Moment maps and Noether's theorem

Nicolas Ginoux

Seminar on symplectic geometry - University of Regensburg

May 29, 2013

Abstract: Following mainly [2, Chap. 22, 26 & Sec. 24.1] as well as [5, Sec. 5.2-5.3], we discuss and illustrate the concept of moment maps and their symmetries via Noether's theorem.

Unless otherwise stated, we shall denote by (M, ω) a symplectic manifold and by G a Lie group with Lie algebra \underline{G} . For any $f \in C^{\infty}(M; \mathbb{R})$, we denote by $\operatorname{grad}_{\omega}(f) \in \Gamma(TM)$ the symplectic gradient vector field associated to f, that is, characterized by $\omega(\operatorname{grad}_{\omega}(f), X) = df(X)$ for all $X \in TM$. Recall that the *Poisson bracket* of two functions $f, g \in C^{\infty}(M; \mathbb{R})$ is defined by $\{f, g\} := \omega(\operatorname{grad}_{\omega}(f), \operatorname{grad}_{\omega}(g)) \in C^{\infty}(M; \mathbb{R}).$

1 Moment maps

1.1 Definition and characterisations

Recall that a vector field on M is called *Hamiltonian* iff it is the symplectic gradient of a smooth real-valued function on M.

Definition 1.1 Let $G \times M \longrightarrow M$ be a smooth group action via symplectomorphisms. A moment map for this action is a smooth map $\mu : M \to \underline{G}^*$ such that

- i) (Hamiltonian condition) for every $X \in \underline{G}$, $\operatorname{grad}_{\omega}(\mu^X) = X^{\sharp}$, where $\mu^X : M \to \mathbb{R}, \ x \mapsto \mu(x)(X)$ and $X^{\sharp}(x) := \frac{d}{dt}(\exp(tX) \cdot x)_{|_{t=0}}$ for all $x \in M$,
- ii) (equivariance) for all $(g, x) \in G \times X$, $\mu(g \cdot x) = \operatorname{Ad}(g^{-1})^* \circ \mu(x)$, where $u^* := u^t : \theta \mapsto \theta \circ u$ for all $u \in \operatorname{End}(\underline{G})$ and $\theta \in \underline{G}^*$.

We call Hamiltonian G-space any quadruplet (M, ω, G, μ) , where G acts smoothly via symplectomorphisms on M and μ is a moment map for that action.

Definition 1.2 Let $G \times M \longrightarrow M$ be a smooth group action via symplectomorphisms. A comment map for this action is a linear map $\mu^* : \underline{G} \to C^{\infty}(M; \mathbb{R})$ such that

- i) (Hamiltonian condition) for every $X \in \underline{G}$, $\operatorname{grad}_{\omega}(\mu^*(X)) = X^{\sharp}$, where X^{\sharp} is defined as above,
- ii) (equivariance) for all $X, Y \in \underline{G}$, $\mu^*([X,Y]) = \{\mu^*(X), \mu^*(Y)\}$.

Proposition 1.3 Let $G \times M \longrightarrow M$ be any smooth group action via symplectomorphisms.

- 1. Any moment map $\mu : M \to \underline{G}^*$ for that action gives rise to a comment map $\mu^* : \underline{G} \to C^{\infty}(M; \mathbb{R})$ for the same action via $\mu^*(X)(x) := \mu(x)(X)$ for all $x \in M$ and $X \in \underline{G}$.
- 2. Conversely, if G is connected, any comment map $\mu^* : \underline{G} \to C^{\infty}(M; \mathbb{R})$ induces a moment map in the same way.

Proof: Given any moment map $\mu : M \to \underline{G}^*$ for the symplectic *G*-action on M, define μ^* as in Proposition 1.3 (and note that μ^* is well-defined and linear). The Hamiltonian condition i) is by definition satisfied by μ^* . Moreover, for all $X, Y \in \underline{G}$ and $x \in M$, we have

$$\mu^{*}([X,Y])(x) = \mu^{*} \left(\frac{d}{dt} \operatorname{Ad}(\exp(tX))(Y)_{|_{t=0}} \right) (x)$$

$$= \frac{d}{dt} \left(\mu^{*}(\operatorname{Ad}(\exp(tX))(Y))(x) \right)_{|_{t=0}} \qquad (\mu^{*} \text{ is linear})$$

$$= \frac{d}{dt} \left(\mu(x)(\operatorname{Ad}(\exp(tX))(Y)) \right)_{|_{t=0}}$$

$$\stackrel{ii)}{=} \frac{d}{dt} \left(\mu(\exp(-tX) \cdot x)(Y) \right)_{|_{t=0}}$$

$$= d_{x}\mu^{Y}(-X^{\sharp}(x))$$

$$= -\omega_{x}(Y^{\sharp}, X^{\sharp})$$

$$\stackrel{i)}{=} \omega_{x}(\operatorname{grad}_{\omega}(\mu^{X}), \operatorname{grad}_{\omega}(\mu^{Y}))$$

