
ON THE SPECTRUM OF THE MAGNETIC DIRAC OPERATOR

VOLKER BRANDING, NICOLAS GINOUX, AND GEORGES HABIB

Abstract. The magnetic Dirac operator describes the relativistic motion of a charged particle
in a magnetic field. Although this operator got a lot of attention in physics many of its
fundamental mathematical properties remain unexplored and this article is a first step towards
filling this gap. To this end we provide a number of eigenvalue estimates for the magnetic
Dirac operator on closed Riemannian manifolds and explicitly compute its spectrum for specific
choices of the magnetic field on the flat torus and on the three-dimensional round sphere.

1. Introduction

The Dirac operator is a first-order differential operator which was originally introduced by physi-
cist Paul Dirac to describe electrons, which are spin 1

2 -particles, in spacetime. In the presence
of an electromagnetic field, a magnetic potential has to be added to the Dirac operator, turning
it into the so-called magnetic Dirac operator. Over the last few years, a lot of studies have been
devoted to the magnetic Dirac operator, mainly from the perspectives of physics and analysis,
see e.g. [10, Sec. 1] as well as [16, Sec. 1] and references therein for an overview. In particular,
there has been strong interest in the so-called zero modes, which are the elements of the kernel
of the magnetic Dirac operator, see [15, 16, 34], where [34] extends the results [15, 16] from flat
space to arbitrary closed Riemannian spin manifolds.

In this article, we make a decisive contribution to the spectral theory of the magnetic Dirac
operator on closed Riemannian spin manifolds. We mainly focus on the interactions between
the spectrum of that operator and the geometry of the underlying manifold. We derive general
geometric estimates for the smallest eigenvalues of the magnetic Dirac operator and compute
its whole spectrum in two cases. These estimates generalise Friedrich’s and Bär’s resp. Hijazi’s
ones [2, 17, 26] and their limiting cases restrict a lot the geometry of the manifold when the
magnetic field is nowhere zero. We also keep track of the spectral shift occurring when going
from the Dirac to the magnetic Dirac operator. Surprisingly enough, introducing a magnetic
field, even a small one, does not necessarily make the first eigenvalue decrease, as one would
expect from the so-called diamagnetic inequality on the connection level [10, Sec. 2.4].

The article is structured as follows. After a review of the magnetic Dirac operator in Section 2,
we state and prove two general but fundamental estimates for its smallest eigenvalue in Section
3, see Theorems 3.1 and 3.2. The equality case of those estimates is carefully studied in the
particular case when the magnetic field is nowhere zero. As a result, it turns out that the
geometry of the manifold restricts to a Sasaki structure and the magnetic vector field is the
corresponding Reeb vector field. This motivates the study in Section 6 when a magnetic field
is a Killing vector field of constant norm. On the way, we notice that, thanks to the conformal
covariance of the Dirac operator, the proof of the main inequality in [34, Theorem 1] can be
considerably simplified, see Remark 3.3. On surfaces, a fine estimate taking into account the
particular structure of the vanishing set of an eigenvector for the magnetic Dirac operator can
be established, see Theorem 3.5. The difference between the respective first eigenvalues of the
standard and magnetic Dirac operator is studied in Section 4, where we focus on the diamag-
netic inequality comparing both eigenvalues. The main tool for testing that inequality is set up
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in Proposition 4.1 and relies on the use of the min-max principle applied to an eigenspinor of
the standard Dirac operator as a test spinor. We examine this inequality on Einstein-Sasakian
manifolds. Section 5 is devoted to the computation of the complete spectrum of the magnetic
Dirac operator on both the 3-dimensional sphere with standard Sasaki structure and on the flat
n-dimensional torus, see Theorems 5.1 and 5.3. Thanks to this computation, we show that the
diamagnetic inequality can never hold on the sphere and, depending on the choice of the mag-
netic field, it may or may not hold on the flat torus.The particular case where the magnetic field
is Killing of constant length is the topic of Section 6. In this particular setting, the manifold is
locally submerged into a base manifold whose fibers are just the integral curves of the magnetic
vector field. A natural question which arises in this setup is how the spectrum of the magnetic
Dirac operator can be expressed in terms of the geometry of those submersions. For this, we
consider the magnetic Dirac eigenvalues that have so-called basic associated eigenspaces and
show that they can be bounded in a much finer way than in Theorem 3.1, see Theorem 6.2.

We underline that the presence of the magnetic field does not reduce to a technical difficulty
when comparing with the standard Dirac operator. It makes its spectral behaviour pointwise
very different, as is exemplified in the diamagnetic inequality mentioned above.
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to thank IECL and IHES for the hospitality. The second and the third named authors are
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Problems for differential Forms) of the French CNRS, which they would like to thank.

2. Review on the magnetic Dirac operator

In this section, we review some basic facts on the magnetic Dirac operator defined on a spin
manifold. For more details, we refer to [10, 36, 37].

Let (M, g) be a Riemannian spin manifold of dimension n and let η be a real 1-form on M . We
denote by ΣM its complex spinor bundle. Recall that this bundle is equipped with a Hermitian
product ⟨· , ·⟩ and a metric connection ∇ coming from the Levi-Civita connection on (M, g) such
that the Clifford action of any vector field on sections of ΣM is skew-Hermitian and parallel.
Sections of ΣM are called spinors. The Clifford action of vector fields on spinors satisfies the
so-called Clifford relations, which read X · Y · φ+ Y ·X · φ = −2g(X,Y )φ, for all vector fields
X,Y and any spinor φ on M . Recall also that the Dirac operator is the first order differential

operator defined as D :=

n∑
k=1

ek ·∇ek , where {ek}k=1,...,n is any local orthonormal frame of TM .

The magnetic Dirac operator Dη acts on the spinor bundle ΣM by the following

Dη := D + iη · .

It is not difficult to check that the magnetic Dirac operator is an elliptic and essentially self-
adjoint operator when M is complete. Thus, when M is closed, the magnetic Dirac operator
has a discrete spectrum made of real eigenvalues of finite multiplicities, which we denote by
(ληk)k, and the corresponding eigenspaces consist of smooth sections only. Let us define a new
metric connection on ΣM by the following ∇η

X := ∇X + iη(X). It is easy to check that this
connection is compatible with the Clifford multiplication, that is ∇η

X(Y ·) = (∇XY ) ·+Y · ∇η
X

for any vector fields X,Y ∈ TM and the magnetic Dirac operator can be written in terms of
∇η as Dη =

∑n
k=1 ek · ∇

η
ek . When we identify the Clifford module Cl(TM) with the exterior

algebra, we can write Dη = dη + δη, with dη = d + iη∧ and δη = δ − iη♯⌟. In this case, (Dη)2

is in general not equal to the magnetic Hodge Laplacian ∆η := dηδη + δηdη, since (dη)2 = idη∧
which does not vanish in general [11].
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On the other hand, the magnetic Dirac operator can be seen as the Dirac operator of a spinc

structure whose auxiliary line bundle is trivial and carrying a connection given by 2iη. In
particular, when M is simply connected and dη = 0, the spinc connection can be identified with
the spin connection [29, Lem.2.1], that is, we have ∇η = e−if∇(eif ) where η = df . Now, one
can easily check that the curvature Rη associated with the connection ∇η is given by

Rη(X,Y ) = R(X,Y ) + i(dη)(X,Y ) (2.1)

for any vector fields X,Y ∈ TM where R is the curvature associated with ∇. Based on this
identity, the magnetic Schrödinger-Lichnerowicz formula for (Dη)2 can be stated as follows:

Proposition 2.1. We have

(Dη)2 = (∇η)∗∇η +
1

4
S + idη·, (2.2)

where S is the scalar curvature of the manifold (M, g). Also, we have

(Dη)2 = D2 + idη ·+i(δη) · −2i∇η + |η|2. (2.3)

Proof. Using the expression of the magnetic Dirac operator, we choose an orthonormal frame
{ek}k which is parallel at some point x ∈M and compute, at x,

(Dη)2 =

n∑
k,l=1

ek · ∇η
ek
(el · ∇η

el
)

=

n∑
k,l=1

ek · el · ∇η
ek
∇η
el

= −
n∑
k=1

∇η
ek
∇η
ek

+
1

2

n∑
k,l=1

ek · el ·Rη(ek, el)

(2.1)
= −

n∑
k=1

∇η
ek
∇η
ek

+
1

2

n∑
k,l=1

ek · el ·R(ek, el) +
i

2

n∑
k,l=1

(dη)(ek, el)ek · el ·

= (∇η)∗∇η +
1

4
S + idη · .

Identity (2.3) comes from expanding (Dη)2 = (D+ iη·)2 along with D(η·) = (dη+ δη) · −2∇η −
η ·D. This ends the proof. □

In the following, we show the gauge invariance of the magnetic Dirac operator

Proposition 2.2. Let (Mn, g) be a Riemannian spin manifold and let η be a differential form
on M . For any ητ := dτ

iτ with τ ∈ C∞(M,U1), the magnetic Dirac operators Dη and Dη+ητ are
unitarily equivalent, meaning that

Dη+ητ = τDητ.

In particular, if M is closed, the operators Dη and Dη+df are isospectral for any smooth real-
valued function f .

Proof. For any spinor field ψ, we write

Dη(τψ) = D(τψ) + iτη · ψ
= τDηψ + dτ · ψ

= τ

(
Dηψ + i

dτ

iτ
· ψ
)

= τDη+ητψ.

For the last part, we just take τ = eif . This finishes the proof. □

Proposition 2.3. If the dimension n of a Riemannian spin manifold (Mn, g) is even, then for
any η ∈ Ω1(M), the magnetic Dirac operator Dη anti-commutes with the Clifford action of the
volume form of M . As a consequence, if M is closed, then Dη has symmetric spectrum.
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Proof. It suffices to notice that the Riemannian volume form provided by the orientation of M
not only anti-commutes with the Dirac operator of (Mn, g) but also with the Clifford action of
η. Therefore, it anti-commutes with Dη. □

3. Eigenvalue estimates for the magnetic Dirac operator

In this section, we establish some eigenvalue estimates à la Friedrich [17] and à la Bär [2] resp. à
la Hijazi [26] for the magnetic Dirac operator and discuss their limiting cases. It turns out that,
when equality holds in these estimates, the magnetic field η gives rise to a particular geometry
on the manifold which does not necessarily reduce to the case without magnetic field, see the
discussions in Theorems 3.1 and 3.2.

Before stating these results, let us recall some properties of the spinor bundle on a Sasakian
manifold (see [19] for more details). Given a Sasakian spin manifold (M, g, η) of dimension
n = 2m + 1 with Reeb vector field η, the spinor bundle of M decomposes under the action of
the transversal Kähler form Ω = 1

2dη into

ΣM =
m⊕
r=0

ΣrM, (3.1)

where ΣrM is the eigenbundle associated with the eigenvalue i(2r − m) of Ω. The Clifford
action of η on ΣrM is given by η·|ΣrM

= i(−1)r+mId|ΣrM
. A Sasakian manifold (M2m+1, g, η)

is called η-Einstein if the Ricci curvature satisfies

Ric = αg + βη ⊗ η,

for some α, β ∈ C∞(M). It was shown in [31] that, if m > 1, the functions α and β are
constants satisfying α + β = 2m and, in this case, the scalar curvature is equal to 2m(α + 1).
On a Sasakian spin manifold the notion of Sasakian quasi-Killing spinor of type (a, b) as being
a solution of the differential equation

∇Xψ = aX · ψ + bη(X)η · ψ,

for real numbers a and b was defined in [19]. Moreover, in [19, Lem. 6.5] it is proven that
the existence of a nonzero Sasakian quasi-Killing spinor of type (±1

2 , b) with b ̸= 0 implies that
the manifold is η-Einstein of constant α = 2m ± 4b. The case when b = 0 corresponds to
real Killing spinors. Furthermore, [19, Thm. 6.3] and [19, Thm. 8.4] show that any simply
connected η-Einstein Sasakian manifold admits a Sasakian quasi-Killing spinor ψm ∈ ΣmM of
type (−1

2 , b). When m is odd, it also has a Sasakian quasi-Killing spinor ψ0 ∈ Σ0M of the same
type. Note that such quasi-Killing spinors will play a crucial role in the characterization of the
equality case of the magnetic Friedrich inequality. With the help of the magnetic Schrödinger-
Lichnerowicz-formula from Proposition 2.1, we state the magnetic Friedrich inequality (see [25]
and [35, Thm. 2.3] for the corresponding inequalities on spinc manifolds).

Theorem 3.1. (Magnetic Friedrich Inequality) Let (Mn, g) be a closed Riemannian spin man-
ifold and let η ∈ Ω1(M). For any t ∈ R+, any eigenvalue λtη of the magnetic Dirac operator
Dtη satisfies

(λtη)2 ≥ n

4(n− 1)
inf
Mn

(
S − 4t⌊n

2
⌋

1
2 |dη|

)
.

