# Moment maps and Noether's theorem 

Nicolas Ginoux

Seminar on symplectic geometry - University of Regensburg
May 29, 2013


#### Abstract

Following mainly [2, Chap. 22, 26 \& Sec. 24.1] as well as [5, Sec. 5.2-5.3], we discuss and illustrate the concept of moment maps and their symmetries via Noether's theorem.


Unless otherwise stated, we shall denote by $(M, \omega)$ a symplectic manifold and by $G$ a Lie group with Lie algebra $\underline{G}$. For any $f \in C^{\infty}(M ; \mathbb{R})$, we denote by $\operatorname{grad}_{\omega}(f) \in \Gamma(T M)$ the symplectic gradient vector field associated to $f$, that is, characterized by $\omega\left(\operatorname{grad}_{\omega}(f), X\right)=d f(X)$ for all $X \in T M$. Recall that the Poisson bracket of two functions $f, g \in C^{\infty}(M ; \mathbb{R})$ is defined by $\{f, g\}:=\omega\left(\operatorname{grad}_{\omega}(f), \operatorname{grad}_{\omega}(g)\right) \in C^{\infty}(M ; \mathbb{R})$.

## 1 Moment maps

### 1.1 Definition and characterisations

Recall that a vector field on $M$ is called Hamiltonian iff it is the symplectic gradient of a smooth real-valued function on $M$.

Definition 1.1 Let $G \times M \longrightarrow M$ be a smooth group action via symplectomorphisms. A moment map for this action is a smooth map $\mu: M \rightarrow \underline{G}^{*}$ such that
i) (Hamiltonian condition) for every $X \in \underline{G}, \operatorname{grad}_{\omega}\left(\mu^{X}\right)=X^{\sharp}$, where $\mu^{X}: M \rightarrow \mathbb{R}, x \mapsto \mu(x)(X)$ and $X^{\sharp}(x):=\frac{d}{d t}(\exp (t X) \cdot x)_{\mid t=0}$ for all $x \in M$,
ii) (equivariance) for all $(g, x) \in G \times X, \mu(g \cdot x)=\operatorname{Ad}\left(g^{-1}\right)^{*} \circ \mu(x)$, where $u^{*}:=u^{t}: \theta \mapsto \theta \circ u$ for all $u \in \operatorname{End}(\underline{G})$ and $\theta \in \underline{G}^{*}$.

We call Hamiltonian $G$-space any quadruplet $(M, \omega, G, \mu)$, where $G$ acts smoothly via symplectomorphisms on $M$ and $\mu$ is a moment map for that action.

Definition 1.2 Let $G \times M \longrightarrow M$ be a smooth group action via symplectomorphisms. A comoment map for this action is a linear map $\mu^{*}: \underline{G} \rightarrow$ $C^{\infty}(M ; \mathbb{R})$ such that
i) $\left(\right.$ Hamiltonian condition) for every $X \in \underline{G}, \operatorname{grad}_{\omega}\left(\mu^{*}(X)\right)=X^{\sharp}$, where $X^{\sharp}$ is defined as above,
ii) (equivariance) for all $X, Y \in \underline{G}, \mu^{*}([X, Y])=\left\{\mu^{*}(X), \mu^{*}(Y)\right\}$.

Proposition 1.3 Let $G \times M \longrightarrow M$ be any smooth group action via symplectomorphisms.

1. Any moment map $\mu: M \rightarrow \underline{G}^{*}$ for that action gives rise to a comoment map $\mu^{*}: \underline{G} \rightarrow C^{\infty}(M ; \mathbb{R})$ for the same action via $\mu^{*}(X)(x):=\mu(x)(X)$ for all $x \in M$ and $X \in \underline{G}$.
2. Conversely, if $G$ is connected, any comoment map $\mu^{*}: \underline{G} \rightarrow C^{\infty}(M ; \mathbb{R})$ induces a moment map in the same way.

Proof: Given any moment map $\mu: M \rightarrow \underline{G}^{*}$ for the symplectic $G$-action on $M$, define $\mu^{*}$ as in Proposition 1.3 (and note that $\mu^{*}$ is well-defined and linear). The Hamiltonian condition $i$ ) is by definition satisfied by $\mu^{*}$. Moreover, for all $X, Y \in \underline{G}$ and $x \in M$, we have

$$
\begin{aligned}
\mu^{*}([X, Y])(x) & =\mu^{*}\left(\frac{d}{d t} \operatorname{Ad}(\exp (t X))(Y)_{\mid t=0}\right)(x) \\
& =\frac{d}{d t}\left(\mu^{*}(\operatorname{Ad}(\exp (t X))(Y))(x)\right)_{\mid t=0} \quad\left(\mu^{*} \text { is linear }\right) \\
& =\frac{d}{d t}(\mu(x)(\operatorname{Ad}(\exp (t X))(Y)))_{\mid t=0} \\
& \stackrel{i i)}{=} \frac{d}{d t}(\mu(\exp (-t X) \cdot x)(Y))_{\mid t=0} \\
& =d_{x} \mu^{Y}\left(-X^{\sharp}(x)\right) \\
& =-\omega_{x}\left(Y^{\sharp}, X^{\sharp}\right) \\
& \stackrel{i)}{=} \omega_{x}\left(\operatorname{grad}_{\omega}\left(\mu^{X}\right), \operatorname{grad}_{\omega}\left(\mu^{Y}\right)\right) \\
& =\left\{\mu^{X}, \mu^{Y}\right\}(x),
\end{aligned}
$$

