ON THE SPECTRUM OF THE MAGNETIC DIRAC OPERATOR

VOLKER BRANDING, NICOLAS GINOUX, AND GEORGES HABIB

ABSTRACT. The magnetic Dirac operator describes the relativistic motion of a charged particle
in a magnetic field. Although this operator got a lot of attention in physics many of its
fundamental mathematical properties remain unexplored and this article is a first step towards
filling this gap. To this end we provide a number of eigenvalue estimates for the magnetic
Dirac operator on closed Riemannian manifolds and explicitly compute its spectrum for specific
choices of the magnetic field on the flat torus and on the three-dimensional round sphere.

1. INTRODUCTION

The Dirac operator is a first-order differential operator which was originally introduced by physi-
cist Paul Dirac to describe electrons, which are spin %—particles, in spacetime. In the presence
of an electromagnetic field, a magnetic potential has to be added to the Dirac operator, turning
it into the so-called magnetic Dirac operator. Over the last few years, a lot of studies have been
devoted to the magnetic Dirac operator, mainly from the perspectives of physics and analysis,
see e.g. [10, Sec. 1] as well as [16], Sec. 1] and references therein for an overview. In particular,
there has been strong interest in the so-called zero modes, which are the elements of the kernel
of the magnetic Dirac operator, see [15] (16, [34], where [34] extends the results [15) [16] from flat

space to arbitrary closed Riemannian spin manifolds.

In this article, we make a decisive contribution to the spectral theory of the magnetic Dirac
operator on closed Riemannian spin manifolds. We mainly focus on the interactions between
the spectrum of that operator and the geometry of the underlying manifold. We derive general
geometric estimates for the smallest eigenvalues of the magnetic Dirac operator and compute
its whole spectrum in two cases. These estimates generalise Friedrich’s and Bér’s resp. Hijazi’s
ones [2, 17, 26] and their limiting cases restrict a lot the geometry of the manifold when the
magnetic field is nowhere zero. We also keep track of the spectral shift occurring when going
from the Dirac to the magnetic Dirac operator. Surprisingly enough, introducing a magnetic
field, even a small one, does not necessarily make the first eigenvalue decrease, as one would
expect from the so-called diamagnetic inequality on the connection level [10, Sec. 2.4].

The article is structured as follows. After a review of the magnetic Dirac operator in Section
we state and prove two general but fundamental estimates for its smallest eigenvalue in Section
see Theorems and The equality case of those estimates is carefully studied in the
particular case when the magnetic field is nowhere zero. As a result, it turns out that the
geometry of the manifold restricts to a Sasaki structure and the magnetic vector field is the
corresponding Reeb vector field. This motivates the study in Section [f] when a magnetic field
is a Killing vector field of constant norm. On the way, we notice that, thanks to the conformal
covariance of the Dirac operator, the proof of the main inequality in [34, Theorem 1] can be
considerably simplified, see Remark On surfaces, a fine estimate taking into account the
particular structure of the vanishing set of an eigenvector for the magnetic Dirac operator can
be established, see Theorem [3.5] The difference between the respective first eigenvalues of the
standard and magnetic Dirac operator is studied in Section ] where we focus on the diamag-
netic inequality comparing both eigenvalues. The main tool for testing that inequality is set up
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in Proposition [4.1] and relies on the use of the min-max principle applied to an eigenspinor of
the standard Dirac operator as a test spinor. We examine this inequality on Einstein-Sasakian
manifolds. Section [5]is devoted to the computation of the complete spectrum of the magnetic
Dirac operator on both the 3-dimensional sphere with standard Sasaki structure and on the flat
n-dimensional torus, see Theorems and Thanks to this computation, we show that the
diamagnetic inequality can never hold on the sphere and, depending on the choice of the mag-
netic field, it may or may not hold on the flat torus.The particular case where the magnetic field
is Killing of constant length is the topic of Section [6] In this particular setting, the manifold is
locally submerged into a base manifold whose fibers are just the integral curves of the magnetic
vector field. A natural question which arises in this setup is how the spectrum of the magnetic
Dirac operator can be expressed in terms of the geometry of those submersions. For this, we
consider the magnetic Dirac eigenvalues that have so-called basic associated eigenspaces and
show that they can be bounded in a much finer way than in Theorem [3.1], see Theorem

We underline that the presence of the magnetic field does not reduce to a technical difficulty
when comparing with the standard Dirac operator. It makes its spectral behaviour pointwise
very different, as is exemplified in the diamagnetic inequality mentioned above.
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2. REVIEW ON THE MAGNETIC DIRAC OPERATOR

In this section, we review some basic facts on the magnetic Dirac operator defined on a spin
manifold. For more details, we refer to [10], 36} 37].