If equality occurs, then either we are in the equality case of Friedrich’s inequality (i.e. η = 0) or,

up to rescaling the metric, λtη = ±n
2 and the universal cover M̃ ofM is a non-Einstein Sasakian

manifold. If furthermore η♯g is a nontrivial geodesic vector field of constant norm, which thus
can be assumed to be equal to 1 up to rescaling η, and M is simply-connected, equality is realized
if and only if M is an η-Einstein non-Einstein Sasakian manifold of constant scalar curvature
(n− 1)(n+ 4t).
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Proof. To prove the estimate, we proceed as in the case without magnetic field. For this, we
define a magnetic twistor operator by

P ηXψ := ∇η
Xψ +

1

n
X ·Dηψ

for all X ∈ TM . This operator satisfies the pointwise equality

|∇ηψ|2 = |P ηψ|2 + 1

n
|Dηψ|2.

Together with the magnetic Schrödinger-Lichnerowicz formula (2.2) we arrive at∫
M

(
|Dtηψ|2 − n

4(n− 1)

(
S|ψ|2 + 4t⟨idη · ψ,ψ⟩

))
dµg =

n

n− 1

∫
M

|P tηψ|2 dµg ≥ 0.

Recall that in [25, Lemma 3.3] the following estimate

⟨iΩ · ψ,ψ⟩ ≥ −⌊n
2
⌋

1
2 |Ω||ψ|2

was established for any ψ ∈ Γ(ΣM) and any differential two-form Ω. Here the norm of Ω is

considered as the norm of a differential two-form, that is |Ω|2 =
∑
k<l

Ω(ek, el)
2. Equality is

attained when ψ ̸= 0 if and only if either Ω vanishes or has maximal rank equal to n if n is even
or to n− 1 if n is odd. Hence, if ψ is an eigenspinor for the magnetic Dirac operator associated
with the eigenvalue λtη, we find∫

M

(
(λtη)2 − n

4(n− 1)

(
S − 4t⌊n

2
⌋

1
2 |dη|

))
|ψ|2dµg ≥ 0

leading to the magnetic Friedrich inequality. Assume now that equality is attained, then we
have equality in all above inequalities. Therefore, the spinor field ψ satisfies

∇tη
Xψ = −λ

tη

n
X · ψ and dη · ψ = i⌊n

2
⌋

1
2 |dη|ψ. (3.2)

Here, either dη = 0 or dη has maximal rank as stated before. Recall that ψ corresponds to
a Killing or parallel spinor for the spinc structure with trivial auxiliary bundle of curvature
Ω = 2itdη. Thus as mentioned in Section 2, when dη = 0, the spinc connection on the universal
cover of M corresponds to the spin connection and thus we are in the equality case of the
usual Friedrich inequality. Hence, we are left with the case when dη has maximal rank. In the
following, we distinguish two cases: the case when λtη = 0, meaning that ψ is parallel for the
magnetic connection ∇tη, or λtη ̸= 0 meaning that ψ is Killing.

Let us first discuss the case where ψ is ∇tη-parallel. When ∇tηψ = 0, the magnetic Schrödinger-
Lichnerowicz formula gives that itdη · ψ = −1

4Sψ. Therefore from (3.2), we deduce that

S = 4t⌊n2 ⌋
1
2 |dη| ≥ 0. Hence, we get that S = 2⌊n2 ⌋

1
2 |Ω|. Therefore by [12, Prop. 3.3], the

universal cover of M is isometric to either a spin manifold with parallel spinors, a Kähler-
Einstein manifold of nonnegative scalar curvature or the Riemannian product of a Kähler-
Einstein manifold of nonnegative scalar curvature with R. Now, the last two cases cannot occur
since Kähler-Einstein manifolds cannot have Ricci form equal to 2itdη. Indeed, the Ricci form
of a Kähler-Einstein manifold is equal, up to some constant, to the Kähler form of that manifold
which cannot be an exact form. Hence the universal cover should be Ricci-flat and thus, S = 0.
Therefore Ω must vanish, i.e. dη = 0, which contradicts the fact that dη is of maximal rank.
This shows that the case of ψ being ∇tη-parallel cannot occur.

Let us now discuss the case when λtη ̸= 0. Hence, by rescaling the metric into the form g = c2g

where c = 2λ
tη

n , we obtain λtη ∈ {±n
2 }. Namely taking a metric of the form g = c2g for some

constant c to be determined, the first equation in (3.2) becomes with respect to the metric g
equal to

∇Xψ = ∇Xψ = −λ
tη

n
X·ψ − itη(X)ψ = −λ

tη

cn
X·ψ − itη(X)ψ.
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By choosing c such that −λtη

cn = ±1
2 , the equation then reduces to

∇Xψ = ±1

2
X· ψ − itη(X)ψ. (3.3)

Now a simple computation gives that |dη|g = c2|dη|g. Therefore the magnetic Friedrich inequal-
ity – and thus its equality case as well – remain unchanged. Hence, the second equation in (3.2)
becomes

dη· ψ = i⌊n
2
⌋

1
2 |dη|gψ (3.4)

where the action of dη is given by dη· =
∑

i,j dη(ei, ej)ei · ej ·. The equality case together with

λtη ∈ {±n
2 } yields S− 4t⌊n2 ⌋

1
2 |dη|g = n(n− 1). From [29, Thm. 4.1], the universal cover (M̃, g)

of M must be a Sasakian manifold. Notice here that M̃ cannot be Einstein, since otherwise
this would imply dη = 0 [29, Prop. 4.2] which would again contradict the maximality of the
rank. This proves the first part of the theorem. To show the second part, where we assume
from now on that η has constant length, we first notice that η♯g = 1

c2
η♯g , and therefore, η♯g

will stay geodesic of constant norm with respect to the metric g. Up to replacing η by η
|η| and

t by |η|t, we may assume that η is of unit length. To simplify the notations, we will denote
(M, g) by (M, g). Taking the derivative of (3.3), the curvature of the spinor ψ is equal to
R(X,Y )ψ = 1

4(Y ·X −X · Y ) · ψ− itdη(X,Y )ψ. Hence by tracing and using the Ricci identity

formula −1
2Ric(X) · ψ =

∑
i ei ·R(X, ei)ψ (see e.g. [21, Lemma 1.2.4]), we deduce that

Ric(X) · ψ = (n− 1)X · ψ + 2it(X⌟dη) · ψ, (3.5)

for all X ∈ TM . As M̃ is Sasakian, we denote by ζ̃ the corresponding Reeb vector field. Since

R̃ic(ζ̃) = (n − 1)ζ̃, we get from (3.5) that ζ̃⌟dη̃ = 0, where η̃ is the pull-back of η to M̃ . On
the other hand, we have from the fact that η̃♯g is geodesic of constant norm that η̃♯g⌟dη̃ = 0.
Hence, as the rank of dη (and, thus, of dη̃) is maximal equal to n − 1 because of n = 2m + 1

being odd, we deduce that ζ̃ must be parallel to η̃. Therefore ζ̃ = ±η̃♯g . Up to replacing ζ̃ by

−ζ̃, we may assume that ζ̃ = η̃♯g . Using Equation (3.4) and the fact that M̃ is Sasakian of
dimension n = 2m+ 1, we deduce that

dζ̃ · ψ = i⌊n
2
⌋

1
2 |dζ̃|gψ = 2imψ,

and, thus, Ω̃ ·ψ = imψ, where Ω̃ = 1
2dζ̃ is the transversal Kähler form of the Sasakian manifold

M̃ . Here, we use the fact that the norm of the transversal Kähler form is equal to

|Ω̃|2 =
∑
k<l

Ω̃(ek, el)
2 =

1

2

∑
k,l

g(Jek, el)
2 = m,

where {ek}k=1,...,2m is a local orthonormal frame of ζ̃⊥. Hence, according to the decomposition

(3.1), we deduce that ψ ∈ ΣmM̃ . Therefore, by the identities (X⌟Ω̃) ·ψ = −iX ·ψ for all X ⊥ ζ̃

and ζ̃ ·ψ = iψ (for ψ ∈ ΣmM̃), we obtain 1
2(X⌟dζ̃) ·ψ = −iX ·ψ− ζ̃(X)ψ for all tangent vectors

X, including X = ζ̃. Hence (3.5) becomes

R̃ic(X) · ψ = (n− 1)X · ψ + 2it(−2iX · ψ − 2ζ̃(X)ψ)

= ((n− 1 + 4t)X − 4tζ̃(X)ζ̃) · ψ,

for any X ∈ TM̃ . Therefore, the manifold M̃ is η-Einstein with Ricci tensor equal to R̃ic =

(n − 1 + 4t)g − 4tζ̃ ⊗ ζ̃ and, thus, of constant scalar curvature equal to S = (n − 1)(n + 4t).

Note that M̃ must be compact because of R̃ic ≥ (n− 1)g.

To check the converse, we let (M2m+1, g, η) to be any simply connected closed η-Einstein
Sasakian spin manifold of constant scalar curvature equal to 2m(2m − 4b + 1) with b ∈ R.
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It is shown in [19, Thm. 6.3] and [19, Thm. 8.4] that the manifold M admits a Sasakian quasi-
Killing spinor ψm ∈ ΣmM of type (−1

2 , b). Hence ψm is an eigenspinor for the Dirac operator

associated with the eigenvalue 2m+1
2 − b and we have

Dtηψm = Dψm + itη · ψm =

(
2m+ 1

2
− b− t

)
ψm,

where we use that η·|ΣrM
= i(−1)r+mId|ΣrM

. Hence for b = −t, we get that 2m+1
2 is an eigenvalue

of the magnetic Dirac operator Dtη. On the other hand, we compute for n = 2m+1 and b = −t

n

4(n− 1)
inf
M

(
S − 4t⌊n

2
⌋

1
2 |dη|

)
=

2m+ 1

8m
(2m(2m+ 4t+ 1)− 8mt) =

(2m+ 1)2

4
.

Here, we use the fact that |dη|2 = 4m. Therefore, the equality in the magnetic Friedrich
inequality is attained.

□

Simply-connected closed η-Einstein Sasakian spin manifolds can be constructed as circle bun-
dles over simply-connected closed Kähler-Einstein manifolds with positive scalar curvature, see
[19, Example 6.1]. The scalar curvature of such a Sasaki manifold can be adjusted to the form
above up to rescaling the metric on the Kähler-Einstein base.

In the following, we generalize Bär’s [2] and Hijazi’s [26] lower bounds for the smallest Dirac-
eigenvalue to the magnetic Dirac operator, and, simultaneously, extend Reuß’s inequality [34,
Theorem 1] to nonzero eigenvalues of the magnetic Dirac operator.

Theorem 3.2. Let η ∈ Ω1(M,R) be any real one-form on a closed connected spin manifold
(Mn, g). Let λη be any eigenvalue of the magnetic Dirac operator Dη.

(1) If n = 2 and the Euler characteristic χ(M) of M is nonnegative, then

|λη| ≥

√
2πχ(M)

Area(M)
− ∥η∥L∞ . (3.6)

Moreover, equality is attained if and only if η = 0 and M is either a round 2-sphere or
a flat 2-torus with trivial spin structure.

(2) If n ≥ 3 and Y (M, [g]) ≥ 0, then

|λη|Vol(Mn, g)
1
n ≥

√
n

4(n− 1)
Y (M, [g])− ∥η∥Ln , (3.7)

where Y (M, [g]) := inf
f∈C∞(M,R)\{0}

∫
M fLf dµg

(
∫
M f

2n
n−2 dµg)

n−2
n

is the Yamabe invariant of (M, [g])

and L := 4n−1
n−2∆+S is the Yamabe operator of (M, g). Moreover, equality when λη ̸= 0

and η ̸= 0 can only occur when M is, up to rescaling the metric g, a Sasaki manifold
admitting a real Killing spinor and with corresponding Reeb vector field η. If equality
holds when λη = 0 and η ̸= 0, the manifold M is conformally equivalent to an Einstein
Sasaki manifold of positive scalar curvature whose Reeb vector field is the conformal

change of η, which means that (M, g = e2ug, e
−uη
|η| ) has to be Einstein-Sasaki of positive

scalar curvature for some choice of the function u.
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Proof. Let φ ∈ Γ(ΣM). Using the Schrödinger-Lichnerowicz formula for D as well as the
pointwise identity |∇φ|2 = |Pφ|2 + 1

n |Dφ|
2 involving the Penrose operator P , we have∫

M
|Pφ|2 dµg =

∫
M

(
|∇φ|2 − 1

n
|Dφ|2

)
dµg

=

∫
M

(
|Dφ|2 − S

4
|φ|2 − 1

n
|Dφ|2

)
dµg

=

∫
M

(
n− 1

n
|Dφ|2 − S

4
|φ|2

)
dµg,

where S is the scalar curvature of (Mn, g). It can be deduced that∫
M

(
|Dφ|2 − n

4(n− 1)
S|φ|2

)
dµg =

n

n− 1

∫
M

|Pφ|2 dµg ≥ 0

for any spinor field φ defined on (M, g). Let ψ ∈ Γ(ΣM) be any λη-eigenspinor for Dη i.e.,
Dψ = ληψ − iη · ψ. If, instead of g, we consider any metric g := e2ug in its conformal

class, where u ∈ C∞(M,R) is arbitrary, then setting φ := e−
n−1
2
uψ and observing that Dφ =

e−u (ληφ− iη · φ), we obtain∫
M

(
e−2u|ληφ− iη · φ|2 − n

4(n− 1)
S|φ|2

)
dµg ≥ 0

that is, ∫
M
e−u|ληψ − iη · ψ|2dµg ≥

n

4(n− 1)

∫
M
Seu|ψ|2dµg. (3.8)

Here, we use the fact that dµg = enudµg. The key point is now to choose a suitable function u.