which shows the equivariance condition $i i)$ for $\mu^{*}$. This proves 1 .
Conversely, assume a comoment map $\mu^{*}: \underline{G} \rightarrow C^{\infty}(M ; \mathbb{R})$ for the symplectic
$G$-action is given and define $\mu$ as above. Then $\mu: M \rightarrow \underline{G}^{*}$ is smooth and obviously satisfies the Hamiltonian condition $i$. Define $\bar{\mu}: G \times M \rightarrow \underline{G}^{*}$ via $\bar{\mu}(g, x):=\operatorname{Ad}(g)^{*} \circ \mu(g \cdot x)$ for all $(g, x) \in G \times M$. Again, $\bar{\mu}$ is smooth with $\bar{\mu}(e, x)=\mu(x)$ for all $x \in M$. To prove the equivariance condition $i i)$ for $\mu$, it suffices by connectedness of $G$ to show that $\frac{\partial \bar{\mu}}{\partial g}\left(g_{0}, x\right)=0$ for all $\left(g_{0}, x\right) \in G \times M$. Pick arbitrary $g_{0} \in G, x \in M$ and $X, Y \in \underline{G}$. Note that any tangent vector in $T_{g_{0}} G$ is of the form $d_{e} L_{g_{0}}(Z) \in T_{g_{0}} G$ for some $Z \in \underline{G}$, where $L_{g_{0}}: G \rightarrow G, g \mapsto g_{0} g$ is the left translation by $g_{0}$. We compute

$$
\begin{aligned}
\frac{\partial \bar{\mu}}{\partial g}\left(g_{0}, x\right)\left(d_{e} L_{g_{0}}(X)\right)(Y)= & \frac{d}{d t}\left(\bar{\mu}\left(g_{0} \exp (t X), x\right)(Y)\right)_{\mid t=0} \\
= & \frac{d}{d t}\left(\mu\left(g_{0} \exp (t X) \cdot x\right)\left(\operatorname{Ad}\left(g_{0} \exp (t X)\right)(Y)\right)\right)_{\mid t=0} \\
= & d_{g_{0} \cdot x} \mu\left(\operatorname{Ad}\left(g_{0}\right)(X)^{\sharp}\left(g_{0} \cdot x\right)\right)\left(\operatorname{Ad}\left(g_{0}\right)(Y)\right)+\mu\left(g_{0} \cdot x\right)\left(\operatorname{Ad}\left(g_{0}\right)([X, Y])\right) \\
= & d_{g_{0} \cdot x} \mu^{\operatorname{Ad}\left(g_{0}\right)(Y)}\left(\operatorname{Ad}\left(g_{0}\right)(X)^{\sharp}\left(g_{0} \cdot x\right)\right) \\
& +\mu\left(g_{0} \cdot x\right)\left(\left[\operatorname{Ad}\left(g_{0}\right)(X), \operatorname{Ad}\left(g_{0}\right)(Y)\right]\right) \\
= & \left\{\mu^{*}\left(\operatorname{Ad}\left(g_{0}\right)(Y)\right), \mu^{*}\left(\operatorname{Ad}\left(g_{0}\right)(X)\right)\right\}\left(g_{0} \cdot x\right) \\
& +\mu^{*}\left(\left[\operatorname{Ad}\left(g_{0}\right)(X), \operatorname{Ad}\left(g_{0}\right)(Y)\right]\right)\left(g_{0} \cdot x\right) \\
= & 0,
\end{aligned}
$$

where we have used the fact that

$$
\begin{aligned}
\frac{d}{d t}\left(g_{0} \exp (t X) \cdot x\right)_{\mid t=0} & =\frac{d}{d t}\left(\left(g_{0} \exp (t X) g_{0}^{-1}\right) \cdot\left(g_{0} \cdot x\right)\right)_{\mid t=0} \\
& =\frac{d}{d t}\left(\left(\exp \left(t \operatorname{Ad}\left(g_{0}\right)(X)\right)\right) \cdot\left(g_{0} \cdot x\right)\right)_{\mid t=0} \\
& =\left(\operatorname{Ad}\left(g_{0}\right)(X)\right)^{\sharp}\left(g_{0} \cdot x\right)
\end{aligned}
$$

This concludes the proof of 2 .

Note 1.4 Given a Hamiltonian $G$-space $(M, \omega, G, \mu)$, the subset $\mu^{-1}(\{0\})$ of $M$ is $G$-invariant by $i i)$. The quotient $\mu^{-1}(\{0\}) / G$ - which is not necessarily a smooth manifold - is called reduced space, see symplectic reduction in the next talks.