$$= \{\mu^{X}, \mu^{Y}\}(x),$$

which shows the equivariance condition ii) for μ^* . This proves 1. Conversely, assume a comment map $\mu^* : \underline{G} \to C^{\infty}(M; \mathbb{R})$ for the symplectic G-action is given and define μ as above. Then $\mu : M \to \underline{G}^*$ is smooth and obviously satisfies the Hamiltonian condition *i*). Define $\overline{\mu} : G \times M \to \underline{G}^*$ via $\overline{\mu}(g, x) := \operatorname{Ad}(g)^* \circ \mu(g \cdot x)$ for all $(g, x) \in G \times M$. Again, $\overline{\mu}$ is smooth with $\overline{\mu}(e, x) = \mu(x)$ for all $x \in M$. To prove the equivariance condition *ii*) for μ , it suffices by connectedness of G to show that $\frac{\partial \overline{\mu}}{\partial g}(g_0, x) = 0$ for all $(g_0, x) \in G \times M$. Pick arbitrary $g_0 \in G$, $x \in M$ and $X, Y \in \underline{G}$. Note that any tangent vector in $T_{g_0}G$ is of the form $d_e L_{g_0}(Z) \in T_{g_0}G$ for some $Z \in \underline{G}$, where $L_{g_0} : G \to G$, $g \mapsto g_0 g$ is the left translation by g_0 . We compute

$$\begin{aligned} \frac{\partial \overline{\mu}}{\partial g}(g_0, x)(d_e L_{g_0}(X))(Y) &= \frac{d}{dt} \left(\overline{\mu}(g_0 \exp(tX), x)(Y) \right)_{|_{t=0}} \\ &= \frac{d}{dt} \left(\mu(g_0 \exp(tX) \cdot x) (\operatorname{Ad}(g_0 \exp(tX))(Y)) \right)_{|_{t=0}} \\ &= d_{g_0 \cdot x} \mu(\operatorname{Ad}(g_0)(X)^{\sharp}(g_0 \cdot x)) (\operatorname{Ad}(g_0)(Y)) + \mu(g_0 \cdot x) (\operatorname{Ad}(g_0)([X, Y])) \\ &= d_{g_0 \cdot x} \mu^{\operatorname{Ad}(g_0)(Y)} (\operatorname{Ad}(g_0)(X)^{\sharp}(g_0 \cdot x)) \\ &+ \mu(g_0 \cdot x) ([\operatorname{Ad}(g_0)(X), \operatorname{Ad}(g_0)(Y)]) \\ &= \{\mu^*(\operatorname{Ad}(g_0)(Y)), \mu^*(\operatorname{Ad}(g_0)(X))\}(g_0 \cdot x) \\ &+ \mu^*([\operatorname{Ad}(g_0)(X), \operatorname{Ad}(g_0)(Y)])(g_0 \cdot x) \\ &= 0, \end{aligned}$$

where we have used the fact that

$$\frac{d}{dt} (g_0 \exp(tX) \cdot x)_{|_{t=0}} = \frac{d}{dt} ((g_0 \exp(tX)g_0^{-1}) \cdot (g_0 \cdot x))_{|_{t=0}} \\
= \frac{d}{dt} ((\exp(t\operatorname{Ad}(g_0)(X))) \cdot (g_0 \cdot x))_{|_{t=0}} \\
= (\operatorname{Ad}(g_0)(X))^{\sharp} (g_0 \cdot x).$$

This concludes the proof of 2.

Note 1.4 Given a Hamiltonian G-space (M, ω, G, μ) , the subset $\mu^{-1}(\{0\})$ of M is G-invariant by ii). The quotient $\mu^{-1}(\{0\})/G$ – which is not necessarily a smooth manifold – is called *reduced space*, see symplectic reduction in the next talks.

1.2 Examples

Example 1.5 A symplectic action of $G = \mathbb{R}$ on M is nothing but a complete symplectic vector field: given a smooth symplectic action $\phi : \mathbb{R} \times M \to M$, define $X(x) := \frac{\partial \phi}{\partial t}(0, x)$ for all $x \in M$, then X is symplectic because its flow