If n = 2, then choosing u ∈ C∞(M,R) such that ∆u = −S
2
+

∫
M S dµg

2Area(M)
, which is equivalent to

∆u = −S
2
+

2πχ(M)

Area(M)
by the Gauß-Bonnet theorem, and using the identity Se2u = S + 2∆u,

the inequality (3.8) becomes∫
M
e−u|ληψ − iη · ψ|2dµg ≥

2πχ(M)

Area(M)

∫
M
e−u|ψ|2dµg,

which yields

(|λη|+ ∥η∥L∞)2 ≥ 2πχ(M)

Area(M)

and, provided χ(M) ≥ 0, also (3.6). Now, let us assume that equality holds in (3.6). Then
Pφ = 0 i.e., φ must be a twistor-spinor on (M, g = e2ug), the pointwise norm of η must be
constant and there must exist some nonnegative real number µ such that iη · ψ = −µληψ. If
η ̸= 0, then necessarily µ > 0 and λη ̸= 0. But the existence of a nowhere vanishing one-form
η on M forces χ(M) = 0 and therefore λη = 0 = |η| as well by the equality case, which is a
contradiction. Therefore η = 0 on M and the equality case is that of Bär’s inequality, see [2].
This shows part (1) of the Theorem.

When n ≥ 3, we first assume that ψx ̸= 0 for every x ∈ M . Let u := 2
n−1 ln(|ψ|) i.e.,

g = |ψ|
4

n−1 g = f
4

n−2 g, where f := |ψ|
n−2
n−1 . Observe then that e−u|ψ|2 = f2. By Sf

4
n−2 = f−1Lf ,

the inequality (3.8) becomes∫
M

∣∣λη ψ
|ψ|

− iη · ψ
|ψ|
∣∣2f2 dµg ≥ n

4(n− 1)

∫
M
fLf dµg.

By Hölder inequality, we have∫
M

∣∣λη ψ
|ψ|

− iη · ψ
|ψ|
∣∣2f2 dµg ≤ ∥∥λη ψ|ψ| − iη · ψ

|ψ|
∥∥2
Ln · ∥f∥2

L
2n
n−2

,
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from which ∥∥λη ψ
|ψ|

− iη · ψ
|ψ|
∥∥2
Ln ≥ n

4(n− 1)

∫
M fLf dµg

∥f∥2
L

2n
n−2

≥ n

4(n− 1)
Y (M, [g])

and (3.7) follows in case Y (M, [g]) ≥ 0. As in [16, 34], let us now assume ψ to possibly have

zeroes on M and set, for any ε > 0, |ψ|ε :=
√
|ψ|2 + ε2 > 0. Let gε := e2uεg = |ψ|

4
n−1
ε g = f

4
n−2
ε g

as above, where fε := |ψ|
n−2
n−1
ε > 0. We handle the left- and the right-hand-side of (3.8) separately.

For the l.h.s., we can still write∫
M
e−uε

∣∣ληψ − iη · ψ
∣∣2dµg = ∫

M

∣∣λη ψ

|ψ|ε
− iη · ψ

|ψ|ε
∣∣2f2ε dµg,

which is bounded above by (|λη|Vol(M, g)
1
n +∥η∥Ln)2 · ∥fε∥2

L
2n
n−2

taking |ψ| < |ψ|ε into account.

As for the r.h.s. of (3.8), we have∫
M
Seuε |ψ|2dµg =

∫
M
Se2uεe−uε |ψ|2ε ·

|ψ|2

|ψ|2ε
dµg

=

∫
M
Sf

4
n−2
ε · f2ε · |ψ|

2

|ψ|2ε
dµg

=

∫
M
fεLfε ·

|ψ|2

|ψ|2ε
dµg.

Now
|ψ|2

|ψ|2ε
= 1− ε2

|ψ|2ε
= 1− ε2f

− 2(n−1)
n−2

ε , so that

∫
M
fεLfε ·

|ψ|2

|ψ|2ε
dµg =

4(n− 1)

n− 2

∫
M
⟨dfε, d(fε ·

|ψ|2

|ψ|2ε
)⟩ dµg +

∫
M
Sf2ε

|ψ|2

|ψ|2ε
dµg

=
4(n− 1)

n− 2

∫
M
⟨dfε, d(fε − ε2f

− n
n−2

ε )⟩ dµg

+

∫
M
Sf2ε (1− ε2f

− 2(n−1)
n−2

ε ) dµg

=
4(n− 1)

n− 2

∫
M
(1 +

nε2

n− 2
f
− 2(n−1)

n−2
ε )|dfε|2 dµg

+

∫
M
Sf2ε (1− ε2f

− 2(n−1)
n−2

ε ) dµg

=

∫
M
fεLfε dµg +

4n(n− 1)ε2

(n− 2)2

∫
M
f
− 2(n−1)

n−2
ε |dfε|2 dµg

−ε2
∫
M
Sf

− 2
n−2

ε dµg

≥ ∥fε∥2
L

2n
n−2

·

Y (M, [g])− ε2
∫
M Sf

− 2
n−2

ε dµg

∥fε∥2
L

2n
n−2

 . (3.9)

Therefore, we get

(|λη|Vol(M, g)
1
n + ∥η∥Ln)2 ≥ n

4(n− 1)

(
Y (M, [g])− ε2

∫
M Sf

− 2
n−2

ε dµg

∥fε∥2
L

2n
n−2

)
. (3.10)

Next, we inspect the only term involving ε as ε → 0. Obviously, we have ∥fε∥
L

2n
n−2

−→
ε→0

∥f∥
L

2n
n−2

> 0 with f := |ψ|
n−2
n−1 ≥ 0 and where ψ does not vanish identically. As for ε2f

− 2
n−2

ε , it
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is sufficient to observe that fε ≥ ε
n−2
n−1 to obtain

ε2f
− 2

n−2
ε ≤ ε2−

2
n−1 = ε

2(n−2)
n−1

uniformly on M , so that ε2
∫
M Sf

− 2
n−2

ε dµg

∥fε∥2
L

2n
n−2

−→
ε→0

0 and the inequality (3.7) follows from (3.10)

in the case of Y (M, [g]) ≥ 0. Assume now (3.7) to be an equality. We mimic the proof of [34,

Theorem 22]. Fix ε > 0. Then, for the eigenspinor ψ and the function fε := |ψ|
n−2
n−1 ≥ 0 defined

above, we have by (3.9) that

(|λη|Vol(M, g)
1
n + ∥η∥Ln)2 · ∥fε∥2

L
2n
n−2

≥ n

4(n− 1)

(∫
M
fεLfε dµg +A(ε)

)
, (3.11)

where A(ε) := 4n(n−1)ε2

(n−2)2

∫
M f

− 2(n−1)
n−2

ε |dfε|2 dµg − ε2
∫
M Sf

− 2
n−2

ε dµg. Now, replacing the expres-

sion (|λη|Vol(M, g)
1
n + ∥η∥Ln)2 by n

4(n−1)Y (M, [g]), we observe that

Y (M, [g]) ≥
∫
M fεLfε dµg

∥fε∥2
L

2n
n−2

+
A(ε)

∥fε∥2
L

2n
n−2

≥ Y (M, [g]) +
A(ε)

∥fε∥2
L

2n
n−2

,

from which A(ε) ≤ 0 can be deduced. But, because of ε2
∫
M Sf

− 2
n−2

ε dµg −→
ε→0

0 as we have seen

above,

ε2
∫
M
f
− 2(n−1)

n−2
ε |dfε|2 dµg −→

ε→0
0

must hold. Note that we have used the inequality
∫
M Sf

− 2
n−2

ε dµg ≥ 0 which is a consequence of

(3.10). Now, since A(ε) −→
ε→0

0 and fε −→
ε→0

f = |ψ|
n−2
n−1 ̸= 0 in any Lp-norm, p > 1, the L2-norm

of dfε must remain bounded as ε→ 0. Namely, (3.11) implies that

n

n− 2
∥dfε∥2L2 ≤ (|λη|Vol(M, g)

1
n + ∥η∥Ln)2 · ∥fε∥2

L
2n
n−2

− n

4(n− 1)

(∫
M
Sf2ε dµg +A(ε)

)
,

whose r.h.s. remains bounded as ε → 0. The key argument is now [16, Lemma 9], which
states that, under our assumptions, the function f must be weakly differentiable and that
∥df∥2L2 ≤ lim inf

ε→0
∥dfε∥2L2 . Therefore, as ε→ 0, we obtain from (3.11) that

Y (M, [g]) ≥
∫
M

4(n−1)
n−2 |df |2 + Sf2 dµg

∥f∥2
L

2n
n−2

≥ Y (M, [g]),

such that Y (M, [g]) =

∫
M

4(n−1)
n−2

|df |2+Sf2 dµg
∥f∥2

L
2n
n−2

actually holds, which shows f to minimize the Yam-

abe functional and therefore to be positive. This implies that ψ has no zero on M . Therefore
we can use the first part of the proof of inequality (3.7) where the eigenspinor ψ is assumed to
have no zero on M .

We first handle the case where λη ̸= 0. Since (3.7) is an equality, Pφ = 0 must first hold for the

conformal metric g = |ψ|
4

n−1 g = f
4

n−2 g onM i.e., φ = ψ
|ψ| is a twistor-spinor on (M, g). Observe

that, since φ is a twistor-spinor of constant length 1 on (M, g), it must be either a parallel spinor
or the sum of two real (nonparallel) Killing spinors for opposite Killing constants. Actually
ψ must be a parallel or real Killing spinor. Namely, equality in the Minkowski inequality

∥λη ψ
|ψ| − iη ·

ψ
|ψ|∥Ln ≤ |λη|Vol(M, g)

1
n +∥η∥Ln implies the existence of a nonnegative real number

µ on M such that iη · ψ = −µληψ on M . If η vanishes at some point, then µ or λη vanishes as
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well and thus η = 0 on M , such that the equality case is just that of Hijazi’s inequality for the
standard Dirac operator. Otherwise, necessarily µ > 0, the function |η| = µ|λη| > 0 is constant
on M and

i
η

|η|
· ψ = εψ (3.12)

must hold on M , where ε = −sgn(λη) ∈ {±1}. In turn, this implies that iη · φ = ε|η|φ =
εµ|λη|φ = −µληφ holds as well. But then Dφ = e−u (ληφ− iη · φ) = λη(1 + µ)e−uφ, which
implies with Pφ = 0 that

∇Xφ = − 1

n
X· D φ = −λ

η(1 + µ)e−u

n
X · φ

for all tangent vectors X to M . By [26, Cor. 3.6], such an identity implies the function u to
be constant and therefore φ to be a real Killing spinor on (M, g). Because u (and hence |ψ|)
is constant on M , the spinor ψ must be a real Killing spinor on (M, g). Up to rescaling ψ,
we may assume that |ψ| = 1 on M . It remains to note that, up to rescaling g so as to make
|η| = 1, the identity (3.12) provides a Sasaki structure on (M, g), in particular M must be odd-
dimensional. This must be long known, but we write down an elementary proof for the sake of
being self-contained. Up to replacing η by εη, it can be assumed that ε = 1 in (3.12). Note
that η is a unit Killing vector field then because it coincides (up to sign) with the Killing vector
field which is naturally associated with ψ. Up to rescaling the metric g – and η accordingly –
on M , it can be assumed that ψ is an ε

2 -Killing spinor on (M, g) for some ε ∈ {±1}. Then, for
every tangent vector X on M , we have i∇Xη · ψ + iη · ∇Xψ = ε∇Xψ that is,

∇Xη · ψ = ε(g(X, η)ψ − iX · ψ) (3.13)

on M . Replacing X by ∇Xη, it follows that, for all X ∈ η⊥,

∇∇Xηη · ψ = −X · ψ,

meaning that (∇η)2 = −Idη⊥ holds on η⊥ ⊂ TM . It remains to notice that ∇X(∇η)(Y ) =
g(Y, η)X − g(X,Y )η holds for all X,Y ∈ TM , which follows from differentiating (3.13) again.
Namely, for all tangent vectors X,Y on M ,

∇X∇Y η · ψ = ∇X (∇Y η · ψ)−∇Y η · ∇Xψ

= ε (g(∇XY, η) + g(Y,∇Xη))ψ − iε∇XY · ψ

+ε (g(Y, η)− iY ·)∇Xψ − ε

2
∇Y η ·X · ψ

= εg(∇XY, η)ψ − iε∇XY · ψ + ε
(
g(Y,∇Xη) + g(X,∇Y η)︸ ︷︷ ︸

0

)
ψ

+
1

2
g(Y, η)X · ψ − i

2
Y ·X · ψ +

ε

2
X · ∇Y η · ψ

= εg(∇XY, η)ψ − iε∇XY · ψ + g(Y, η)X · ψ − i

2
(Y ·X +X · Y ) · ψ

= εg(∇XY, η)ψ − iε∇XY · ψ + g(Y, η)X · ψ + ig(X,Y )ψ,

so that, recalling that iη · ψ = ψ, we obtain

∇X(∇η)(Y ) · ψ = ∇X∇Y η · ψ −∇∇XY η · ψ
= εg(∇XY, η)ψ − iε∇XY · ψ + g(Y, η)X · ψ + ig(X,Y )ψ

−ε(g(∇XY, η)ψ − i∇XY · ψ)
= g(Y, η)X · ψ + ig(X,Y )ψ

= g(Y, η)X · ψ − g(X,Y )η · ψ.