### 1.2 Examples

Example 1.5 A symplectic action of $G=\mathbb{R}$ on $M$ is nothing but a complete symplectic vector field: given a smooth symplectic action $\phi: \mathbb{R} \times M \rightarrow M$, define $X(x):=\frac{\partial \phi}{\partial t}(0, x)$ for all $x \in M$, then $X$ is symplectic because its flow
$\left(\phi_{t}:=\phi(t, \cdot)\right)_{t}$ is and is complete since the flow is defined on $\mathbb{R}$. Conversely, if $X$ is symplectic (i.e., $d(X\lrcorner \omega)=0$ ) and complete, then its flow defines a symplectic $\mathbb{R}$-action on $M$. In that case, a moment map for the $\mathbb{R}$-action reduces to a Hamiltonian function for $X$; in particular, it exists iff $X$ is Hamiltonian. Note that the equivariance condition - which simplifies to an invariance condition since $\underline{R}=\mathbb{R}$ is abelian - is automatically satisfied by any Hamiltonian function for $X$. The invariance of a Hamiltonian function along the integral curves of its symplectic gradient can also be obtained from Noether's theorem below. Beware that not every symplectic vector field with periodic flow has a Hamiltonian function. For instance, consider $M:=\mathbb{T}^{2}=$ $\mathbb{U}_{1} \times \mathbb{U}_{1}$ with the standard symplectic form $\omega=d \theta_{1} \wedge d \theta_{2}$ and $\mathbb{R} \times M \rightarrow M$, $(t,(x, y)) \mapsto\left(e^{i t} \cdot x, y\right)$, the standard action by rotations on the first factor of $\mathbb{T}^{2}$. For the basis vector $X=1 \in \mathbb{R}=\mathbb{R}$, the associated fundamental vector field on $M$ is given by $X^{\sharp}=\frac{\partial}{\partial \theta_{1}}$. Since $\left.X^{\sharp}\right\lrcorner \omega=d \theta_{2}$, the only Hamiltonian functions possible for $X^{\sharp}$ are those of the form $\theta_{2}+c, c \in \mathbb{R}$. But since $\theta_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is not preserved by the $\mathbb{Z}^{2}$-action, it does not descend to the 2torus and hence $X^{\sharp}$ is not Hamiltonian. Note that the Lie-algebra-cohomology group $H^{1}(\underline{G} ; \mathbb{R})=\mathbb{R}$ does not vanish, see Theorem 1.14 below.

Example 1.6 Similarly, a symplectic action of $G=\mathbb{U}_{1}$ on $M$ is a periodic symplectic $\mathbb{R}$-action on $M$. In that case, a moment map for the $\mathbb{U}_{1}$-action is a Hamiltonian function $M \rightarrow \mathbb{R}$ for the induced vector field on $M$. Again, not every symplectic vector field with periodic flow has a Hamiltonian function. For example, the non-Hamiltonian symplectic $\mathbb{R}$-action above, being $2 \pi$-periodic, induces a $\mathbb{U}_{1}$-action on $\mathbb{T}^{2}$, but this action has no Hamiltonian function since the above one already has none.

Example 1.7 Let $G=\mathbb{U}_{1}$ act by multiplication onto $M:=\mathbb{C}^{n}$ with its standard symplectic form $\omega\left(z, z^{\prime}\right):=-\operatorname{Im}\left(\left\langle z, z^{\prime}\right\rangle\right)$. This action, which is obviously symplectic, is Hamiltonian: one looks for a smooth function $\mu: \mathbb{C}^{n} \rightarrow \mathbb{R} \cong \underline{\mathbb{U}_{1}{ }^{*}}$ with $\operatorname{grad}_{\omega}(\mu)=i^{\sharp}$, that is, $\operatorname{grad}_{\omega}(\mu)(z)=i z$ for every $z \in \mathbb{C}^{n}$, or equivalently

$$
d_{z} \mu\left(z^{\prime}\right)=\omega\left(i z, z^{\prime}\right)=-\operatorname{Re}\left(\left\langle z, z^{\prime}\right\rangle\right)
$$

for all $z, z^{\prime} \in \mathbb{C}^{n}$. Therefore $\mu(z):=-\frac{1}{2}\left|z^{2}\right|+c, c \in \mathbb{R}$, matches.
Example 1.8 Let $G:=\mathbb{R}^{3}, M=T^{*} \mathbb{R}^{3} \cong \mathbb{R}^{6}$ and $G \times M \rightarrow M,(a,(x, y)) \mapsto$ $(a+x, y)$ be the action induced by that of $\mathbb{R}^{3}$ on itself by translations. Let $T^{*} \mathbb{R}^{3}$ carry its standard symplectic form $\omega=\sum_{i=1}^{3} d x_{i} \wedge d y_{i}$, which is the canonical form $\omega=-d \Theta$ and $\Theta: \theta \mapsto \pi_{T^{*} M}(\theta)\left(d \pi_{M}(\theta)\right)$ is the canonical 1-form on $T^{*} M$ (and where $T^{*} M \xrightarrow{\pi_{M}} M$ as well as $T\left(T^{*} M\right) \xrightarrow{\pi_{T^{*} M}} T^{*} M$ ). For
any $X \in \mathbb{R}^{3}$, we have $X^{\sharp}(x, y)=(X, 0)$ for all $(x, y) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ and hence

$$
\left.X^{\sharp}\right\lrcorner \omega=\sum_{i=1}^{3} X_{i} d y_{i}=d\left(\sum_{i=1}^{3} X_{i} y_{i}\right)=d(\langle X, y\rangle) .
$$