Let (M, g) be a Riemannian spin manifold of dimension n and let 7 be a real 1-form on M. We
denote by XM its complex spinor bundle. Recall that this bundle is equipped with a Hermitian
product (-, -) and a metric connection V coming from the Levi-Civita connection on (M, g) such
that the Clifford action of any vector field on sections of XM is skew-Hermitian and parallel.
Sections of XM are called spinors. The Clifford action of vector fields on spinors satisfies the
so-called Clifford relations, which read X - Y - o +Y - X - ¢ = —2¢(X,Y ), for all vector fields
X,Y and any spinor ¢ on M. Recall also that the Dirac operator is the first order differential
n

operator defined as D := Z ex - Ve, where {ey}r=1 ., is any local orthonormal frame of T'M.

k=1
The magnetic Dirac operator D" acts on the spinor bundle XM by the following
D":=D+in-.

It is not difficult to check that the magnetic Dirac operator is an elliptic and essentially self-
adjoint operator when M is complete. Thus, when M is closed, the magnetic Dirac operator
has a discrete spectrum made of real eigenvalues of finite multiplicities, which we denote by
()\Z)k, and the corresponding eigenspaces consist of smooth sections only. Let us define a new
metric connection on XYM by the following V' := Vx + in(X). It is easy to check that this
connection is compatible with the Clifford multiplication, that is V% (Y:) = (VxY) - +Y - V%
for any vector fields X,Y € TM and the magnetic Dirac operator can be written in terms of
V7 as D" = > _ e Ve,. When we identify the Clifford module CI(T'M) with the exterior
algebra, we can write D7 = d7 + §", with d" = d + inA and 67 = § — inf.. In this case, (D")?
is in general not equal to the magnetic Hodge Laplacian A" := d7§" 4 §7d", since (d")? = idnA
which does not vanish in general [11].
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On the other hand, the magnetic Dirac operator can be seen as the Dirac operator of a spin®
structure whose auxiliary line bundle is trivial and carrying a connection given by 2in. In
particular, when M is simply connected and dn = 0, the spin® connection can be identified with
the spin connection [29, Lem.2.1], that is, we have V"7 = e~/ V(e¥f) where n = df. Now, one
can easily check that the curvature R" associated with the connection V" is given by

RNX,Y) =R(X,Y) +i(dn)(X,Y) (2.1)

for any vector fields X,Y € T'M where R is the curvature associated with V. Based on this
identity, the magnetic Schrédinger-Lichnerowicz formula for (D)2 can be stated as follows:

Proposition 2.1. We have
(D7) = (V)97 + 1S + idiy, (2.2)
where S is the scalar curvature of the manifold (M, g). Also, we have
(D"M? = D*+idn- +i(on) - —2iV, + |n*. (2.3)

Proof. Using the expression of the magnetic Dirac operator, we choose an orthonormal frame
{ek}r which is parallel at some point 2z € M and compute, at z,

(D" = > ex-Vil(e- V)
k=1

n
= D ea ViVl
k=1

n n
1
=Y VIV + 3 } " en-ers RM(eg, )
=1 fi=1

n

n n .
1) 1 i
& _ > VEVE + 5 > ex-er Riege) + 2 > (dn)(en, e - e
k=1 ki=1 ki=1

1
= (V)'V+ S +idn-.

Identity (2.3) comes from expanding (D")? = (D + in-)? along with D(n-) = (dn+dn) - -2V, —
n - D. This ends the proof. (]

In the following, we show the gauge invariance of the magnetic Dirac operator

Proposition 2.2. Let (M",g) be a Riemannian spin manifold and let n be a differential form

on M. For any n, := d—: with T € C*(M,Uy), the magnetic Dirac operators D and D" are

2
unitarily equivalent, meaning that

D"t = 7D,
In particular, if M is closed, the operators D" and D" are isospectral for any smooth real-
valued function f.

Proof. For any spinor field v, we write

D(ry) = D(m) +itn -4
TDMp +dr -
d
= <D%+i,7-¢>
iT
= 7D,
For the last part, we just take 7 = e*/. This finishes the proof. U
Proposition 2.3. If the dimension n of a Riemannian spin manifold (M™, g) is even, then for

any n € QY(M), the magnetic Dirac operator D" anti-commutes with the Clifford action of the
volume form of M. As a consequence, if M is closed, then D" has symmetric spectrum.
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Proof. Tt suffices to notice that the Riemannian volume form provided by the orientation of M
not only anti-commutes with the Dirac operator of (M™,g) but also with the Clifford action of
1. Therefore, it anti-commutes with D". (]

3. EIGENVALUE ESTIMATES FOR THE MAGNETIC DIRAC OPERATOR

In this section, we establish some eigenvalue estimates a la Friedrich [17] and a la Bdr [2] resp. a
la Hijazi [26] for the magnetic Dirac operator and discuss their limiting cases. It turns out that,
when equality holds in these estimates, the magnetic field i gives rise to a particular geometry
on the manifold which does not necessarily reduce to the case without magnetic field, see the
discussions in Theorems B.1] and [3.2