 $(\phi_t := \phi(t, \cdot))_t$ is and is complete since the flow is defined on \mathbb{R} . Conversely, if X is symplectic (i.e., $d(X \sqcup \omega) = 0$) and complete, then its flow defines a symplectic \mathbb{R} -action on M. In that case, a moment map for the \mathbb{R} -action reduces to a Hamiltonian function for X; in particular, it exists iff X is Hamiltonian. Note that the equivariance condition – which simplifies to an invariance condition since $\mathbb{R} = \mathbb{R}$ is abelian – is automatically satisfied by any Hamiltonian function for X. The invariance of a Hamiltonian function along the integral curves of its symplectic gradient can also be obtained from Noether's theorem below. Beware that not every symplectic vector field with periodic flow has a Hamiltonian function. For instance, consider $M := \mathbb{T}^2 =$ $\mathbb{U}_1 \times \mathbb{U}_1$ with the standard symplectic form $\omega = d\theta_1 \wedge d\theta_2$ and $\mathbb{R} \times M \to M$, $(t, (x, y)) \mapsto (e^{it} \cdot x, y)$, the standard action by rotations on the first factor of \mathbb{T}^2 . For the basis vector $X = 1 \in \mathbb{R} = \mathbb{R}$, the associated fundamental vector field on M is given by $X^{\sharp} = \frac{\partial}{\partial \theta_1}$. Since $X^{\sharp} \lrcorner \omega = d\theta_2$, the only Hamiltonian functions possible for X^{\sharp} are those of the form $\theta_2 + c, c \in \mathbb{R}$. But since $\theta_2: \mathbb{R}^2 \to \mathbb{R}$ is not preserved by the \mathbb{Z}^2 -action, it does not descend to the 2torus and hence X^{\sharp} is not Hamiltonian. Note that the Lie-algebra-cohomology group $H^1(G; \mathbb{R}) = \mathbb{R}$ does not vanish, see Theorem 1.14 below.

Example 1.6 Similarly, a symplectic action of $G = U_1$ on M is a periodic symplectic \mathbb{R} -action on M. In that case, a moment map for the U_1 -action is a Hamiltonian function $M \to \mathbb{R}$ for the induced vector field on M. Again, not every symplectic vector field with periodic flow has a Hamiltonian function. For example, the non-Hamiltonian symplectic \mathbb{R} -action above, being 2π -periodic, induces a U_1 -action on \mathbb{T}^2 , but this action has no Hamiltonian function since the above one already has none.

Example 1.7 Let $G = \mathbb{U}_1$ act by multiplication onto $M := \mathbb{C}^n$ with its standard symplectic form $\omega(z, z') := -\operatorname{Im}(\langle z, z' \rangle)$. This action, which is obviously symplectic, is Hamiltonian: one looks for a smooth function $\mu : \mathbb{C}^n \to \mathbb{R} \cong \underline{\mathbb{U}_1}^*$ with $\operatorname{grad}_{\omega}(\mu) = i^{\sharp}$, that is, $\operatorname{grad}_{\omega}(\mu)(z) = iz$ for every $z \in \mathbb{C}^n$, or equivalently

$$d_z \mu(z') = \omega(iz, z') = -\operatorname{Re}(\langle z, z' \rangle)$$

for all $z, z' \in \mathbb{C}^n$. Therefore $\mu(z) := -\frac{1}{2}|z^2| + c, c \in \mathbb{R}$, matches.

Example 1.8 Let $G := \mathbb{R}^3$, $M = T^* \mathbb{R}^3 \cong \mathbb{R}^6$ and $G \times M \to M$, $(a, (x, y)) \mapsto (a + x, y)$ be the action induced by that of \mathbb{R}^3 on itself by translations. Let $T^* \mathbb{R}^3$ carry its standard symplectic form $\omega = \sum_{i=1}^3 dx_i \wedge dy_i$, which is the canonical form $\omega = -d\Theta$ and $\Theta : \theta \mapsto \pi_{T^*M}(\theta)(d\pi_M(\theta))$ is the canonical 1-form on T^*M (and where $T^*M \xrightarrow{\pi_M} M$ as well as $T(T^*M) \xrightarrow{\pi_{T^*M}} T^*M$). For

any $X \in \mathbb{R}^3$, we have $X^{\sharp}(x,y) = (X,0)$ for all $(x,y) \in \mathbb{R}^3 \times \mathbb{R}^3$ and hence

$$X^{\sharp} \lrcorner \omega = \sum_{i=1}^{3} X_i dy_i = d(\sum_{i=1}^{3} X_i y_i) = d(\langle X, y \rangle).$$

Therefore one may define $\mu^X(x, y) := \langle X, y \rangle$ for all $X \in \mathbb{R}^3$ and $(x, y) \in M$. Then $\mu : M \to (\mathbb{R}^3)^* \cong \mathbb{R}^3$, $(x, y) \mapsto y$ is obviously a moment map for that *G*-action. This map is called *linear momentum*.