Therefore one may define $\mu^{X}(x, y):=\langle X, y\rangle$ for all $X \in \mathbb{R}^{3}$ and $(x, y) \in M$. Then $\mu: M \rightarrow\left(\mathbb{R}^{3}\right)^{*} \cong \mathbb{R}^{3},(x, y) \mapsto y$ is obviously a moment map for that $G$-action. This map is called linear momentum.
Example 1.9 Let again $M=T^{*} \mathbb{R}^{3} \cong \mathbb{R}^{6}$ carry its standard symplectic structure, but this time take $G:=\mathrm{SO}_{3}$, with action induced by its standard operation on $\mathbb{R}^{3}$, that is, $(A,(x, y)) \mapsto(A x, A y)$. Note that the canonical 1form $\Theta$ is preserved by this $G$-action since $\langle A x, A y\rangle=\langle x, y\rangle$ for all $(x, y) \in$ $\mathbb{R}^{6}$. Identifying $\underline{\mathrm{SO}_{3}} \cong \mathbb{R}^{3}$ via $\left(\begin{array}{ccc}0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0\end{array}\right) \mapsto\left(a_{1}, a_{2}, a_{3}\right)$, the Lie bracket $[A, B]=A B-B A$ becomes the cross product $a \times b$. For any $a \in \mathbb{R}^{3} \cong$ $\mathrm{SO}_{3}$, the induced fundamental vector field is given by $a^{\sharp}(x, y)=(a \times x, a \times y)$ $\overline{\text { for }}$ all $(x, y) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$. Writing the Hamiltonian condition down for this action, one obtains (modulo constants), for all $x, y \in \mathbb{R}^{3}$ :

$$
\mu^{a}(x, y)=\frac{1}{2}(\langle a \times x, y\rangle+\langle a \times y, x\rangle)=\langle a, x \times y\rangle .
$$

The map $\mu: M \rightarrow \mathbb{R}^{3},(x, y) \mapsto x \times y$ satisfies the Hamiltonian condition as well as the equivariance one: for any $a, b \in \mathbb{R}^{3}$ and $x, y \in \mathbb{R}^{3}$,

$$
\mu^{a \times b}(x, y)=\langle a \times b, x \times y\rangle=\langle a, x\rangle\langle b, y\rangle-\langle a, y\rangle\langle b, x\rangle,
$$

and on the other hand

$$
\begin{aligned}
\left\{\mu^{a}, \mu^{b}\right\}(x, y) & =\omega_{(x, y)}\left(\operatorname{grad}_{\omega}\left(\mu^{a}\right), \operatorname{grad}_{\omega}\left(\mu^{b}\right)\right) \\
& =\left\langle\binom{ a \times x}{a \times y},\binom{b \times y}{-b \times x}\right\rangle \\
& =\langle a, x\rangle\langle b, y\rangle-\langle a, y\rangle\langle b, x\rangle,
\end{aligned}
$$

that is, $\mu^{a \times b}=\left\{\mu^{a}, \mu^{b}\right\}$ on $M$. The map $\mu$ is called angular momentum.

### 1.3 Existence and uniqueness of moment maps

Definition 1.10 For any finite-dimensional (real) Lie algebra $\mathfrak{g}$ and $k \in \mathbb{N}$, the operator $\delta: \Lambda^{k} \mathfrak{g}^{*} \rightarrow \Lambda^{k+1} \mathfrak{g}^{*}$ is defined by

$$
(\delta \omega)\left(X_{0}, \ldots, X_{k}\right):=\sum_{0 \leq i<j \leq k}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots, X_{k}\right),
$$

for all $\omega \in \Lambda^{k} \mathfrak{g}^{*}$ and $X_{0}, \ldots, X_{k} \in \mathfrak{g}($ for $k=0$, set $\delta:=0)$.

It is elementary to show that $\delta^{2}=0$, therefore $\delta$ gives rise to a chain complex and hence to the cohomology groups

$$
H^{k}(\mathfrak{g} ; \mathbb{R}):=\operatorname{ker}(\delta) \cap \Lambda^{k} \mathfrak{g}^{*} / \operatorname{im}(\delta) \cap \Lambda^{k} \mathfrak{g}^{*}
$$

for all $k \geq 0$, where by convention $\delta_{\left.\right|_{\Lambda^{-1} \mathfrak{g}^{*}}}:=0$. Those groups are by definition the Lie-algebra-cohomology groups of $\mathfrak{g}$.

## Examples 1.11

1. In case $k=1$ one has

$$
H^{1}(\mathfrak{g} ; \mathbb{R})=\operatorname{ker}(\delta) \cap \mathfrak{g}^{*}=\left\{\theta \in \mathfrak{g}^{*}, \theta([X, Y])=0 \forall X, Y \in \mathfrak{g}\right\}=[\mathfrak{g}, \mathfrak{g}]^{0}
$$

where $[\mathfrak{g}, \mathfrak{g}]:=\operatorname{Span}([X, Y], X, Y \in \mathfrak{g}) \subset \mathfrak{g}$ is the derived ideal and, for any $A \subset \mathfrak{g}$, the subset $A^{0}$ denotes its polar set in $\mathfrak{g}^{*}$. In particular, $H^{1}(\mathfrak{g} ; \mathbb{R})=0$ iff $[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$.
2. In case $k=2$ one has, for any $\omega \in \Lambda^{2} \mathfrak{g}^{*}$ and $X, Y, Z \in \mathfrak{g}$,

$$
(\delta \omega)(X, Y, Z)=-\omega([X, Y], Z)-\omega([Y, Z], X)-\omega([Z, X], Y)
$$

In particular, $\delta \omega=0$ iff $\omega$ satisfies the analogue of the Jacobi identity. And $H^{2}(\mathfrak{g} ; \mathbb{R})=0$ iff any such $\omega$ is already of the form $(X, Y) \mapsto$ $\theta([X, Y])$ for some $\theta \in \mathfrak{g}^{*}$.