Therefore, (M, g, η) must be a Sasaki manifold.
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Assume now equality is realized for λη = 0, we then have as before that φ is a twistor spinor

of length 1. The manifold (M, g) has to be Einstein of scalar curvature vol(Mn, g)−
2
nY (M, [g]).

Namely, the scalar curvature of g has to be equal to

S =
4(n− 1)

n

|Dφ|2

|φ|2
=

4(n− 1)

n
e−2u|η|2 = const, (3.14)

since we have Dφ = −ie−uη · φ. From the fact that ∥η∥Ln =
√

n
4(n−1)Y (M, [g]), we deduce

that this constant must be vol(Mn, g)−
2
nY (M, [g]). If S is zero, then η must be zero which is

a contradiction. Hence S is positive, meaning that η cannot have any zero. In this case, φ is
a sum of two Killing spinors of different constants. Indeed, φ can be written as φ = φ+ + φ−
where

φ± =
1

2
(φ± 1

c
Dφ) =

1

2
(φ∓ i

|η|
η · φ).

Here, we have c :=
√

nS
4(n−1) = e−u|η| and Dφ = −ie−uη · φ. The spinors φ± are Killing spinors

associated with the Killing numbers ∓ e−u|η|
n . Moreover, an easy computation shows that

η · φ± = ±i|η|φ±.

Hence, we are in the same case as before. Therefore, (M, g, η|η|) has to be Einstein-Sasaki of

positive scalar curvature. □

Note that two further inequalities can be deduced from (3.8) in case n ≥ 3: on the one hand,

(|λη|+ ∥η∥L∞)2 ≥ n

4(n− 1)
sup

u∈C∞(M,R)
inf
M

(Se2u),

on the other hand

(|λη|+ ∥η∥L∞)2 ≥ n

4(n− 1)
µ1,

where µ1 is the smallest eigenvalue of L. Those inequalities, along with (3.7), extend Hijazi’s
inequalities [26] to the magnetic Dirac operator. Remark in particular that (3.7) is a conformal

lower bound for the normalized quantity |λη|Vol(Mn, g)
1
n .

Remark 3.3. We give a simple proof of Reuß’s result [34, Theorem 1]. Let ψ ̸= 0 be a spinor
satisfying Dηψ = 0. Assume first that η has no zeroes and let us make the conformal change of

the metric g := |η|2g = e2ug. As above, we let φ := e−
n−1
2
uψ and obtain

Dφ = −ie−uη · φ = −i|η|−1η · φ.

Therefore, by the min-max principle, we find that

(λη,g)2 ≤
∫
M |Dφ|2gdµg∫
M |φ|2dµg

=

∫
M |η|−2|η|2g|φ|2dµg∫

M |φ|2dµg
= 1.

Thus, by the standard Hijazi inequality, we deduce that√
n

4(n− 1)
Y (M, [g]) ≤ |λη,g|Vol(Mn, g)

1
n ≤ Vol(Mn, g)

1
n = ∥η∥Ln ,

which is the inequality of [34, Theorem 1]. Note that this still works in dimension n = 2 up to
replacing n

4(n−1)Y (M, [g]) by 2πχ(M). If now η does have zeroes on M , then as before we let

|η|ε :=
√

(|η|2 + ε2) for any ε > 0 and set gε := |η|2εg on M . If Dηψ = 0 on M , then we let
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φ := |η|−
n−1
2

ε ψ. As above, Dφ = −|η|−1
ε iη · φ holds and, by the min-max principle, we obtain

λη1(D)2 ≤
∫
M |Dφ|2dµgε∫
M |φ|2dµgε

=

∫
M

|η|2
|η|2ε

|φ|2dµgε∫
M |φ|2dµgε

= 1− ε2

∫
M

|φ|2
|η|2ε

dµgε∫
M |φ|2dµgε

≤ 1,

so that, by Bär’s resp. Hijazi’s inequality in dimension n = 2 resp. n ≥ 3, we obtain

∥|η|ε∥2Ln = Vol(M, gε)
2
n ≥ λη1(D)2Vol(M, gε)

2
n ≥

{
2πχ(M) for n = 2

n
4(n−1)Y (M, [g]) for n ≥ 3. (3.15)

It remains to notice that, since ∥|η|ε − |η|∥L∞ −→
ε→0

0, we have ∥|η|ε∥2Ln −→
ε→0

∥η∥2Ln and the same

inequality follows. Note that this enhances inequality (3.6) in dimension n = 2 and for λη = 0
since we now have ∥η∥L2 instead of ∥η∥L∞ .

It is essential here to point out that inequality

(|λη|+ ∥η∥L∞)2 ≥ 2πχ(M)

Area(M)
,

which is a reformulation of (3.6) without the square root, is actually trivial when the genus of
M is positive (including for the 2-torus), because then χ(M) ≤ 0. When M = S2, it turns out
that 0 cannot be a Dη-eigenvalue. To see that, we consider the general case of a Kähler spin
manifold (M2m, g, J). Recall that the action of the Kähler form Ω(·, ·) = g(J ·, ·) splits the spinor

bundle ΣM into ΣM =
m⊕
r=0

ΣrM , where ΣrM is the eigenspace associated with the eigenvalue

i(2r−m) of Ω for each r ∈ {0, . . . ,m}. Moreover, for any X ∈ TM , p−(X) ·ΣrM ∈ Σr−1M and
p+(X) ·ΣrM ∈ Σr+1M , where p±(X) := 1

2(X ∓ iJX) is the standard projector onto pointwise

±i-eigenspaces of J . Also, we have that Σ+M =
⊕
r even

ΣrM and Σ−M =
⊕
r odd

ΣrM .

Proposition 3.4. Let (M2m, g, J) be a Kähler spin manifold. Then for any η ∈ Ω1(M) and
smooth function f , we have

Dη+Jdf = efDηe−f (3.16)

on Σ0M . The same identity holds on ΣmM by replacing f by −f on the r.h.s. In particular,
on S2, we have ker(Dη) = ker(D) = {0}.

Proof. For any section ψ0 ∈ Σ0M we have

Dη+Jdfψ0 = Dηψ0 + iJdf · ψ0 where Dψ0 ∈ Γ(Σ1M)

= Dηψ0 + ip+(Jdf) · ψ0 since p−(Jdf) · ψ0 = 0

= Dηψ0 − p+(df) · ψ0 because p+(Jdf) = ip+(df)

= Dηψ0 − df · ψ0 since p−(df) · ψ0 = 0

= efDη(e−fψ0).

The computation of Dη+Jdfψm is similar. To prove the second part, we use the Hodge de-
composition theorem. Namely, there exists h ∈ C∞(M,R) as well as ω ∈ Ω2(M) such
that η = dh + δω (there is no nonzero harmonic 1-form on S2). By Proposition 2.2, since
Ddh+δω and Dδω are unitarily equivalent, it is sufficient to assume that η = δω is co-exact,
hence η = δ(fvolg) = −∇f⌟ volg = −Jdf for some real-valued function f , where J is the
natural Kähler structure on M provided by its orientation. Let ψ ∈ ker(Dη). By writing
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ψ = ψ0+ψ1 ∈ Γ(Σ0M ⊕Σ1M), we get ψ0 and ψ1 ∈ ker(D−Jdf ). Hence, from (3.16), we deduce
efψ0 and e−fψ1 are in ker(D) = {0}. Thus, ψ0 = ψ1 = 0 and therefore, ψ = 0. □

Apart from generalizing Friedrich’s inequality we also present an estimate for the eigenvalues
of the magnetic Dirac operator that involves the nodal set of the corresponding eigenspinors
which is based on the ideas presented in [6, 7]. More precisely, we have the following

Theorem 3.5. Let (M, g) be a closed spin surface and λ2k be the k-th eigenvalue of the magnetic
Dirac operator (Dη)2. Then the following eigenvalue estimate holds

λ2k ≥
2πχ(M)

vol(M, g)
−
∫
M |dη|dµg
vol(M, g)

+
4πNk

vol(M, g)
, (3.17)

where χ(M) is the Euler characteristic of M and Nk denotes the sum of the order of the zeros
of an eigenspinor ψk belonging to the k-th eigenvalue of the magnetic Dirac operator, that is

Nk = max

 ∑
p∈M,|ψk|(p)=0

np

 . (3.18)

In the case that ψ ∈ Γ(Σ±M) is in the kernel of the magnetic Dirac operator we have

N0(ψ) = −χ(M)

2
.

Proof. By the main result of [4] we know that on a two-dimensional manifold the zero-set of
any eigenspinor of the magnetic Dirac operator is discrete. In the following we will make use of
the energy-momentum tensor T η(X,Y ) associated with the magnetic Dirac operator, which is
defined as follows

T η(X,Y ) := ⟨X · ∇η
Y ψ + Y · ∇η

Xψ,ψ⟩,
where X,Y ∈ Γ(TM).
The following equation is a version of [20, Lemma 4.2] adapted to the case of the magnetic
Dirac operator, i.e.

⟨ψ, (Dη)2ψ⟩
|ψ|2

≥ S

4
+

1

2

⟨idη · ψ,ψ⟩
|ψ|2

+
|T η|2

4|ψ|4
+∆ log |ψ| − ⟨Dηψ, d(log |ψ|2) · ψ⟩

|ψ|2
, (3.19)

which holds away from the zero-set of ψ, see also [7, Lemma 2.1]. Note that a different sign
convention for the Laplace operator was used in [6, 7]. In order to establish (3.19) we define a
new magnetic connection on the spinor bundle by

∇̃η
Xψ := ∇η

Xψ − 2α(X)ψ − β(X) · ψ −X · α · ψ

with a one-form α and a symmetric (1, 1)-tensor β which are given by

α :=
d|ψ|2

2|ψ|2
, β := −T

η(·, ·)
2|ψ|2

.

A direct calculation then shows that

0 ≤ |∇̃ηψ|2 =|∇ηψ|2 + 2|α|2|ψ|2 + |β|2|ψ|2 − 4α(ei)⟨∇η
eiψ,ψ⟩

+ 2⟨ψ, β(ei) · ∇η
eiψ⟩+ 2⟨Dηψ, α · ψ⟩.