Example 1.9 Let again $M = T^* \mathbb{R}^3 \cong \mathbb{R}^6$ carry its standard symplectic structure, but this time take $G := SO_3$, with action induced by its standard operation on \mathbb{R}^3 , that is, $(A, (x, y)) \mapsto (Ax, Ay)$. Note that the canonical 1-form Θ is preserved by this *G*-action since $\langle Ax, Ay \rangle = \langle x, y \rangle$ for all $(x, y) \in \langle Ax, Ay \rangle = \langle x, y \rangle$ for all $(x, y) \in \langle Ax, Ay \rangle = \langle x, y \rangle$.

$$\mathbb{R}^{6}. \text{ Identifying } \underline{SO_{3}} \cong \mathbb{R}^{3} \text{ via } \begin{pmatrix} 0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0 \end{pmatrix} \mapsto (a_{1}, a_{2}, a_{3}), \text{ the Lie}$$

bracket [A, B] = AB - BA becomes the cross product $a \times b$. For any $a \in \mathbb{R}^3 \cong$ SO₃, the induced fundamental vector field is given by $a^{\sharp}(x, y) = (a \times x, a \times y)$ for all $(x, y) \in \mathbb{R}^3 \times \mathbb{R}^3$. Writing the Hamiltonian condition down for this action, one obtains (modulo constants), for all $x, y \in \mathbb{R}^3$:

$$\mu^{a}(x,y) = \frac{1}{2}(\langle a \times x, y \rangle + \langle a \times y, x \rangle) = \langle a, x \times y \rangle.$$

The map $\mu: M \to \mathbb{R}^3$, $(x, y) \mapsto x \times y$ satisfies the Hamiltonian condition as well as the equivariance one: for any $a, b \in \mathbb{R}^3$ and $x, y \in \mathbb{R}^3$,

$$\mu^{a \times b}(x, y) = \langle a \times b, x \times y \rangle = \langle a, x \rangle \langle b, y \rangle - \langle a, y \rangle \langle b, x \rangle,$$

and on the other hand

$$\begin{aligned} \{\mu^{a}, \mu^{b}\}(x, y) &= \omega_{(x,y)}(\operatorname{grad}_{\omega}(\mu^{a}), \operatorname{grad}_{\omega}(\mu^{b})) \\ &= \langle \begin{pmatrix} a \times x \\ a \times y \end{pmatrix}, \begin{pmatrix} b \times y \\ -b \times x \end{pmatrix} \rangle \\ &= \langle a, x \rangle \langle b, y \rangle - \langle a, y \rangle \langle b, x \rangle, \end{aligned}$$

that is, $\mu^{a \times b} = \{\mu^a, \mu^b\}$ on *M*. The map μ is called *angular momentum*.

1.3 Existence and uniqueness of moment maps

Definition 1.10 For any finite-dimensional (real) Lie algebra \mathfrak{g} and $k \in \mathbb{N}$, the operator $\delta : \Lambda^k \mathfrak{g}^* \to \Lambda^{k+1} \mathfrak{g}^*$ is defined by

$$(\delta\omega)(X_0,\ldots,X_k) := \sum_{0 \le i < j \le k} (-1)^{i+j} \omega([X_i,X_j],X_0,\ldots,\widehat{X_i},\ldots,\widehat{X_j},\ldots,X_k),$$

for all $\omega \in \Lambda^k \mathfrak{g}^*$ and $X_0, \ldots, X_k \in \mathfrak{g}$ (for k = 0, set $\delta := 0$).

It is elementary to show that $\delta^2 = 0$, therefore δ gives rise to a chain complex and hence to the cohomology groups

$$H^k(\mathfrak{g};\mathbb{R}) := \ker(\delta) \cap \Lambda^k \mathfrak{g}^*/_{\mathrm{im}}(\delta) \cap \Lambda^k \mathfrak{g}^*$$

for all $k \geq 0$, where by convention $\delta_{|_{\Lambda^{-1}\mathfrak{g}^*}} := 0$. Those groups are by definition the *Lie-algebra-cohomology groups* of \mathfrak{g} .

Examples 1.11

1. In case k = 1 one has

$$H^{1}(\mathfrak{g};\mathbb{R}) = \ker(\delta) \cap \mathfrak{g}^{*} = \{\theta \in \mathfrak{g}^{*}, \, \theta([X,Y]) = 0 \,\forall \, X, Y \in \mathfrak{g}\} = [\mathfrak{g},\mathfrak{g}]^{0},$$

where $[\mathfrak{g},\mathfrak{g}] := \text{Span}([X,Y], X, Y \in \mathfrak{g}) \subset \mathfrak{g}$ is the derived ideal and, for any $A \subset \mathfrak{g}$, the subset A^0 denotes its polar set in \mathfrak{g}^* . In particular, $H^1(\mathfrak{g}; \mathbb{R}) = 0$ iff $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$.

2. In case k = 2 one has, for any $\omega \in \Lambda^2 \mathfrak{g}^*$ and $X, Y, Z \in \mathfrak{g}$,

$$(\delta\omega)(X,Y,Z) = -\omega([X,Y],Z) - \omega([Y,Z],X) - \omega([Z,X],Y).$$

In particular, $\delta \omega = 0$ iff ω satisfies the analogue of the Jacobi identity. And $H^2(\mathfrak{g}; \mathbb{R}) = 0$ iff any such ω is already of the form $(X, Y) \mapsto \theta([X, Y])$ for some $\theta \in \mathfrak{g}^*$.