Theorem 1.12 Let $G$ be a compact connected Lie group, then there is for every $k$ an isomorphism

$$
H^{k}(\underline{G} ; \mathbb{R}) \cong H_{d R}^{k}(G ; \mathbb{R})
$$

The proof of Theorem 1.12 (see e.g. [6, Sec. 8.5]) essentially relies on the fact that, for a compact connected Lie group, the de Rham cohomology groups of $G$ are isomorphic to those built out of left-invariant differential forms.

Next we want to give sufficient conditions for the existence and uniqueness of moment maps. The questions may be reformulated in terms of commutative diagrammes as follows. Let $\mathfrak{X}^{\text {symp }}(M)$ and $\mathfrak{X}^{\text {ham }}(M)$ denote the spaces of symplectic vector fields and of Hamiltonian vector fields on $M$ respectively. Given any smooth symplectic group action $\phi: G \times M \rightarrow M$, we obtain by differentiating at $e \in G$ the linear map $d \phi: \underline{G} \rightarrow \mathfrak{X}^{\text {symp }}(M), d \phi(X):=X^{\sharp}$, see
above. By definition, a comoment map for $\phi$ is a Lie-algebra-homomorphism $\mu^{*}: \underline{G} \rightarrow C^{\infty}(M ; \mathbb{R})$ making the diagramme

commute, in particular $d \phi(\underline{G}) \subset \mathfrak{X}^{\text {ham }}(M)$. Before we turn to the main result, we state and prove the following lemma, which contains claims from the last talk:

Lemma 1.13 Let $(M, \omega)$ be a symplectic manifold.
a) For $X, Y \in \mathfrak{X}^{\text {symp }}(M)$, one has $d(\omega(Y, X))=[X, Y]$. In particular, $[X, Y] \in \mathfrak{X}^{\text {ham }}(M)$.
b) For any $f, g \in C^{\infty}(M ; \mathbb{R})$, one has $\operatorname{grad}_{\omega}(\{f, g\})=-\left[\operatorname{grad}_{\omega}(f), \operatorname{grad}_{\omega}(g)\right]$. In particular, the map $C^{\infty}(M ; \mathbb{R}) \longrightarrow \mathfrak{X}^{\text {ham }}(M), f \mapsto \operatorname{grad}_{\omega}(f)$, is a Lie-algebra-anti-homomorphism.
c) Let $G$ be a Lie group and $G \times M \rightarrow M$ be any smooth symplectic group action on $M$. Then the map $d \phi: \underline{G} \rightarrow \mathfrak{X}^{\text {symp }}(M), X \mapsto X^{\sharp}$, is a Lie-algebra-anti-homomorphism.

Proof: Recall the Cartan identity $L_{Z}=\iota_{Z} \circ d+d \circ \iota_{Z}$ for any $Z \in \mathfrak{X}(M)$, where $\left.\iota_{Z}:=Z\right\lrcorner$ denotes the inner product by and $L_{Z}$ the Lie derivative along a vector field $Z$ on $M$. In particular, a vector field $X$ is symplectic, i.e., $d\left(\iota_{X} \omega\right)=0$, iff $L_{X} \omega=0$.
For any $X, Y \in \mathfrak{X}^{\text {symp }}(M)$, we have

$$
\begin{aligned}
{[X, Y]\lrcorner \omega } & =\iota_{L_{X}} Y \omega \\
& \left.\left.=L_{X}(Y\lrcorner \omega\right)-Y\right\lrcorner L_{X} \omega \\
& \left.=\left(\iota_{X} \circ d+d \circ \iota_{X}\right) Y\right\lrcorner \omega \\
& =d(\omega(Y, X)) .
\end{aligned}
$$

This proves $a$ ). Statement $b$ ) is a straightforward consequence of $a$ ) because Hamiltonian vector fields are symplectic and by the definition of the Poisson bracket. For $c$ ), we must show that $[X, Y]^{\sharp}=-\left[X^{\sharp}, Y^{\sharp}\right]$ for all $X, Y \in \underline{G}$. Let
$f \in C^{\infty}(M ; \mathbb{R})$ be arbitrary, then by definition at any $x \in M$ :

$$
\begin{aligned}
{\left[X^{\sharp}, Y^{\sharp}\right](x)(f)=} & X^{\sharp}(x)\left(Y^{\sharp}(f)\right)-Y^{\sharp}(x)\left(X^{\sharp}(f)\right) \\
= & \frac{d}{d t}\left(\left(Y^{\sharp}(f)\right)(\exp (t X) \cdot x)\right)_{\mid t=0}-\frac{d}{d t}\left(\left(X^{\sharp}(f)\right)(\exp (t Y) \cdot x)\right)_{\mid t=0} \\
= & \frac{d}{d t}\left(\frac{d}{d s}(f(\exp (s Y) \cdot(\exp (t X) \cdot x)))_{\left.\right|_{s=0}}\right)_{\left.\right|_{t=0}} \\
& -\frac{d}{d t}\left(\frac{d}{d s}(f(\exp (s X) \cdot(\exp (t Y) \cdot x)))_{\left.\right|_{s=0}}\right)_{\mid t=0} .
\end{aligned}
$$