Now, direct calculations using (2.2) show that

|∇ηψ|2 =−∆
1

2
|ψ|2 + ⟨ψ, (Dη)2ψ⟩ − S

4
|ψ|2 − ⟨ψ, idη · ψ⟩,

α(ei)⟨∇η
eiψ,ψ⟩ =|α|2|ψ|2 =

∣∣d|ψ|2∣∣2
4|ψ|2

,

⟨β(ei) · ∇η
eiψ,ψ⟩ =− |T η|2

4|ψ|2
.
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Moreover, recall that on a closed Riemannian surface we have that if the zero set of |ψ| is
discrete and |ψ| does not vanish identically, then the following equality holds

p.v. (∆ log |ψ|) = 2π
∑

p∈M,|ψ|(p)=0

np, (3.20)

where p.v. stands for the Cauchy principal value of the distribution and np is the order of |ψ|
at the point p, see [6] for a proof. As a next step we apply (3.19) for ψ being an eigenspinor
of (Dη)2 in which case we can also estimate the energy-momentum tensor by |T η|2 ≥ 2λ2|ψ|4.
Thus, from (3.19) we obtain

λ2 ≥ K

2
− |dη|+ 2∆ log |ψ|,

where K denotes the Gaussian curvature of M . The first claim now follows from integrating
the above inequality and application of the Gauss-Bonnet theorem.
Regarding the second claim on the zero-set of spinors in the kernel of the magnetic Dirac
operator we assume that ψ ∈ Γ(Σ+M) is in the kernel of the magnetic Dirac operator Dη such
that we get

−∆ log |ψ| = K

2
+

1

2

⟨idη · ψ,ψ⟩
|ψ|2

+
|∇ηψ|2

|ψ|2
− 1

2

∣∣d|ψ|2∣∣2
|ψ|4

which follows by a direct calculation using (2.2). Now, since ψ ∈ Γ(Σ+M) is harmonic with
respect to the magnetic Dirac operator Dη we can use the same strategy as in [6, Proposition

3.2] to establish that
∣∣d|ψ|2∣∣2 = 2|ψ|2|∇ηψ|2. Moreover, using the skew-symmetry of both dη

and Clifford multiplication we find

(dη) · ψ = 2e1 · e2 · (dη)(e1, e2)ψ = −2dη(e1, e2)iωC · ψ.
By assumption we have that ψ ∈ Γ(Σ±M) such that we are left with

−∆ log |ψ| = K

2
± dη(e1, e2)

and the claim follows by integrating over M . □

4. Diamagnetic inequality

In this section, we give an obstruction for the diamagnetic inequality to hold. Recall that
this inequality relates the eigenvalues of the magnetic Dirac operator to those with vanishing
magnetic field. We also investigate this inequality on Einstein Sasakian manifolds.

Proposition 4.1. Let (Mn, g) be a closed Riemannian spin manifold, η ∈ Ω1(M) and ψ be an
eigenspinor of the Dirac operator associated with the eigenvalue λ. Then, for any t ∈ R, we
have

(λtη1 )2 ≤ λ2 − t

∫
M ℑ⟨dη · ψ − 2∇ηψ,ψ⟩dµg

∥ψ∥2
L2(M)

+ t2∥η∥2∞,

where ℑ resp. ℜ denote the imaginary resp. real parts of a complex number. In particular, if∫
M ℑ⟨dη · ψ − 2∇ηψ,ψ⟩dµg > 0, for some eigenspinor ψ, then

|λtη1 | ≤ |λ|,
holds for small positive parameter t.

Proof. Using the min-max principle, we compute for any eigenspinor field ψ the following

(λtη1 )2 ≤
∫
M ⟨(Dtη)2ψ,ψ⟩dµg

∥ψ∥2
L2(M)

(2.3)

≤ λ2 + t

∫
M ℜi⟨dη · ψ − 2∇ηψ,ψ⟩dµg

∥ψ∥2
L2(M)

+ t2∥η∥2∞

= λ2 − t

∫
M ℑ⟨dη · ψ − 2∇ηψ,ψ⟩dµg

∥ψ∥2
L2(M)

+ t2∥η∥2∞.
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Hence, if
∫
M ℑ⟨dη · ψ − 2∇ηψ,ψ⟩dµg > 0, we deduce that, for small t, the r.h.s. of the above

inequality is less than λ2. □

We now state the following

Corollary 4.2. Let (M2m+1, g, η) with m > 1 be any simply connected closed η-Einstein
Sasakian spin manifold of constant scalar curvature equal to 2m(2m− 4b+ 1) with (b < 2m+1

2 )

or (b > 2m+1
2 and m is odd). For any small positive t, we have

|λtη1 | < |2m+ 1

2
− b|.

In particular, when b = 0, we deduce that

|λtη1 | < 2m+ 1

2
= |λ1|,

meaning that the diamagnetic inequality does not hold on simply connected closed Einstein
Sasakian manifolds.

Proof. As mentioned at the beginning of Section 3, any simply connected η-Einstein Sasakian
manifold admits a Sasakian quasi-Killing spinor ψm of type (−1

2 , b) with b ∈ R. The same holds
for ψ0 ∈ Σ0M when m is odd. Hence ψm (resp. ψ0 when m is odd) is an eigenspinor associated
with the eigenvalue 2m+1

2 − b. Hence, we compute∫
M

ℑ⟨dη · ψm − 2∇ηψm, ψm⟩dµg =

∫
M

ℑ⟨2imψm − 2(−1

2
+ b)η · ψm, ψm⟩dµg

= (2m+ 1− 2b)

∫
M

|ψm|2dµg > 0,

when b < 2m+1
2 . In the last equality, we use the fact that η · ψm = iψm. When m is odd, we

have using a similar strategy∫
M

ℑ⟨dη · ψ0 − 2∇ηψ0, ψ0⟩dµg = −(2m+ 1− 2b)

∫
M

|ψ0|2dµg.

Hence the condition in Proposition 4.1 is satisfied and, therefore we deduce, for small positive
t, the required inequality. The last part comes from the fact that 2m+1

2 is the lowest eigenvalue
of the Dirac operator in absolute value. □

For the 3-dimensional case, we have the following

Corollary 4.3. Let S3 be the 3-dimensional sphere with metric of the form g := s2η⊗η+sg0|
η⊥

for some s ∈ (0,∞), where η is the Reeb one-form and g0 is the standard round metric of
constant sectional curvature 1. Denote by S its (constant) scalar curvature. Then, for any
sufficiently small positive parameter t, the following estimate holds

|λtη1 | < |3
4
+
S

8
|.

Proof. As before, it is shown in [19, Thm. 8.4] that there exist two Sasakian quasi-Killing spinors
ψ0 and ψ1 on Σ0M and Σ1M of type (−1

2 ,
3
4 −

1
8S). Hence, both ψ0 and ψ1 are eigenspinors of

the Dirac operator for the eigenvalue 3
4 + 1

8S. As before, we have∫
M

ℑ⟨dη · ψ1 − 2∇ηψ1, ψ1⟩dµg = (
3

2
+

1

4
S)

∫
M

|ψ1|2dµg,

and
∫
M ℑ⟨dη · ψ0 − 2∇ηψ0, ψ0⟩dµg = −(32 + 1

4S)
∫
M |ψ0|2dµg. This concludes the proof. □

5. Computations of the spectrum

In this section, we compute explicitly the spectrum of the magnetic Dirac operator on the round
3-sphere and on the n-dimensional flat torus.
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5.1. The 3-dimensional round sphere. The spectrum of the magnetic Dirac operator on the
3-dimensional round sphere associated with the Reeb vector field can be described as follows,
see also [14] for a related computation.

Theorem 5.1. Let S3 be the round sphere equipped with the metric of curvature 1. Let η be
the Reeb vector field that defines the Hopf fibration. Then, for any t ∈ R, the spectrum of the
magnetic Dirac operator Dtη is given by

3

2
± t+ k,

1

2
±
√

(1 + t+ 2p− k)2 + 4(k − p)(p+ 1),

for p, k ∈ N with 0 ≤ p < k.

Proof. Recall that the Hopf vector field on the round sphere S3 ⊂ C2 equipped with the metric
g of curvature 1 is given by η =

∑2
j=1(−yj∂xj + xj∂yj ). Next, we follow the computations done

in [11] for the spectrum of the magnetic Laplacian (see also [32]). We let Y2 = η, Y3, Y4 to be
the Killing vector fields given by

Y2 = −y1∂x1 + x1∂y1 − y2∂x2 + x2∂y2 ,

Y3 = −y2∂x1 − x2∂y1 + y1∂x2 + x1∂y2 ,

Y4 = x2∂x1 − y2∂y1 − x1∂x2 + y1∂y2 .

They form a direct orthonormal basis of T(z1,z2)S3 at every point (z1, z2) = (x1+y1i, x2+y2i) ∈
S3. An easy computation shows that the Christoffel symbols of the Levi-Civita connection of g
are expressed as

∇YjYk = σjkYl (5.1)

with {j, k, l} = {2, 3, 4} for k ̸= j, σjj = 0 and σ23 = −σ24 = −1, σ32 = σ43 = −σ34 = −σ42 = 1.
Recall now that the eigenvalues of the scalar Laplacian are given by k(k + 2) for k ∈ N ∪ {0}
with multiplicity (k + 1)2. Each eigenspace Ek can be decomposed as

Ek = Vk,(a0,b0) ⊕ Vk,(a1,b1) ⊕ . . .⊕ Vk,(ak,bk), (5.2)

with any arbitrary choice of pairwise non-collinear vectors (aj , bj) ∈ C \ {(0, 0)}, where

Vk,(a,b) = spanC{uka,b, uk−1
a,b va,b, . . . , ua,bv

k−1
a,b , v

k
a,b},

ua,b(z1, z2) := az1 + bz2, va,b(z1, z2) := bz̄1 − az̄2,

for (a, b) ∈ C2\{(0, 0)}, see [32, Zerlegungssatz III.6.2]. For short, we write u := u(a,b), v := v(a,b)
for some (a, b) ̸= (0, 0) and, for p ∈ {0, . . . , k}, we consider

ϕk,p := upvk−p.

We also set ϕp ≡ 0 for all other choices of p. These functions ϕk,p are spherical harmonics,
that is, they are restrictions of harmonic homogeneous polynomials on C2 to the unit sphere
S3. Then we have Vk,(a,b) = spanC{ϕ0, . . . , ϕk}. A straightforward computation yields (see [27,
p. 30] or [32, Lemma III.7.1])

Y2(ϕk,p) = i(2p− k)ϕk,p,

Y3(ϕk,p) = ipϕk,p−1 + i(k − p)ϕk,p+1,

Y4(ϕk,p) = −pϕk,p−1 + (k − p)ϕk,p+1.

It is shown in [19, Theorem 8.4] that the spinor bundle of S3 is trivialised by −1
2 -Killing spinors

which are pointwise eigenvectors for the Clifford action of η, all terms – including that involving
the Clifford action of the differential of the function ϕk,p – can be explicitly computed. Let

ψ0, ψ1 be −1
2 -Killing spinors of unit length on S3 with iη · ψj = (−1)jψj , j = 0, 1. We can

assume that Y3 ·ψ0 = ψ1. Indeed, the spinor Y3 ·ψ0 is in Σ1M which is also a −1
2 -Killing spinor.
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To see this, we compute

∇η(Y3 · ψ0) = ∇ηY3 · ψ0 + Y3 · ∇ηψ0

(5.1)
= −Y4 · ψ0 −

1

2
Y3 · η · ψ0

= −iY3 · ψ0 −
1

2
Y3 · η · ψ0

=
1

2
Y3 · η · ψ0 = −1

2
η · Y3 · ψ0.

In this computation, we use the fact that Y4 · ψ0 = iY3 · ψ0, since Y4 = JY3, where J is the
complex structure on η⊥. In the same way, we compute

∇Y3(Y3 · ψ0) = ∇Y3Y3 · ψ0 + Y3 · ∇Y3ψ0

(5.1)
= −1

2
Y3 · Y3 · ψ0,

and

∇Y4(Y3 · ψ0) = ∇Y4Y3 · ψ0 + Y3 · ∇Y4ψ0

(5.1)
= η · ψ0 −

1

2
Y3 · Y4 · ψ0

= −1

2
Y4 · Y3 · ψ0.

In the last equality, we use the fact that η · ψ0 = Y3 · Y4 · ψ0 since the volume form −η · Y3 · Y4·
acts by the identity on ΣS3. As the space of −1

2 -Killing spinors in Σ1M is one-dimensional, we
deduce that Y3 ·ψ0 is collinear to ψ1. Hence up to rescaling ψ0, we can assume that Y3 ·ψ0 = ψ1.
For j ∈ {0, 1}, we have that Dtηψj = Dψj+itη ·ψj = (32+(−1)jt)ψj and, therefore, we compute

(Dtη − 1

2
)(ϕk,pψj) = ϕk,p(D

tη − 1

2
)ψj + dϕk,p · ψj

= ϕk,p

(
3

2
+ (−1)jt− 1

2

)
ψj + dϕk,p · ψj

= (1 + (−1)jt)ϕk,pψj + dϕk,p · ψj .

Now, we explicitly compute dϕk,p · ψj . From (5.3), we have that

dϕk,p = i(2p− k)ϕk,pη + i(pϕk,p−1 + (k − p)ϕk,p+1)Y3 + ((k − p)ϕk,p+1 − pϕk,p−1)Y4,

and for both j = 0, 1 we find

dϕk,p · ψj = i(2p− k)ϕk,pη · ψj + i(pϕk,p−1 + (k − p)ϕk,p+1)Y3 · ψj
+((k − p)ϕk,p+1 − pϕk,p−1)Y4 · ψj

= (−1)j(2p− k)ϕk,pψj + (−1)ji(pϕk,p−1 + (k − p)ϕk,p+1)ψj+1

+i((k − p)ϕk,p+1 − pϕk,p−1)ψj+1

= (−1)j(2p− k)ϕk,pψj

+i
(
(1 + (−1)j)(k − p)ϕk,p+1 + ((−1)j − 1)pϕk,p−1

)
ψj+1,

where the index j + 1 is to be understood mod 2. Note that we have used the fact that
Y4 · ψ0 = iY3 · ψ0 = iψ1. Thus, it holds that

dϕk,p · ψ0 = (2p− k)ϕk,pψ0 + 2i(k − p)ϕk,p+1ψ1,

dϕk,p · ψ1 = −(2p− k)ϕk,pψ1 − 2ipϕk,p−1ψ0.

