX with GA [1], JAVA is used for the implementation. The main parameters
of the GA are: a maximal population size of 1500 and a crossover probability of 0.3. The crossover
is performed randomly. The mutation probability is 0.15 and the mutation is also random. Roulette
and Ranking selection has been used, with a selection pressure of 0.4. For performance reasons,
the coding of the genes has been realized as final Byte Array instead of a binary encoding. The
value semantics of the genes save memory usage and enable the use of the efficient ”==” operator.
A chromosome then is composed of genes.

To solve the TNOP-AP with the MILP (P) we used the CPLEX 12.7.1 solver. The iterative
algorithm solving (P) for each tire length Tj was implemented in JAVA. The exact algorithm to
solve TNOP-EX presented in Section 3.3 was implemented in JAVA using CPLEX and the lazy
constraint callback. The numerical tests have been carried out on an Intel Core i5 of 3.4 GHz in a
Linux environment.

In Tables 1, 2 and 3, an instance is considered as a triple (N,minOccp,maxOccp). According
to the tests made with heuristic methods, we do not take into account the constraints (20), (21)
and (22). The computational times are given in sec, min:sec and hrs:min:sec.

Table 1 presents some experimental results for the heuristic method (GA) and the MILP with
B&C, the latter computing the exact noise. We can remark that the sequences found coincide up
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Table 1: Experimental results – exact solutions
noise GA = pitch sequence time pitch sequence time MILP

instance noise MILP GA GA MILP with B&C with B&C

(10,1,8) 9.019 1311323331 5 1323331131 7
(10,2,6) 9.247 1231123333 3 1233331231 6
(10,2,4) 9.268 2213111333 3 1333221311 3
(10,3,4) 9.368 1233321123 3 1231233321 2
(15,1,13) 7.027 311113311133312 6 111333123111133 25:27
(15,2,11) 7.236 112131223333111 5 131223333111112 27:30
(15,4,7) 7.261 111222123333111 5 122212333311111 13:13
(15,4,6) 7.439 332112331112213 4 112331112213332 10:25
(20,6,8) 6.444 11123332312321132112 26 12321132112111233323 153:53:39
(60,1,58) 4.131 (noise GA) 21231123311232313111 02:21:34 – –

21112311231111131332
13323323333331212131

(60,10,40) 3.899 (noise GA) 12311331212133312113 03:35:87 – –
21131112223333311111
23311231333113331121

to circular permutation and hence we can also confirm that the solutions found by the heuristic
method are also exact. The computational time remains small for GA but increases in a significant
way for the MILP with B&C. Indeed, for 10 pitches, the computation times are very close for
GA and B&C. For 15 pitches the computation time for B&C ranges from 10 to 25 minutes which
still remains acceptable, but from 20 pitches on, it increases considerably. Notice that the genetic
algorithm cannot ensure to find the optimal solution, e.g. the noise found for the instance (60, 10,
40) is 3.899 and the one for the instance (60, 1, 58) is 4.132, whereas the noise of the latter should
be smaller since its space of feasible solutions is larger than that of the former.

Table 2 shows the results found for the computation of the approximated noise, based on the
same instances. The presented values are the following: noise MILP is the approximated noise,
real noise is the exact noise of the sequence found by the MILP and the optimal noise is the noise
of the optimal sequence, presented in Table 1. The gap is computed between the real noise and
the optimal noise, with respect to the latter. Notice that, for each of the sequences found, the
real noise is an upper bound for the optimal noise. We can also remark that, from 15 pitches on,
the solution found is not optimal but the computational time is significantly shorter than that of
the exact algorithm (MILP with B&C) and the gap might be considered as reasonable. Moreover,
although the theoretical gap between the real and the optimal noises is bounded by 42%, we notice
that for our instances the gap computed is much lower, ranging from 3 to 13.2%.

In Section 3.3, we proposed two possible improvements due to the invariance of the noise
computing under symmetries. In Table 3, we compare the computation times when taking them
into account: symmetry 1 corresponds to constraint (25) and symmetry 2 to the N constraints
coming from circular permutations. We remark that none of the two symmetries allows to reduce
the computation time.
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Table 2: Experimental results – approximated solutions
noise real optimal gap

instance pitch sequence time MILP noise noise (%)

(10,1,8) 1121133231 4 7.100 9.540 9.019 5.5
(10,2,6) 1121133231 3 7.100 9.540 9.247 3
(10,2,4) 1223331113 1 7.177 9.638 9.268 3.8
(10,3,4) 1332311212 1 7.397 9.921 9.367 5.9

(15,1,13) 223333121111131 1:12 5.613 7.852 7.027 10.5
(15,2,11) 131223333111112 1:11 5.613 7.852 7.236 7
(15,4,7) 123333131222111 52 5.949 8.362 7.260 13.2
(15,4,6) 123333131222111 37 5.949 8.362 7.439 11

(20,6,8) 22323333113221221111 24:13 5.094 6.931 6.444 7

Table 3: Computational times using symmetries
instance no symmetry symmetry 1 symmetry 2

(10,1,8) 7 8 10
(10,2,6) 6 7 8
(10,2,4) 3 4 5
(10,3,4) 2 2 3

(15,1,13) 25:27 4:38:48 52:12
(15,4,6) 10:25 1:52:05 20:29

5 Conclusion

We had started in [2] with a new approach using a MILP for the Tire Noise Optimization Problem.
Indeed, the tire shape has to satisfy several constraints a priori allowing for linear programming.
However, the objective function depends a very non-linear way on the data. In [2], we proposed an
approximated tire noise model allowing for its linearisation. The approximated noise is guaranteed
to differ from the optimal noise by a ratio of at most 42%. In the present paper, we take some
more constraints into account and provide an exact method to minimize the noise thanks to a
Branch&Cut algorithm, where we also consider possible symmetries in the pitch sequences. We
have tested all proposed algorithms and compared their performances. The MILP approach always
finds a solution in reasonable time, up to a ratio of 14%, which is much lower than the theoretical
42% one. The first results on Branch&Cut algorithm show that our algorithm can provide an exact
solution for at most 20 pitches. As an extension, it would be interesting to enhance the optimization
part to be able to compute the noise for realistic instances, e.g. by developing a dedicated algorithm
or by adding valid inequalities to strengthen the linear relaxation. This opens a new research field
on the tire noise problem.
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