Theorem 1.12 Let G be a compact connected Lie group, then there is for every k an isomorphism

$$H^k(\underline{G}; \mathbb{R}) \cong H^k_{dR}(G; \mathbb{R}).$$

The proof of Theorem 1.12 (see e.g. [6, Sec. 8.5]) essentially relies on the fact that, for a compact connected Lie group, the de Rham cohomology groups of G are isomorphic to those built out of *left-invariant* differential forms.

Next we want to give sufficient conditions for the existence and uniqueness of moment maps. The questions may be reformulated in terms of commutative diagrammes as follows. Let $\mathfrak{X}^{\text{symp}}(M)$ and $\mathfrak{X}^{\text{ham}}(M)$ denote the spaces of symplectic vector fields and of Hamiltonian vector fields on M respectively. Given any smooth symplectic group action $\phi : G \times M \to M$, we obtain by differentiating at $e \in G$ the linear map $d\phi : \underline{G} \to \mathfrak{X}^{\text{symp}}(M), d\phi(X) := X^{\sharp}$, see

above. By definition, a comment map for ϕ is a Lie-algebra-homomorphism $\mu^*: \underline{G} \to C^{\infty}(M; \mathbb{R})$ making the diagramme

commute, in particular $d\phi(\underline{G}) \subset \mathfrak{X}^{\text{ham}}(M)$. Before we turn to the main result, we state and prove the following lemma, which contains claims from the last talk:

Lemma 1.13 Let (M, ω) be a symplectic manifold.

- a) For $X, Y \in \mathfrak{X}^{symp}(M)$, one has $d(\omega(Y, X)) = [X, Y]$. In particular, $[X, Y] \in \mathfrak{X}^{ham}(M)$.
- b) For any $f, g \in C^{\infty}(M; \mathbb{R})$, one has $\operatorname{grad}_{\omega}(\{f, g\}) = -[\operatorname{grad}_{\omega}(f), \operatorname{grad}_{\omega}(g)]$. In particular, the map $C^{\infty}(M; \mathbb{R}) \longrightarrow \mathfrak{X}^{ham}(M)$, $f \mapsto \operatorname{grad}_{\omega}(f)$, is a Lie-algebra-anti-homomorphism.
- c) Let G be a Lie group and $G \times M \to M$ be any smooth symplectic group action on M. Then the map $d\phi : \underline{G} \to \mathfrak{X}^{symp}(M), X \mapsto X^{\sharp}$, is a Lie-algebra-anti-homomorphism.

Proof: Recall the Cartan identity $L_Z = \iota_Z \circ d + d \circ \iota_Z$ for any $Z \in \mathfrak{X}(M)$, where $\iota_Z := Z \lrcorner$ denotes the inner product by and L_Z the Lie derivative along a vector field Z on M. In particular, a vector field X is symplectic, i.e., $d(\iota_X \omega) = 0$, iff $L_X \omega = 0$.

For any $X, Y \in \mathfrak{X}^{\text{symp}}(M)$, we have

$$[X, Y] \lrcorner \omega = \iota_{L_X Y} \omega$$

= $L_X (Y \lrcorner \omega) - Y \lrcorner L_X \omega$
= $(\iota_X \circ d + d \circ \iota_X) Y \lrcorner \omega$
= $d(\omega(Y, X)).$

This proves a). Statement b) is a straightforward consequence of a) because Hamiltonian vector fields are symplectic and by the definition of the Poisson bracket. For c), we must show that $[X, Y]^{\sharp} = -[X^{\sharp}, Y^{\sharp}]$ for all $X, Y \in \underline{G}$. Let $f \in C^{\infty}(M; \mathbb{R})$ be arbitrary, then by definition at any $x \in M$:

$$\begin{split} [X^{\sharp}, Y^{\sharp}](x)(f) &= X^{\sharp}(x)(Y^{\sharp}(f)) - Y^{\sharp}(x)(X^{\sharp}(f)) \\ &= \frac{d}{dt} \left((Y^{\sharp}(f))(\exp(tX) \cdot x) \right)_{|_{t=0}} - \frac{d}{dt} \left((X^{\sharp}(f))(\exp(tY) \cdot x) \right)_{|_{t=0}} \\ &= \frac{d}{dt} \left(\frac{d}{ds} \Big(f(\exp(sY) \cdot (\exp(tX) \cdot x)) \Big)_{|_{s=0}} \Big)_{|_{t=0}} \\ &- \frac{d}{dt} \left(\frac{d}{ds} \Big(f(\exp(sX) \cdot (\exp(tY) \cdot x)) \Big)_{|_{s=0}} \right)_{|_{t=0}}. \end{split}$$