Therefore, we get

(Dtη − 1

2
)(ϕk,pψ0) = (1 + t)ϕk,pψ0 + (2p− k)ϕk,pψ0 + 2i(k − p)ϕk,p+1ψ1

= (1 + t+ 2p− k)ϕk,pψ0 + 2i(k − p)ϕk,p+1ψ1,
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and similarly

(Dtη − 1

2
)(ϕk,pψ1) = (1− t− 2p+ k)ϕk,pψ1 − 2ipϕk,p−1ψ0.

Note that, even if neither ϕk,k+1 nor ϕk,−1 are defined, we still have (Dtη − 1

2
)(ϕk,kψ0) =

(1 + t + k)ϕk,kψ0 when p = k and (Dtη − 1

2
)(ϕk,0ψ1) = (1 − t + k)ϕk,0ψ1 when p = 0. Note

also that, when p < k resp. p > 0, the spinor field ϕk,pψ0 resp. ϕk,pψ1 is not an eigenvector for

Dtη − 1
2 .

Now, for 0 ≤ p < k, let φ±
k,p,0 := (Id± 1√

f0(k,p,t)
(Dtη − 1

2))(ϕk,pψ0), where f0(k, p, t) := (1 + t+

2p− k)2 + 4(k − p)(p+ 1) ≥ 0. Because of

(Dtη − 1

2
)2(ϕk,pψ0) = (Dtη − 1

2
) ((1 + t+ 2p− k)ϕk,pψ0 + 2i(k − p)ϕk,p+1ψ1)

= (1 + t+ 2p− k)(Dtη − 1

2
)(ϕk,pψ0)

+2i(k − p)(Dtη − 1

2
)(ϕk,p+1ψ1)

= (1 + t+ 2p− k) ((1 + t+ 2p− k)ϕk,pψ0 + 2i(k − p)ϕk,p+1ψ1)

+2i(k − p) ((1− t− 2(p+ 1) + k)ϕk,p+1ψ1 − 2i(p+ 1)ϕk,pψ0)

=
(
(1 + t+ 2p− k)2 + 4(k − p)(p+ 1)

)
ϕk,pψ0

= f0(k, p, t)ϕk,pψ0,

the spinor fields φ±
k,p,0 ̸= 0 satisfy (Dtη− 1

2)φ
±
k,p,0 = ± 1√

f0(k,p,t)
φ±
k,p,0. Similarly, one could define

φ±
k,p,1 := (Id ± 1√

f1(k,p,t)
(Dtη − 1

2))(ϕk,pψ1) for all 0 < p ≤ k, where f1(k, p, t) := (1 − t − 2p +

k)2+4p(k− p+1). A fundamental remark is that φ±
k,p,1 is a scalar multiple of φ±

k,p−1,0: namely

f1(k, p, t) = f0(k, p − 1, t) by definition and the matrix expressing the pair (φ±
k,p,0, φ

±
k,p+1,1) in

terms of (ϕk,pψ0, ϕk,p+1ψ1) has rank at most 1. On the whole, we have found three families of

eigenvectors and eigenvalues for Dtη − 1
2 :

{ϕk,kψ0 | k ∈ N}, {ϕk,0ψ1 | k ∈ N} and {φ±
k,p,0 | p, k ∈ N, 0 ≤ p < k}

with the respective eigenvalues being 1 + t + k, 1 − t + k and ±
√
f0(k, p, t). Note that

(1 + t + k)2 = f0(k, k, t) and (1 − t + k)2 = f0(k,−1, t), so that all eigenvalues actually have
the same expression. The union of those three families forms an orthogonal Hilbert basis of
L2(ΣM) since the family {ϕk,pψ0, ϕk,pψ1} does. This shows the spectrum of Dtη as described
in the theorem.

It remains to determine the multiplicity of each eigenvalue. Since, for each p, k ∈ N with
0 ≤ p ≤ k, the functions ϕk,p – which depend on u and v and therefore also on (a, b) ∈ C2\{(0, 0)}
– form a (k + 1)-dimensional space, as we have seen above, each of the above eigenvalue has
multiplicity at least k + 1. Beware here that φ±

k,p,0 is uniquely determined by ϕk,pψ0 and that

the eigenvalues of two of the three families may coincide for particular values of t. For instance,
f0(k, p, t) = f0(k

′, p′, t) for k, p, k′, p′ as above if and only if (1+ t+2p− k)2 +4(k− p)(p+1) =

(1 + t + 2p′ − k′)2 + 4(k′ − p′)(p′ + 1), which is equivalent to (t + p + p′ − k+k′

2 + 1)(p − p′ −
k−k′
2 ) + (k − p)(p + 1) − (k′ − p′)(p′ + 1) = 0. If p − p′ = k−k′

2 i.e., k′ = k + 2(p′ − p) then
(k − p)(p+ 1)− (k′ − p′)(p′ + 1) = 0 is equivalent to (k − p)(p+ 1)− (k + p′ − 2p)(p′ + 1) = 0,
which amounts to (p − p′)(k + 1 − p + p′) = 0, from which either p = p′ and then k = k′

follows, or k = p− p′ − 1, which is a contradiction because of p− p′ − 1 < p < k. Therefore, if
(k, p) ̸= (k′, p′), then p−p′ ̸= k−k′

2 and there exists a unique solution t to f0(k, p, t) = f0(k
′, p′, t)
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which is given by

t =
(k′ − p′)(p′ + 1)− (k − p)(p+ 1)

p− p′ − k−k′
2

+
k + k′

2
− p− p′ − 1.

The other cases are analogous. For t = 0, the multiplicity of the eigenvalue 1 + k of Dtη − 1
2 is

0−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

t

Figure 1. Eigenvalues of Dtη on S3 as functions of t: 3
2 + k + t, 3

2 + k − t, 1
2 ±

√
f0(k, p, t)

(k + 2)(k + 1) as expected [3, Sec. 2] since there is a k + 1-dimensional contribution from each
of the eigenvectors ϕk,kψ0, ϕk,0ψ1, φ

+
k,p,0, 0 ≤ p < k.

□

Let us make some comments concerning the eigenvalue estimates discussed in the previous
sections.

Remark 5.2.

(1) The magnetic Friedrich inequality in Theorem 3.1 cannot be optimal on the round
sphere, since the latter is an Einstein Sasakian manifold. However, we can check this by
the computation of the spectrum done for S3. Namely, for t ∈]0, 32 ], we have |λ

tη
1 | = 3

2−t
and

n

4(n− 1)
inf
M

(S − 4t⌊n
2
⌋

1
2 |dη|) = 3

4
(3− 4t)

which is clearly strictly less than (32 − t)2.

(2) The inequality |λtη1 | < |λ1| = 3
2 from Corollary 4.2 holds for any t ∈ R\{0} and not only

for small t. Indeed, the eigenvalue 3
2 − t of Dtη satisfies that inequality for all t ∈ (0, 3).

But so does 5
2 − t for all t ∈ (1, 4). Inductively, it can be shown that the Dtη-eigenvalue

3
2 + k − t satisfies that inequality for all t ∈ (k, k + 3). Therefore, |λtη1 | < |λ1| = 3

2 holds

for all positive t. Replacing t by −t and using the Dtη-eigenvalues 3
2 + k + t, the same

holds for all negative t, hence the conclusion.
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(3) The inequality (3.7) is an equality for λtη1 if and only if t ∈ [−3
2 ,

3
2 ]. Note that

∥tη∥L3(S3) = |t|ω
1
3
3 , where ω3 denotes the volume of the round 3-sphere (S3, g). On

the other hand,
√

3
4(3−1)Y (S3, [g]) =

√
3
8 · 3 · 2 · ω

2
3
3 = 3

2ω
1
3
3 . Therefore, (3.7) is an equal-

ity if and only if |λtη1 | + |t| = 3
2 . For t ∈ [0, 32 ], |λ

tη
1 | = 3

2 − t, so that |λtη1 | + |t| = 3
2 .

Analogously, for t ∈ [−3
2 , 0], |λ

tη
1 | = 3

2 + t, so that |λtη1 |+ |t| = 3
2 . For |t| >

3
2 , obviously

|λtη1 | + |t| > 3
2 holds and therefore (3.7) cannot be an equality. Note that |λtη| ≤ 1

2 for

all |t| ≥ 3
2 , see e.g. figure 1.

(4) When M := S3/Γ with round metric g of sectional curvature 1, where Γ is any finite
subgroup of SU2, there exists a spin structure for which the space of 1

2 -Killing spinors is

complex 2-dimensional and that of −1
2 -Killing spinors 0-dimensional; and a spin struc-

ture for which the same holds true where the constants ±1
2 are swapped [1, Cor. 5.2.5].

Since, as mentioned above, the spinor bundle of S3 is trivialised by −1
2 -Killing spinors

which are pointwise ±1-eigenvectors of iη· [19, Theorem 8.4], there exists a spin struc-
ture on M for which the spinor bundle ΣM is trivialised by −1

2 -Killing spinors on M
which are pointwise ±1-eigenvectors of iη·. Note that η is anyway Γ-invariant since Γ
acts on C2 by unitary (thus complex-linear) isomorphisms. That spin structure being
fixed, we obtainDtηψ = 0 for any such −1

2 -Killing spinor ψ and for t ∈ {±3
2}. Therefore,

after using Vol(M, g) = ω3
|Γ| , (3.7) becomes

Y (S3/Γ, [g]) ≤
Y (S3, [g])

|Γ|
2
3

. (5.3)

When Γ = {±1} i.e., whenM is the 3-dimensional real projective space RP3, it is known
though nontrivial that (5.3) is an equality [8]. Therefore, (3.7) is also an equality on
M = RP3, in particular S3 is not the only closed Riemannian 3-manifold on which (3.7)
is an equality, in spite of the claim of [34, Remark 25]. For further groups Γ, it is still
an open question whether (5.3) is an equality or not.

We end this section by pointing out that the claim of [15, Theorem 1.1] in dimension 3 – as
well as of [15, Theorem 1.3] in higher dimensions – is likely to be implied by [25, Lemma 3.4]
using a stereographic projection to map Rn into Sn and the conformal covariance of the Dirac
operator as above.

5.2. The flat torus. In this section, we compute the spectrum of the spinc Dirac operator on
the flat torus Tn, the case of the flat three torus was already studied in [28] and the spectrum
of the spin Dirac operator on flat Tn was computed in [18]. We start with the case where the
auxiliary one-form is parallel, the case where that one-form is only assumed to be closed being
discussed after the proof of Theorem 5.3. We emphasize that, because every spinc structure
on the torus actually reduces to a spin structure, spinc Dirac operators on Tn coincide with
magnetic Dirac operators. The notations needed to understand the statement of Theorem 5.3
will be introduced in its proof.

Theorem 5.3. For a positive integer n let Γ ⊂ Rn be a lattice and Tn := Γ\R
n
the corresponding

n-dimensional flat torus. Let PU1 →M be a fixed U1-bundle and let a square root of that bundle
be given. Fix a basis (γ1, . . . , γn) of Γ and δ1, . . . , δn ∈ {0, 1}. Denote by θ1, . . . , θn ∈ [0, 1[
the real numbers fixing the square root of PU1 → M . Let A be a parallel one-form on Tn.
Then the spectrum of the Dirac operator of Tn endowed with the induced flat metric and the
spinc-structure provided by (δ1, . . . , δn) and (θ1, . . . , θn) is given by{

± 2π|γ∗ + 1

2

n∑
j=1

(δj + θj)γ
∗
j +

A

4π
|, γ∗ ∈ Γ∗

}
,
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where Γ∗ := {θ ∈ (Rn)∗ | θ(Γ) ⊂ Z} is the dual lattice and (γ∗1 , . . . , γ
∗
n) the basis of Γ∗ dual to

(γ1, . . . , γn). If non-zero, the eigenvalue provided by γ∗ has multiplicity at least 2[
n
2
]−1. Further-

more, 0 is an eigenvalue if and only if there exists γ∗ ∈ Γ∗ such that A = −4π(γ∗+ 1
2

∑n
j=1(δj+

θj)γ
∗
j ) and, in that case, its multiplicity is exactly 2[

n
2
] and the corresponding eigenspace consists

of ∇A-parallel spinors.