By Schwarz' theorem, we can permute both differential operators $\frac{d}{d s}$ and $\frac{d}{d t}$. Using

$$
\begin{aligned}
\frac{d}{d t}(f(\exp (s Y) \cdot \exp (t X) \cdot x))_{t=0} & =\frac{d}{d t}(f(\exp (s Y) \cdot \exp (t X) \cdot \exp (-s Y) \cdot \exp (s Y) \cdot x))_{t=0} \\
& =\frac{d}{d t}(f(\exp (t \operatorname{Ad}(\exp (s Y))(X)) \cdot \exp (s Y) \cdot x))_{t=0} \\
& =\operatorname{Ad}(\exp (s Y))(X)^{\sharp}(\exp (s Y) \cdot x)(f)
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\frac{d}{d s}\left(\frac{d}{d t}(f(\exp (s Y) \cdot(\exp (t X) \cdot x)))_{\mid t=0}\right)_{\mid s=0} & =\frac{d}{d s}\left(\operatorname{Ad}(\exp (s Y))(X)^{\sharp}(\exp (s Y) \cdot x)(f)\right)_{s=0} \\
& =[Y, X]^{\sharp}(x)(f)+Y^{\sharp}(x)\left(X^{\sharp}(f)\right),
\end{aligned}
$$

so that, exchanging the roles of $X$ and $Y$ for the second term, we obtain by subtracting

$$
\left[X^{\sharp}, Y^{\sharp}\right](x)(f)=\left[Y^{\sharp}, X^{\sharp}\right](x)(f)+2[Y, X]^{\sharp}(x)(f),
$$

which yields the result.

Theorem 1.14 (Existence and uniqueness of moment maps) Let $G$ be a connected Lie group with both $H^{1}(\underline{G} ; \mathbb{R})=0$ and $H^{2}(\underline{G} ; \mathbb{R})=0$. Then any smooth symplectic $G$-action on a connected symplectic manifold has a unique moment map.

Proof: From $H^{1}(\underline{G} ; \mathbb{R})=0$, we already know that $\underline{G}=[\underline{G}, \underline{G}]$. Let $G \times$ $M \rightarrow M$ be any smooth symplectic action of $G$ on a connected symplectic manifold $M$. Since the commutator of any two symplectic vector fields is Hamiltonian (Lemma 1.13 ), the map $d \phi:[\underline{G}, \underline{G}] \rightarrow \mathfrak{X}^{\text {symp }}(M)$ actually maps
into $\mathfrak{X}^{\text {ham }}(M)$. In particular, choosing a basis $\left\{X_{1}, \ldots, X_{p}\right\}$ of $\underline{G}$, there exist $\tau_{1}, \ldots, \tau_{p} \in C^{\infty}(M ; \mathbb{R})$ such that $\operatorname{grad}_{\omega}\left(\tau_{i}\right)=X_{i}^{\sharp}$ for all $1 \leq i \leq p$. Setting $\tau\left(X_{i}\right):=\tau_{i}$ and extending $\tau$ linearly provides a linear map $\tau: \underline{G} \rightarrow C^{\infty}(M ; \mathbb{R})$ with $\operatorname{grad}_{\omega}(\tau(X))=X^{\sharp}$ for all $X \in \underline{G}$. The map $\tau$ is not necessarily a Lie-algebra-homomorphism, however the fact that $H^{2}(\underline{G} ; \mathbb{R})=0$ allows for a slight modification of $\tau$ making it into a Lie-algebra-homomorphism. Namely, for any $X, Y \in \underline{G}$, the difference $\tau([X, Y])-\{\tau(X), \tau(Y)\} \in C^{\infty}(M ; \mathbb{R})$ is actually constant because, by Lemma 1.13 ,

$$
\begin{aligned}
\operatorname{grad}_{\omega}(\tau([X, Y])) & =[X, Y]^{\sharp} \\
& =-\left[X^{\sharp}, Y^{\sharp}\right] \\
& =-\left[\operatorname{grad}_{\omega}(\tau(X)), \operatorname{grad}_{\omega}(\tau(Y))\right] \\
& =\operatorname{grad}_{\omega}(\{\tau(X), \tau(Y)\},
\end{aligned}
$$

that is, there exist a constant $c(X, Y) \in \mathbb{R}$ with $\tau([X, Y])-\{\tau(X), \tau(Y)\}=$ $c(X, Y)$. This holds for all $X, Y \in \underline{G}$. Therefore we obtain a map $c: \underline{G} \times \underline{G} \rightarrow$ $\mathbb{R}$, which is obviously bilinear and alternate since $(X, Y) \mapsto \tau([X, Y])-$ $\{\tau(X), \tau(Y)\}$ is. Now since both $[\cdot, \cdot]$ and $\{\cdot, \cdot\}$ satisfy the Jacobi identity and $c(X, Y)$ is a constant function on $M$ for all $X, Y \in \underline{G}$, we have $\delta c=0$. By $H^{2}(\underline{G} ; \mathbb{R})=0$, there exists a $b \in \underline{G}^{*}$ such that $\delta b=c$, that is, $c(X, Y)=$ $-b([X, Y])$ for all $X, Y \in \underline{G}$. Setting $\mu^{*}:=\tau+b$, we obtain a linear map $\underline{G} \rightarrow$ $C^{\infty}(M ; \mathbb{R})$, still satisfying $\operatorname{grad}_{\omega}\left(\mu^{*}(X)\right)=X^{\sharp}$ (because $b(X)$ is constant on $M)$ for any $X \in \underline{G}$ but also