By Schwarz' theorem, we can permute both differential operators $\frac{d}{ds}$ and $\frac{d}{dt}$. Using

$$\begin{aligned} \frac{d}{dt} \left(f(\exp(sY) \cdot \exp(tX) \cdot x) \right)_{t=0} &= \frac{d}{dt} \left(f(\exp(sY) \cdot \exp(tX) \cdot \exp(-sY) \cdot \exp(sY) \cdot x) \right)_{t=0} \\ &= \frac{d}{dt} \left(f(\exp(t\operatorname{Ad}(\exp(sY))(X)) \cdot \exp(sY) \cdot x) \right)_{t=0} \\ &= \operatorname{Ad}(\exp(sY))(X)^{\sharp}(\exp(sY) \cdot x)(f), \end{aligned}$$

we obtain

$$\begin{aligned} \frac{d}{ds} \left(\frac{d}{dt} \Big(f(\exp(sY) \cdot (\exp(tX) \cdot x)) \Big)_{|_{t=0}} \Big)_{|_{s=0}} &= \frac{d}{ds} \left(\operatorname{Ad}(\exp(sY))(X)^{\sharp}(\exp(sY) \cdot x)(f) \right)_{s=0} \\ &= [Y, X]^{\sharp}(x)(f) + Y^{\sharp}(x)(X^{\sharp}(f)), \end{aligned}$$

so that, exchanging the roles of X and Y for the second term, we obtain by subtracting

$$[X^{\sharp}, Y^{\sharp}](x)(f) = [Y^{\sharp}, X^{\sharp}](x)(f) + 2[Y, X]^{\sharp}(x)(f),$$

which yields the result.

Theorem 1.14 (Existence and uniqueness of moment maps) Let G be a connected Lie group with both $H^1(\underline{G}; \mathbb{R}) = 0$ and $H^2(\underline{G}; \mathbb{R}) = 0$. Then any smooth symplectic G-action on a connected symplectic manifold has a unique moment map.

Proof: From $H^1(\underline{G}; \mathbb{R}) = 0$, we already know that $\underline{G} = [\underline{G}, \underline{G}]$. Let $G \times M \to M$ be any smooth symplectic action of G on a connected symplectic manifold M. Since the commutator of any two symplectic vector fields is Hamiltonian (Lemma 1.13), the map $d\phi : [\underline{G}, \underline{G}] \to \mathfrak{X}^{\text{symp}}(M)$ actually maps

into $\mathfrak{X}^{\mathrm{ham}}(M)$. In particular, choosing a basis $\{X_1, \ldots, X_p\}$ of \underline{G} , there exist $\tau_1, \ldots, \tau_p \in C^{\infty}(M; \mathbb{R})$ such that $\operatorname{grad}_{\omega}(\tau_i) = X_i^{\sharp}$ for all $1 \leq i \leq p$. Setting $\tau(X_i) := \tau_i$ and extending τ linearly provides a linear map $\tau : \underline{G} \to C^{\infty}(M; \mathbb{R})$ with $\operatorname{grad}_{\omega}(\tau(X)) = X^{\sharp}$ for all $X \in \underline{G}$. The map τ is not necessarily a Liealgebra-homomorphism, however the fact that $H^2(\underline{G}; \mathbb{R}) = 0$ allows for a slight modification of τ making it into a Lie-algebra-homomorphism. Namely, for any $X, Y \in \underline{G}$, the difference $\tau([X, Y]) - \{\tau(X), \tau(Y)\} \in C^{\infty}(M; \mathbb{R})$ is actually constant because, by Lemma 1.13,

$$grad_{\omega}(\tau([X, Y])) = [X, Y]^{\sharp}$$

= $-[X^{\sharp}, Y^{\sharp}]$
= $-[grad_{\omega}(\tau(X)), grad_{\omega}(\tau(Y))]$
= $grad_{\omega}(\{\tau(X), \tau(Y)\},$

that is, there exist a constant $c(X, Y) \in \mathbb{R}$ with $\tau([X, Y]) - \{\tau(X), \tau(Y)\} = c(X, Y)$. This holds for all $X, Y \in \underline{G}$. Therefore we obtain a map $c : \underline{G} \times \underline{G} \to \mathbb{R}$, which is obviously bilinear and alternate since $(X, Y) \mapsto \tau([X, Y]) - \{\tau(X), \tau(Y)\}$ is. Now since both $[\cdot, \cdot]$ and $\{\cdot, \cdot\}$ satisfy the Jacobi identity and c(X, Y) is a constant function on M for all $X, Y \in \underline{G}$, we have $\delta c = 0$. By $H^2(\underline{G}; \mathbb{R}) = 0$, there exists a $b \in \underline{G}^*$ such that $\delta b = c$, that is, c(X, Y) = -b([X, Y]) for all $X, Y \in \underline{G}$. Setting $\mu^* := \tau + b$, we obtain a linear map $\underline{G} \to C^{\infty}(M; \mathbb{R})$, still satisfying $\operatorname{grad}_{\omega}(\mu^*(X)) = X^{\sharp}$ (because b(X) is constant on M) for any $X \in \underline{G}$ but also