Proof. Let PU1 → Tn be any auxiliary U1-bundle on Tn, which can be described by a group-
homomorphism β : Γ → U1. A spinc structure on Tn with associated U1-bundle provided
by β is then fully described by a group-homomorphism β̂ : Γ → Spincn such that, for ev-

ery γ ∈ Γ, we have ηc(β̂(γ)) = (1, β(γ)). Here ηc : Spincn → SOn × U1, is the nontrivial
2-fold covering. The reason for the first component of the group-homomorphism (1, β) to
be 1 is that Γ acts trivially on the tangent bundle of Rn, since it consists of translations
only. Now recall that Spincn

∼= Spinn × U1/Z2 via the surjective map Spinn × U1 → Spincn,

(u, z) 7→ zu with kernel {±(1, 1)}; and that, via that identification, ηc([(u, z)]) = (η(u), z2)
for all (u, z) ∈ Spinn × U1, where η : Spinn → SOn is the nontrivial twofold covering. Fix

γ ∈ Γ and write β̂(γ) = [(u(γ), z(γ))] for some u(γ) ∈ Spinn and z(γ) ∈ U1. Then the

identity ηc(β̂(γ)) = (1, β(γ)) is equivalent to η(u(γ)) = 1 and z(γ)2 = β(γ). But because
of ker(η) = {±1}, the identity η(u(γ)) = 1 is equivalent to u(γ) ∈ {±1} ⊂ Spinn. There-

fore, β̂ can be written in two ways. Either a square-root β̃ : Γ → U1 of β is fixed and then
β̂(γ) = [(ε(γ), β̃(γ))] for all γ ∈ Γ and some group-homomorphism ε : Γ → {±1}; or the first

component of β̂ is fixed to 1 i.e., β̂(γ) = [(1, β̃′(γ))] for all γ ∈ Γ and some group-homomorphism

β̃′ : Γ → U1 which is a square-root of β. One way or the other, there are as many spinc structures
on Tn with auxiliary U1-bundle given by β as group-homomorphisms Γ → {±1}. In particular,
there are 2n such spinc structures on Tn since Γ has a basis consisting of n linearly independent
vectors of Rn. Note that the existence of a square-root of β is anyway ensured by Γ being finitely
generated (define the square-root on a chosen basis and extend it as a group-homomorphism on
the whole Γ).

As a consequence, any spinc structure on Tn reduces to a spin structure via the above map
Spinn × U1 → Spincn. In the former description where the square-root β̃ of β is fixed, the spinc

structures on Tn stand in one-to-one correspondence with spin structures on Tn, a square-root-
bundle of the auxiliary bundle being fixed. In the latter description where the Spinn-component

of β̂ is fixed to 1, the spinc structures on Tn stand in one-to-one correspondence to the trivial
spin structure cross a square-root-bundle of the auxiliary bundle.

Let the square-root β̃ : Γ → U1 of β be fixed and let ε : Γ → {±1} describe the spinc structure
on Tn. Then a spinor field ϕ on Tn may be identified with a spinor field ϕ on Rn satisfying, in
the above notations,

ϕ(x+ γ) = ε(γ)β̃(γ)ϕ(x),

for all x ∈ Rn and γ ∈ Γ.

Let (γ1, . . . , γn) be a fixed basis of the lattice Γ and denote e2iπθj := β(γj) for θj ∈ [0, 1[ and 1 ≤
j ≤ n. For all 1 ≤ j ≤ n let β̃(γj) := eiπθj and define δj ∈ {0, 1} via (−1)δj := ε(γj). Denoting
by Γ∗ the dual lattice (those 1-forms on Rn with integral values on Γ) and by (σ1, . . . , σN ) an

orthonormal basis of Σn = CN (where N := 2[
n
2 ]), we let, for any γ∗ ∈ Γ∗,

θγ∗ := γ∗ +
1

2

n∑
j=1

(δj + θj)γ
∗
j ∈ (Rn)∗,

where (γ∗1 , . . . , γ
∗
n) denotes the dual basis to (γ1, . . . , γn). Fixing a real valued 1-form A on Tn

or, equivalently, a Γ-invariant 1-form on Rn, we consider the induced connection 1-form iA on
the auxiliary U1-bundle. Then the Levi-Civita covariant derivative ∇A on spinors induced by
the metric and A is given by ∇A

Xϕ = ∇Xϕ + i
2A(X)ϕ, for all vector fields X and spinor fields



ON THE SPECTRUM OF THE MAGNETIC DIRAC OPERATOR 23

ϕ on Tn. Here, ∇ denotes the Levi-Civita covariant derivative on spinors, which exists because
of the existence of a reduction of the spinc structure to Spinn × U1, as explained above.

Now let, for γ∗ ∈ Γ∗ and ℓ ∈ {1, . . . , N},
ϕγ∗,ℓ := e2iπθγ∗σℓ.

This defines a spinor field on Tn: for any γ′ ∈ Γ and any x ∈ Rn,

ϕγ∗,ℓ(x+ γ′) = e2iπθγ∗ (x+γ
′)σℓ

= e2iπθγ∗ (γ
′)ϕγ∗,ℓ(x)

= e2iπ(γ
∗(γ′)+ 1

2

∑n
j=1(δj+θj)γ

∗
j (γ

′))ϕγ∗,ℓ(x)

= e2iπγ
∗(γ′)︸ ︷︷ ︸
1

·(−1)
∑n

j=1 δjγ
∗
j (γ

′) · eiπ
∑n

j=1 θjγ
∗
j (γ

′)ϕγ∗,ℓ(x)

= ε(γ′)β̃(γ′)ϕγ∗,ℓ(x).

Letting θ′γ∗ := θγ∗ +
A
4π ∈ (Rn)∗, we compute, for any vector field X on Tn,

∇A
Xϕγ∗,ℓ = 2iπ

(
θγ∗(X) +

A(X)

4π

)
ϕγ∗,ℓ = 2iπθ′γ∗(X)ϕγ∗,ℓ.

As a consequence, for the associated Dirac operator DA =
∑n

j=1 ej · ∇A
ej , we have

DAϕγ∗,ℓ = 2iπθ′γ∗ · ϕγ∗,ℓ. (5.4)

If θ′γ∗ = 0, which happens iff A = −4πθγ∗ (and is in particular constant i.e., parallel), then

ϕγ∗,ℓ ∈ ker(DA). But in that case ker(DA) consists of ∇A-parallel spinor fields because of the
Schrödinger-Lichnerowicz formula

(DA)2 = (∇A)∗∇A +
S

4
Id +

i

2
dA·

and the fact that S = 0 (the metric is flat, thus scalar-flat) and dA = 0 since A is then parallel.

Therefore, if θ′γ∗ = 0, then ker(DA) is exactly N = 2[
n
2 ]-dimensional and spanned by the ϕγ∗,ℓ,

1 ≤ ℓ ≤ N (recall that γ∗ is fixed here). If θ′γ∗ ̸= 0, we have to pay attention to the fact that

θ′γ∗ may vanish pointwise because A is not assumed to be constant. At those points where θ′γ∗
does not vanish, we may split

Σn = ker

(
i
θ′γ∗

|θ′γ∗ |
· −Id

)⊕
ker

(
i
θ′γ∗

|θ′γ∗ |
·+Id

)
.

In dimension n = 1, only one of those subspaces is nonzero, and then complex 1-dimensional,
which forces the other one to vanish. This means that, still at those points where θ′γ∗ does

not vanish, ϕγ∗,ℓ is a DA-eigenspinor associated to the eigenvalue 2π|θ′γ∗ | or −2π|θ′γ∗ |. In di-

mension n ≥ 2, both subspaces have to be exactly N
2 -dimensional since the Clifford action

of any (pointwise) nonzero tangent vector which is orthogonal to θ′γ∗ (such a vector exists if

n ≥ 2) anti-commutes with the Clifford action of θ′γ∗ and hence exchanges both subspaces iso-
morphically. Then the original constant basis (σ1, . . . , σN ) of Σn can be replaced by a pointwise

basis (σ+1 , . . . , σ
+
N
2

, σ−1 , . . . , σ
−
N
2

) consisting of ±1-eigenvectors of the Clifford action i
θ′
γ∗

|θ′
γ∗ |

·. The

problem is now that the identities above for ∇A and hence DA do not hold any longer since
σ+1 , . . . , σ

+
N
2

, σ−1 , . . . , σ
−
N
2

now do depend on the base-point and hence are not a priori constant,

except for instance if A is. We conclude that this splitting does not allow us to make further
progress in the general case which is different to the spin case.

If A is parallel, then so is θ′γ∗ and, letting ϕεγ∗,ℓ := e2iπθγ∗σεℓ for 1 ≤ ℓ ≤ N
2 and ε ∈ {±1}, we

deduce from (5.4) that

DAϕεγ∗,ℓ = 2πε|θ′γ∗ |ϕεγ∗,ℓ
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for all 1 ≤ ℓ ≤ N
2 and both ε ∈ {±1}. This provides the spectrum of DA in that case but beware

that it is not necessarily symmetric about 0 any longer since −γ∗ −
∑n

j=1(δj + θj)γ
∗
j does not

belong to Γ∗ any more because of θj ∈ [0, 1[ (except when θj = 0 for all j of course). □

In case A is closed, the Hodge decomposition yields A = h + df for some real function f and
harmonic 1-form h, which is actually parallel by the Bochner formula because of the torus being
Ricci-flat. Then, from Proposition 2.2, the operators DA and Dh are unitarily equivalent and
therefore have the same spectrum.

Remark 5.4. We notice that the diamagnetic inequality for the magnetic Dirac operator may
or may not hold on Tn according to the choice of η, at least when the underlying spin structure
is nontrivial; recall that 0 lies in the Dirac spectrum when the spin structure on Tn is trivial
i.e., when δ1 = . . . = δn = 0. Namely if θ1 = . . . = θn = 0 (the auxiliary U1-bundle should be
trivial) and at least one δj = 1, then the smallest Dirac-eigenvalue in absolute value is given

by |λ1| = 2π|γ∗ + 1

2

n∑
j=1

δjγ
∗
j | > 0 for some γ∗ ∈ Γ∗ (we keep the notations of Theorem 5.3).

But choosing η = A
2 to be a positive multiple of γ∗ + 1

2

∑n
j=1 δjγ

∗
j , the smallest positive Dtη-

eigenvalue will be strictly larger than |λ1| for small positive t. Conversely, if η = A
2 is a negative

multiple of γ∗ + 1
2

∑n
j=1 δjγ

∗
j , then the smallest positive Dtη-eigenvalue will be strictly smaller

than |λ1| for small positive t.

6. Killing magnetic field

In this section, we consider the particular case when the magnetic field is a Killing vector field
of constant norm. This gives rise to local Riemannian submersions with one-dimensional fibers
given by the integral curves of the magnetic field. We will then estimate a part of the spectrum
of the corresponding magnetic Dirac operator in terms of the geometry of those submersions.
In the following, we review some basic facts on spin Riemannian flows, which can be found in
[9, 22, 24, 33, 38].

Let (Mn, g, ζ) be a closed oriented Riemannian manifold together with a unit Killing vector
field ζ, that is Lζg = 0. In this case, ζ defines a Riemannian foliation, called Riemannian flow,

whose leaves are given by the integral curves of ζ. In the following we denote by Q = ζ⊥ the
normal bundle of the flow. Locally, a Riemannian flow is given by a Riemannian submersion
whose fibers are the leaves of the foliation and the normal bundle corresponds to the tangent
space of the base manifold. It is known that the bundle Q carries a natural covariant derivative
∇Q given for all Y ∈ Γ(Q) by

∇Q
XY =


π([ζ, Y ]) if X = ζ,

π(∇XY ) if X ∈ Γ(Q),

where ∇ is the Levi-Civita connection on M and π : TM → Q is the orthogonal projection.
This connection ∇Q is compatible with the induced metric g|Q on Q and has a free torsion given

by T∇(X,Y ) := ∇Q
Xπ(Y )−∇Q

Y π(X)− π([X,Y ]) for all X,Y ∈ Γ(TM). An easy computation

gives the relation between ∇ and ∇Q through the formulas
∇ζY = ∇Q

ζ Y + h(Y ),

∇XY = ∇Q
XY − g(h(X), Y )ζ,

for all X,Y ∈ Γ(Q), where h := ∇ζ is a skew-symmetric endomorphism on TM called the
O’Neill tensor [30]. Now assume that M is spin and let us denote by ΣM its spinor bundle.
Since TM = Rζ ⊕ Q, the bundle Q carries also a spin structure and its spinor bundle ΣQ
can be canonically identified with the one on M when n is odd and when n is even, we have
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ΣM ≃ ΣQ⊕ΣQ. Also the Clifford multiplication onM and Q can be identified by Y ·Qφ = Y ·φ
when n is odd and, when n is even, we have Y · ζ · φ = (Y ·Q ⊕− Y ·Q)φ for all Y ∈ Γ(Q). The

Clifford action of iζ is given by IdΣ+Q ⊕ −IdΣ−Q if n is odd and by iζ· =
(

0 IdΣQ
IdΣQ 0

)
if

n is even. The spinorial connections of ΣQ and ΣM are related by


∇ζφ = ∇ΣQ

ζ φ+ 1
2Ω · φ,

∇Y φ = ∇ΣQ
Y φ+ 1

2ζ · h(Y ) · φ,
(6.1)

for all Y ∈ Γ(Q). Here Ω := 1
2dζ

♭ is the two-form that is associated to h via Ω(Y, Z) :=
g(h(Y ), Z), for any Y,Z ∈ Γ(Q). Notice that the notion of the Lie derivative of any spinor in the

direction of ζ defined in [5] is just the covariant derivative∇ΣQ
ζ . Namely, by [5, Prop. 17], the Lie

derivative of a spinor field φ is expressed by the formula ∇ζφ = Lζφ+ 1
4dζ

♭ ·φ. Hence using that

dζ♭ = 2Ω and by comparing with (6.1), we get Lζφ = ∇ΣQ
ζ φ. Therefore basic spinors, i.e. those

spinors φ satisfying ∇ΣQ
ζ φ = 0, correspond to the so-called projectable spinors. The transversal

Dirac operator is the first-order differential operator defined by DQ :=
∑n−1

k=1 ek ·Q ∇ΣQ
ek on

Γ(ΣQ), where {ek}k=1,...,n−1 is a local orthonormal frame of Γ(Q). It is a transversally elliptic
and self-adjoint operator when restricted to basic spinors, in particular it has a discrete spectrum
[13]. This is called the basic Dirac operator and is often denoted by Db. Now, with the help of
(6.1), the Dirac operator D on M is related to the transversal Dirac operator DQ by [24]

D =


DQ − 1

2ζ · Ω ·+ζ · ∇ΣQ
ζ if n is odd,

ζ · (DQ ⊕ (−DQ))− 1
2ζ · Ω ·+ζ · ∇ΣQ⊕ΣQ

ζ if n is even.