$$
\begin{aligned}
\mu^{*}([X, Y]) & =\tau([X, Y])+b([X, Y]) \\
& =c(X, Y)+\{\tau(X), \tau(Y)\}+b([X, Y]) \\
& =\left\{\mu^{*}(X), \mu^{*}(Y)\right\}
\end{aligned}
$$

for all $X, Y \in \underline{G}$. Therefore $\mu^{*}$ is a comoment map for the $G$-action.
Uniqueness trivially follows from $H^{1}(\underline{G} ; \mathbb{R})=0$. Namely if $\mu_{1}$ and $\mu_{2}$ are two comoment maps for the $G$-action, then $\mu_{1}-\mu_{2}$ satisfies $\operatorname{grad}_{\omega}\left(\mu_{1}(X)-\right.$ $\left.\mu_{2}(X)\right)=X^{\sharp}-X^{\sharp}=0$ for all $X \in \underline{G}$, and since $M$ is connected there is a $b(X) \in \mathbb{R}$ with $\mu_{1}(X)-\mu_{2}(X)=b(X)$. Obviously $b \in \underline{G}^{*}$ and because of $\mu_{i}([X, Y])=\left\{\mu_{i}(X), \mu_{i}(Y)\right\}=\omega\left(X^{\sharp}, Y^{\sharp}\right)$ for both $i=1,2$, we get $(\delta b)(X, Y)=-b([X, Y])=0$ for all $X, Y \in \underline{G}$. By $H^{1}(\underline{G} ; \mathbb{R})=0$, we obtain $b=0$ and hence $\mu_{1}=\mu_{2}$.

Note 1.15 The last argument in the proof of Theorem 1.14 actually shows that, if non-empty, the space of comoment maps for a given smooth symplectic group action of a Lie group $G$ on a connected manifold $M$ is an affine
space modelled on $H^{1}(\underline{G} ; \mathbb{R})$. Namely, as we have seen above, the difference of any two comoment maps is - provided $M$ is connected - given by an element of $H^{1}(\underline{G} ; \mathbb{R})$. Conversely, if $\mu^{*}: \underline{G} \rightarrow C^{\infty}(M ; \mathbb{R})$ is a comoment map, then for any $b \in \operatorname{ker}(\delta) \cap \underline{G}^{*}=H^{1}(\underline{G} ; \mathbb{R})$, the map $\mu^{*}+b$ is a comoment map for the same group action.

Definition 1.16 A Lie group is called semi-simple iff its Lie algebra contains no non-trivial abelian ideal.

For instance, any of the classical groups $\mathrm{SO}_{n}, \mathrm{SU}_{n}, \mathrm{SL}(n ; \mathbb{R})$ as well as the symplectic group $\operatorname{Sp}(2 n ; \mathbb{R})$ are semi-simple. A counterexample is given by e.g. $\mathbb{U}_{n}$, since $i \mathbb{R} \cdot \mathrm{I}_{n}$ is an abelian ideal in $\underline{\mathbb{U}_{n}}$.

It is well-known (see e.g. [1, Sec. I.6] or [3, Ch. II]) that a Lie algebra $\mathfrak{g}$ is semi-simple iff its radical (which is the unique maximal solvable ideal in $\mathfrak{g}$ ) vanishes, which is also equivalent to the Killing form $(X, Y) \mapsto B(X, Y):=$ $\operatorname{tr}(\operatorname{ad}(X) \circ \operatorname{ad}(Y))$ being nondegenerate. For compact Lie groups, there is even another very practical characterisation of semi-simplicity:

Proposition 1.17 A compact Lie group $G$ is semi-simple iff its Lie algebra satisfies $[\underline{G}, \underline{G}]=\underline{G}$.

Proof: The fact that $G$ is compact implies that $\underline{G}$ carries an $\operatorname{Ad}(G)$-invariant inner product $\langle\cdot, \cdot\rangle$. In particular, differentiating at $e \in G$ yields

$$
\langle\operatorname{ad}(X)(Y), Z\rangle=-\langle X, \operatorname{ad}(Y)(Z)\rangle
$$

for all $X, Y, Z \in \underline{G}$. This first implies

$$
\underline{G}=[\underline{G}, \underline{G}] \underset{\perp}{\oplus} Z(\underline{G}),
$$

where $Z(\underline{G}):=\operatorname{ker}(\mathrm{ad})=\{X \in \underline{G},[X, Y]=0 \forall Y \in \underline{G}\}$ is the centre of the Lie algebra $\underline{G}$. Namely, if $X \in Z(\underline{G})$, then for all $Y, Z \in \underline{G}$,

$$
\langle X,[Y, Z]\rangle=-\langle[Y, X], Z\rangle=0,
$$

that is, $X \in[\underline{G}, \underline{G}]^{\perp}$, so that $Z(\underline{G}) \subset[\underline{G}, \underline{G}]^{\perp}$. Conversely, if $X \in[\underline{G}, \underline{G}]^{\perp}$, then for any $Y, Z \in \underline{G}$, one has

$$
\langle[X, Y], Z\rangle=\langle X,[Y, Z]\rangle=0,
$$

so that $[X, Y]=0$ for all $Y \in \underline{G}$, that is, $X \in Z(\underline{G})$. This shows $[\underline{G}, \underline{G}]^{\perp} \subset$ $Z(\underline{G})$ and thus $[\underline{G}, \underline{G}]^{\perp}=Z(\underline{G})$.