$$\mu^*([X,Y]) = \tau([X,Y]) + b([X,Y])$$

= $c(X,Y) + \{\tau(X),\tau(Y)\} + b([X,Y])$
= $\{\mu^*(X),\mu^*(Y)\}$

for all $X, Y \in \underline{G}$. Therefore μ^* is a comment map for the *G*-action. Uniqueness trivially follows from $H^1(\underline{G}; \mathbb{R}) = 0$. Namely if μ_1 and μ_2 are two comment maps for the *G*-action, then $\mu_1 - \mu_2$ satisfies $\operatorname{grad}_{\omega}(\mu_1(X) - \mu_2(X)) = X^{\sharp} - X^{\sharp} = 0$ for all $X \in \underline{G}$, and since *M* is connected there is a $b(X) \in \mathbb{R}$ with $\mu_1(X) - \mu_2(X) = b(X)$. Obviously $b \in \underline{G}^*$ and because of $\mu_i([X,Y]) = \{\mu_i(X), \mu_i(Y)\} = \omega(X^{\sharp}, Y^{\sharp})$ for both i = 1, 2, we get $(\delta b)(X,Y) = -b([X,Y]) = 0$ for all $X, Y \in \underline{G}$. By $H^1(\underline{G}; \mathbb{R}) = 0$, we obtain b = 0 and hence $\mu_1 = \mu_2$.

Note 1.15 The last argument in the proof of Theorem 1.14 actually shows that, if non-empty, the space of comment maps for a given smooth symplectic group action of a Lie group G on a connected manifold M is an affine

space modelled on $H^1(\underline{G}; \mathbb{R})$. Namely, as we have seen above, the difference of any two comment maps is – provided M is connected – given by an element of $H^1(\underline{G}; \mathbb{R})$. Conversely, if $\mu^* : \underline{G} \to C^{\infty}(M; \mathbb{R})$ is a comment map, then for any $b \in \ker(\delta) \cap \underline{G}^* = H^1(\underline{G}; \mathbb{R})$, the map $\mu^* + b$ is a comment map for the same group action.

Definition 1.16 A Lie group is called semi-simple iff its Lie algebra contains no non-trivial abelian ideal.

For instance, any of the classical groups SO_n , SU_n , $SL(n; \mathbb{R})$ as well as the symplectic group $Sp(2n; \mathbb{R})$ are semi-simple. A counterexample is given by e.g. U_n , since $i\mathbb{R} \cdot I_n$ is an abelian ideal in U_n .

It is well-known (see e.g. [1, Sec. I.6] or [3, Ch. II]) that a Lie algebra \mathfrak{g} is semi-simple iff its radical (which is the unique maximal solvable ideal in \mathfrak{g}) vanishes, which is also equivalent to the Killing form $(X, Y) \mapsto B(X, Y) :=$ $\operatorname{tr}(\operatorname{ad}(X) \circ \operatorname{ad}(Y))$ being nondegenerate. For compact Lie groups, there is even another very practical characterisation of semi-simplicity:

Proposition 1.17 A compact Lie group G is semi-simple iff its Lie algebra satisfies $[\underline{G}, \underline{G}] = \underline{G}$.

Proof: The fact that G is compact implies that <u>G</u> carries an Ad(G)-invariant inner product $\langle \cdot, \cdot \rangle$. In particular, differentiating at $e \in G$ yields

$$\langle \operatorname{ad}(X)(Y), Z \rangle = -\langle X, \operatorname{ad}(Y)(Z) \rangle$$

for all $X, Y, Z \in \underline{G}$. This first implies

$$\underline{G} = [\underline{G}, \underline{G}] \bigoplus_{i} Z(\underline{G}),$$

where $Z(\underline{G}) := \ker(\operatorname{ad}) = \{X \in \underline{G}, [X, Y] = 0 \ \forall Y \in \underline{G}\}$ is the centre of the Lie algebra \underline{G} . Namely, if $X \in Z(\underline{G})$, then for all $Y, Z \in \underline{G}$,

$$\langle X, [Y, Z] \rangle = -\langle [Y, X], Z \rangle = 0,$$

that is, $X \in [\underline{G}, \underline{G}]^{\perp}$, so that $Z(\underline{G}) \subset [\underline{G}, \underline{G}]^{\perp}$. Conversely, if $X \in [\underline{G}, \underline{G}]^{\perp}$, then for any $Y, Z \in \underline{G}$, one has

$$\langle [X,Y],Z\rangle = \langle X,[Y,Z]\rangle = 0,$$

so that [X,Y] = 0 for all $Y \in \underline{G}$, that is, $X \in Z(\underline{G})$. This shows $[\underline{G},\underline{G}]^{\perp} \subset Z(\underline{G})$ and thus $[\underline{G},\underline{G}]^{\perp} = Z(\underline{G})$.