(6.2)

It is shown in [24, Lem. 2.6] that the Dirac operator D preserves the set of basic spinors
Γb(ΣQ) and, thus, it decomposes as an L2-orthogonal sum D|Γb(ΣQ)

⊕D|
Γb(ΣQ)⊥

when n is odd.

An analogous decomposition holds when n is even. Therefore, the spectrum of D consists of
eigenvalues of the form {λj}∞j=1∪{µk}∞k=1 that correspond to the restriction of D to L2(Γb(ΣQ))

and L2(Γb(ΣQ))⊥.

We set η = ζ♭ to be the one-form on M associated to the vector field ζ by the musical isomor-
phism and consider the magnetic Dirac operator Dtη = D + itη·, for t ∈ R. Since by [22, p.71]

(see also [24, Lem. 2.2]) we have [∇ΣQ
X , η·] = 0, for any vector field X ∈ Γ(TM), the mag-

netic Dirac operator preserves the set of basic spinors as well as its L2-orthogonal complement.
Therefore, we shall denote by {λtηj }∞j=1 ∪ {µtηk }

∞
k=1 the set of eigenvalues corresponding to this

decomposition. In the following, we will give estimates for the eigenvalues {λtηj }∞j=1. For this,
we need the following lemma:

Lemma 6.1. Let (Mn, g, ζ) be a closed Riemannian spin manifold of odd dimension n equipped
with a unit Killing vector field ζ. Let φ be a basic eigenspinor of the magnetic Dirac operator
Dtη associated with an eigenvalue λtη, we have

λtη
∫
M

ℜ⟨iζ · φ,φ⟩dµg = −1

2

∫
M
⟨Ω · φ, iφ⟩dµg + t

∫
M

|φ|2dµg. (6.3)

Proof. Using the fact that [∇ΣQ
X , η·] = 0 for anyX ∈ Γ(TM) and the identification of the Clifford

multiplications between M and Q as n is odd, we can easily deduce that Db(ζ·) = −ζ ·Db. We
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compute for any basic spinor φ∫
M
⟨Dbφ, iζ · φ⟩dµg =

∫
M
⟨φ, iDb(ζ · φ)⟩dµg

= −
∫
M
⟨φ, iζ ·Dbφ⟩dµg

= −
∫
M
⟨iζ · φ,Dbφ⟩dµg.

Hence, we deduce that
∫
M ℜ⟨Dbφ, iζ ·φ⟩dµg = 0 for any spinor field φ. When φ is an eigenspinor

of the magnetic Dirac operator, we use (6.2) to deduce (6.3). □

Now, we state the main result of this section:

Theorem 6.2. Let (Mn, g, ζ) be a closed Riemannian spin manifold with nonnegative scalar
curvature S. We assume that M carries a unit Killing vector field ζ. Then any eigenvalue of
the Dirac operator Dtη restricted to basic spinors (or equivalently projectable spinors) satisfies,
for n > 3,

|λtη| ≥ inf
M

(
−
[n−1

2 ]
1
2 |Ω|

2
+

√
t2 +

n− 1

4(n− 2)
(S + 2|Ω|2)

)
and, for n = 3, the first positive eigenvalue λtη1 satisfies

λtη1 ≥ inf
M

(
b

2
+

√
t2 +

1

2
(S + 2b2)

)
,

where h = bJ is the O’Neill tensor.

Proof. The key point of the proof is to define the transversal twistor operator as follows: For
all X ∈ Γ(Q) and φ ∈ Γb(ΣQ)

PQXφ := ∇ΣQ
X φ+

1

n− 1
X ·Q Dbφ.

An easy computation shows that |PQφ|2 = |∇ΣQφ|2 − 1
n−1 |Dbφ|2. Therefore, with the help of

the transversal Schrödinger-Lichnerowicz identity D2
b = ∇∗∇+ 1

4S
Q where SQ is the transversal

scalar curvature [23], we deduce that∫
M

|PQφ|2dµg =
n− 2

n− 1

∫
M

|Dbφ|2dµg −
1

4

∫
M
SQ|φ|2dµg. (6.4)

Let us first consider the case when n is odd. Let φ be a basic spinor which is also eigenspinor
for Dtη associated with the eigenvalue λtη. Identity (6.4) reduces to

0 ≤ n− 1

n− 2

∫
M

|PQφ|2dµg

=

∫
M

|Dbφ|2dµg −
n− 1

4(n− 2)

∫
M
SQ|φ|2dµg

(6.2)
=

∫
M

(
(λtη)2|φ|2 + 1

4
|Ω · φ|2 + t2|φ|2 − λtηℜ(⟨Ω · φ, ζ · φ⟩)− 2tλtηℜ(i⟨ζ · φ,φ⟩)

− tℜ⟨Ω · φ, iφ⟩
)
dµg −

n− 1

4(n− 2)

∫
M
SQ|φ|2dµg

(6.3)
=

∫
M

(
(λtη)2|φ|2 + 1

4
|Ω · φ|2 − t2|φ|2 − λtηℜ(⟨Ω · φ, ζ · φ⟩)

)
dµg −

n− 1

4(n− 2)

∫
M
SQ|φ|2dµg.

The case when n is even gives also the same inequality as above. Namely, the spinor bundle of
M can be identified with ΣQ⊕ ΣQ and we write any eigenspinor of Dtη as φ = φ1 + φ2. Now
the equation Dtηφ = λtηφ can be equivalently written as

Dφ1 = λtηφ2 − itζ · φ1 and Dφ2 = λtηφ1 − itζ · φ2.
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Therefore, using (6.2), we get the following expressions for the basic Dirac operator of φ1 and
φ2

Dbφ1 = −λtηζ · φ2 +
1

2
Ω · φ1 − itφ1 and Dbφ2 = λtηζ · φ1 −

1

2
Ω · φ2 + itφ2. (6.5)

Applying Inequality (6.4) to φ1 gives that

0 ≤
∫
M

(
(λtη)2|φ2|2 +

1

4
|Ω · φ1|2 + t2|φ1|2 − λtηℜ(⟨Ω · φ1, ζ · φ2⟩) (6.6)

+ 2tλtηℑ(⟨ζ · φ2, φ1⟩)− tℑ(⟨Ω · φ1, φ1⟩)
)
dµg −

n− 1

4(n− 2)

∫
M
SQ|φ1|2dµg.

By taking the Hermitian inner product of the first equation in (6.5) with φ1 and identifying the
imaginary parts, we get that

λtη
∫
M

ℑ(⟨ζ · φ2, φ1⟩)dµg −
1

2

∫
M

ℑ(⟨Ω · φ1, φ1⟩)dµg = −t
∫
M

|φ1|2dµg.

Replacing this last identity into (6.6) gives that

0 ≤
∫
M

(
(λtη)2|φ2|2 +

1

4
|Ω · φ1|2 − t2|φ1|2 − λtηℜ(⟨Ω · φ1, ζ · φ2⟩)

)
− n− 1

4(n− 2)

∫
M
SQ|φ1|2dµg.

Now, we do the same computations as before by applying inequality (6.4) to φ2 and find after
adding both inequalities

0 ≤
∫
M

(
(λtη)2|φ|2 + 1

4
|Ω · φ|2 − t2|φ|2 − λtηℜ(⟨Ω · φ, ζ · φ⟩)

)
dµg −

n− 1

4(n− 2)

∫
M
SQ|φ|2dµg.

In the following, we will distinguish the cases when n = 3 and n > 3. When n = 3, the O’Neill
tensor h can be written as h = bJ for some real valued function b : M → R, where J is the
complex structure on the bundle Q. In this case, we have Ω · φ = bζ · φ. Hence the above
inequality reduces to

0 ≤
∫
M

(
(λtη)2 +

b2

4
− t2 − bλtη − 1

2
SQ
)
|φ|2dµg

=

∫
M

(
λtη − b

2
+

√
t2 +

1

2
SQ

)(
λtη − b

2
−
√
t2 +

1

2
SQ

)
|φ|2dµg.

Recall now that the following relation SQ = S + 2|Ω|2 holds [30]. Thus, if S ≥ 0, then SQ is
also nonnegative and we can write√

t2 +
1

2
SQ =

√
t2 +

1

2
S + |Ω|2 ≥ |Ω| = |b| ≥ ± b

2
.

Hence the first positive eigenvalue satisfies

λtη1 ≥ inf
M

(
b

2
+

√
t2 +

1

2
SQ

)
.

When n > 3, we use the pointwise estimate |Ω · φ| ≤ [n−1
2 ]

1
2 |Ω||φ| which can be proven in the

same way as in [25, Lem. 3.3] to obtain

0 ≤
∫
M

(
(λtη)2 +

1

4
[
n− 1

2
]|Ω|2 − t2 + |λtη|[n− 1

2
]
1
2 |Ω| − n− 1

4(n− 2)
SQ
)
|φ|2dµg

=

∫
M

(
|λtη|+

[n−1
2 ]

1
2 |Ω|

2
+

√
t2 +

n− 1

4(n− 2)
SQ

)(
|λtη|+

[n−1
2 ]

1
2 |Ω|

2
−

√
t2 +

n− 1

4(n− 2)
SQ

)
|φ|2dµg,

which gives the estimate

|λtη| ≥ inf
M

(
−
[n−1

2 ]
1
2 |Ω|

2
+

√
t2 +

n− 1

4(n− 2)
SQ

)
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as required. Notice that, when the parameter t is big enough, this lower bound is positive. □

Remark 6.3. When M = S3 equipped with the metric of curvature 1, we take b = 1 and,
therefore, the estimate in Theorem 6.2 becomes

λtη1 ≥ 1

2
+
√
t2 + 4.

This lower bound appears in the set of eigenvalues studied in Theorem 5.1. Also, on the round
sphere (Sn, g, η) with n = 2m+ 1 > 3 and η is the Reeb vector field, the lower bound obtained
in (3.7) is |λtη| ≥ n

2 − t. However, the lower bound in Theorem 6.2 is

|λtη| ≥

(
−n− 1

4
+

√
t2 +

(n− 1)2(n+ 1)

4(n− 2)

)
.

Hence, for t ≥ 3n−1
4 the above lower bound is better than n

2 − t.
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Universität Augsburg, 1993.
[33] B. Reinhart, Foliated manifolds with bundle-like metrics, Ann. Math. 69 (1959), 119–132.
[34] J. Reuß, A note on the existence of nontrivial zero modes on Riemannian manifolds, arXiv:2503.01602

[math.DG].
[35] S. Roos, Eigenvalue pinching on Spinc manifolds, J. Geom. Phys. 112 (2017), 59–73.
[36] N. Savale, Koszul complexes, Birkhoff normal form and the magnetic Dirac operator, Anal. PDE 10 (2017),

1793–1844.
[37] N. Savale, A Gutzwiller type trace formula for the magnetic Dirac operator, Geom. Funct. Anal. 28 (2018),

1420–1486.
[38] Ph. Tondeur, Foliations on Riemannian manifolds, Springer, New York, 1988.

University of Rostock, Institute of Mathematics, Ulmenstraße 69, 18057 Rostock, Germany
Email address: volker.branding@uni-rostock.de
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