If $G$ is semi-simple, then the abelian ideal $Z(\underline{G})$ must vanish, hence $\underline{G}=$ $[\underline{G}, \underline{G}]$. Conversely, if $\underline{G}=[\underline{G}, \underline{G}]$, then $Z(\underline{G})=0$. Now if $\mathfrak{h} \subset \underline{G}$ is any abelian ideal, then there exists a connected Lie subgroup $H$ of $G_{0}$ (the connected component of the neutral element in $G$ ) with $\underline{H}=\mathfrak{h}$. The subgroup $H$ is normal in $G_{0}$ because $\mathfrak{h}$ is an ideal and $H$ is a torus since $G$ is compact. In particular, $H$ is contained in a maximal torus of $G_{0}$. But since all maximal tori of a given connected compact Lie group are conjugate, $H$ is actually contained in all maximal tori of $G_{0}$. Since any element of $G_{0}$ is contained in at least one maximal torus, $H$ commutes with each element of $G_{0}$ and hence $H \subset Z\left(G_{0}\right)$. By $Z\left(G_{0}\right)=Z\left(\underline{G_{0}}\right)=Z(\underline{G})=0$, we conclude that $\mathfrak{h}=0$. This proves that $G$ is semi-simple.

There is still another characterisation of semi-simplicity in terms of Lie-algebra-cohomology:

Theorem 1.18 (Whitehead's lemmas) A compact Lie group $G$ is semisimple iff $H^{1}(\underline{G} ; \mathbb{R})=0$ and $H^{2}(\underline{G} ; \mathbb{R})=0$.

See e.g. [4, Thm. III.13] for a proof of Theorem 1.18,
Corollary 1.19 Let $G$ be a semi-simple compact connected Lie group. Then any smooth symplectic action of $G$ on an arbitrary connected symplectic manifold admits a unique moment map.

## 2 Noether's theorem

Theorem 2.1 (Noether's theorem) Let $(M, \omega, G, \mu)$ be a Hamiltonian $G$ space with $G$ connected and $f \in C^{\infty}(M ; \mathbb{R})$ an arbitrary smooth function on $M$. Then $f$ is $G$-invariant (i.e., $f(g \cdot x)=f(x)$ for all $(g, x) \in G \times M$ ) iff $\mu$ is constant along the integral curves of $\operatorname{grad}_{\omega}(f)$.

Proof: By definition, $f$ is $G$-invariant iff it is constant on all $G$-orbits. Since $G$ is connected, this is equivalent to $d_{x} f\left(X^{\sharp}(x)\right)=0$ for all $X \in \underline{G}$ and all $x \in M$. But $d f\left(X^{\sharp}\right)=\omega\left(\operatorname{grad}_{\omega}(f), X^{\sharp}\right)$ and, because the $G$-action is Hamiltonian, $\omega\left(\operatorname{grad}_{\omega}(f), X^{\sharp}\right)=\omega\left(\operatorname{grad}_{\omega}(f), \operatorname{grad}_{\omega}\left(\mu^{X}\right)\right)=-d \mu^{X}\left(\operatorname{grad}_{\omega}(f)\right)$. Therefore, $d f\left(X^{\sharp}\right)=0$ on $M$ iff $d \mu^{X}\left(\operatorname{grad}_{\omega}(f)\right)=0$ on $M$. This proves the equivalence.

Theorem 2.1 generalizes the Noether theorem from last talk ("Given a Hamiltonian vector field $X=\operatorname{grad}_{\omega}(\mu)$ and a function $f \in C^{\infty}(M ; \mathbb{R})$, the function $f$ is constant along the integral curves of $X$ iff $\mu$ is constant along the integral curves of $\operatorname{grad}_{\omega}(f)$ ") to the case of arbitrary symplectic group actions.

Definition 2.2 An integral of motion for a Hamiltonian $G$-space $(M, \omega, G, \mu)$ is a $G$-invariant function $f \in C^{\infty}(M ; \mathbb{R})$. In that case, the 1-parameter family of local diffeomorphisms associated to the flow of $\operatorname{grad}_{\omega}(f)$ is called a symmetry for $(M, \omega, G, \mu)$.

As a consequence, Noether's theorem establishes a bijective correspondence between integrals of motion (modulo constants) and symmetries of Hamiltonian $G$-spaces.

## References

[1] N. Bourbaki, Lie groups and Lie algebras, Chapters 1-3, Elements of Mathematics, Springer, 1989.
[2] A. Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics 1764, Springer, 2001.
[3] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics 9, Springer, 1972.
[4] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics 10, Interscience Publishers, 1962.
[5] D. McDuff, D. Salamon, Introduction to symplectic topology, Second edition, Oxford University Press, 1998.
[6] J.A. Wolf, Spaces of constant curvature, Fifth edition, Publish or Perish, 1984.