If G is semi-simple, then the abelian ideal $Z(\underline{G})$ must vanish, hence $\underline{G} = [\underline{G}, \underline{G}]$. Conversely, if $\underline{G} = [\underline{G}, \underline{G}]$, then $Z(\underline{G}) = 0$. Now if $\mathfrak{h} \subset \underline{G}$ is any abelian ideal, then there exists a connected Lie subgroup H of G_0 (the connected component of the neutral element in G) with $\underline{H} = \mathfrak{h}$. The subgroup H is normal in G_0 because \mathfrak{h} is an ideal and H is a torus since G is compact. In particular, H is contained in a maximal torus of G_0 . But since all maximal tori of a given connected compact Lie group are conjugate, H is actually contained in all maximal tori of G_0 . Since any element of G_0 is contained in at least one maximal torus, H commutes with each element of G_0 and hence $H \subset Z(G_0)$. By $\underline{Z(G_0)} = Z(\underline{G_0}) = Z(\underline{G}) = 0$, we conclude that $\mathfrak{h} = 0$. This proves that G is semi-simple.

There is still another characterisation of semi-simplicity in terms of Liealgebra-cohomology:

Theorem 1.18 (Whitehead's lemmas) A compact Lie group G is semisimple iff $H^1(\underline{G}; \mathbb{R}) = 0$ and $H^2(\underline{G}; \mathbb{R}) = 0$.

See e.g. [4, Thm. III.13] for a proof of Theorem 1.18.

Corollary 1.19 Let G be a semi-simple compact connected Lie group. Then any smooth symplectic action of G on an arbitrary connected symplectic manifold admits a unique moment map.

2 Noether's theorem

Theorem 2.1 (Noether's theorem) Let (M, ω, G, μ) be a Hamiltonian Gspace with G connected and $f \in C^{\infty}(M; \mathbb{R})$ an arbitrary smooth function on M. Then f is G-invariant (i.e., $f(g \cdot x) = f(x)$ for all $(g, x) \in G \times M$) iff μ is constant along the integral curves of grad_{ω}(f).

Proof: By definition, f is G-invariant iff it is constant on all G-orbits. Since G is connected, this is equivalent to $d_x f(X^{\sharp}(x)) = 0$ for all $X \in \underline{G}$ and all $x \in M$. But $df(X^{\sharp}) = \omega(\operatorname{grad}_{\omega}(f), X^{\sharp})$ and, because the G-action is Hamiltonian, $\omega(\operatorname{grad}_{\omega}(f), X^{\sharp}) = \omega(\operatorname{grad}_{\omega}(f), \operatorname{grad}_{\omega}(\mu^X)) = -d\mu^X(\operatorname{grad}_{\omega}(f))$. Therefore, $df(X^{\sharp}) = 0$ on M iff $d\mu^X(\operatorname{grad}_{\omega}(f)) = 0$ on M. This proves the equivalence.

Theorem 2.1 generalizes the Noether theorem from last talk ("Given a Hamiltonian vector field $X = \operatorname{grad}_{\omega}(\mu)$ and a function $f \in C^{\infty}(M; \mathbb{R})$, the function f is constant along the integral curves of X iff μ is constant along the integral curves of $\operatorname{grad}_{\omega}(f)$ ") to the case of arbitrary symplectic group actions. **Definition 2.2** An integral of motion for a Hamiltonian G-space (M, ω, G, μ) is a G-invariant function $f \in C^{\infty}(M; \mathbb{R})$. In that case, the 1-parameter family of local diffeomorphisms associated to the flow of $\operatorname{grad}_{\omega}(f)$ is called a symmetry for (M, ω, G, μ) .

As a consequence, Noether's theorem establishes a bijective correspondence between integrals of motion (modulo constants) and symmetries of Hamiltonian G-spaces.

References

- N. Bourbaki, *Lie groups and Lie algebras*, Chapters 1–3, Elements of Mathematics, Springer, 1989.
- [2] A. Cannas da Silva, *Lectures on symplectic geometry*, Lecture Notes in Mathematics 1764, Springer, 2001.
- [3] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics 9, Springer, 1972.
- [4] N. Jacobson, *Lie algebras*, Interscience Tracts in Pure and Applied Mathematics 10, Interscience Publishers, 1962.
- [5] D. McDuff, D. Salamon, Introduction to symplectic topology, Second edition, Oxford University Press, 1998.
- [6] J.A. Wolf, Spaces of constant curvature, Fifth edition, Publish or Perish, 1984.