Before stating these results, let us recall some properties of the spinor bundle on a Sasakian
manifold (see [19] for more details). Given a Sasakian spin manifold (M, g,n) of dimension
n = 2m + 1 with Reeb vector field 7, the spinor bundle of M decomposes under the action of
the transversal Kahler form Q) = %dn into

M = x,M, (3.1)

where ¥, M is the eigenbundle associated with the eigenvalue i(2r — m) of . The Clifford
action of n on X, M is given by 7 ,, = z’(—l)”mlde. A Sasakian manifold (M?™+1 g n)
is called n-Einstein if the Ricci curvature satisfies

Ric = ag + Bn®@n,

for some «a,8 € C*°(M). It was shown in [31] that, if m > 1, the functions o and S are
constants satisfying o + 8 = 2m and, in this case, the scalar curvature is equal to 2m(a + 1).
On a Sasakian spin manifold the notion of Sasakian quasi-Killing spinor of type (a,b) as being
a solution of the differential equation

Vxt¢ =aX -9 +bm(X)n- 9,

for real numbers a and b was defined in [19]. Moreover, in [19, Lem. 6.5] it is proven that
the existence of a nonzero Sasakian quasi-Killing spinor of type (:l:%, b) with b # 0 implies that
the manifold is n-Einstein of constant o = 2m £ 4b. The case when b = 0 corresponds to
real Killing spinors. Furthermore, [19, Thm. 6.3] and [19, Thm. 8.4] show that any simply
connected 7n-Einstein Sasakian manifold admits a Sasakian quasi-Killing spinor ¢, € ¥, M of
type (_71, b). When m is odd, it also has a Sasakian quasi-Killing spinor vy € XgM of the same
type. Note that such quasi-Killing spinors will play a crucial role in the characterization of the
equality case of the magnetic Friedrich inequality. With the help of the magnetic Schrédinger-
Lichnerowicz-formula from Proposition we state the magnetic Friedrich inequality (see [25]
and [35, Thm. 2.3] for the corresponding inequalities on spin® manifolds).

Theorem 3.1. (Magnetic Friedrich Inequality) Let (M™,g) be a closed Riemannian spin man-
ifold and let n € QY(M). For any t € Ry, any eigenvalue \'! of the magnetic Dirac operator
D' satisfies

n n 1
A2 > ——inf (S — 4t =] 2|dn)).
(N7)2 = Tt (5 — L )
If equality occurs, then either we are in the equality case of Friedrich’s inequality (i.e. n =0) or,
up to rescaling the metric, \'" = +5 and the universal cover M of M is a non-FEinstein Sasakian
manifold. If furthermore n' is a nontrivial geodesic vector field of constant norm, which thus
can be assumed to be equal to 1 up to rescaling n, and M is simply-connected, equality is realized

if and only if M is an n-FEinstein non-FEinstein Sasakian manifold of constant scalar curvature
(n—1)(n+4t).
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Proof. To prove the estimate, we proceed as in the case without magnetic field. For this, we
define a magnetic twistor operator by

1
Pl =V + ~X D™y
for all X € T'M. This operator satisfies the pointwise equality
1
[V? = | Pl + Dy,

Together with the magnetic Schrodinger-Lichnerowicz formula (2.2)) we arrive at

D2 — — (S| + 4t (idn - d :”/ P dpy > 0.
[ (100 = s 1+ attidn - w.) g = 2 [ 1P > 0
Recall that in [25, Lemma 3.3] the following estimate

. n, 1

(-9, 9) > =[S ]21Qlly*

was established for any ¢ € I'(X¥M) and any differential two-form . Here the norm of 2 is

considered as the norm of a differential two-form, that is |Q* = ZQ(ek,el)z. Equality is

k<l
attained when ¢ # 0 if and only if either ) vanishes or has maximal rank equal to n if n is even

or to n — 1 if n is odd. Hence, if ¢ is an eigenspinor for the magnetic Dirac operator associated
with the eigenvalue A7, we find

leading to the magnetic Friedrich inequality. Assume now that equality is attained, then we
have equality in all above inequalities. Therefore, the spinor field 1 satisfies

P 1
Xy and dn-o =il 5]z |dnly. (3.2)

n

Here, either dn = 0 or dn has maximal rank as stated before. Recall that 1 corresponds to
a Killing or parallel spinor for the spin® structure with trivial auxiliary bundle of curvature
Q) = 2itdn. Thus as mentioned in Section 2] when dn = 0, the spin® connection on the universal
cover of M corresponds to the spin connection and thus we are in the equality case of the
usual Friedrich inequality. Hence, we are left with the case when dn has maximal rank. In the
following, we distinguish two cases: the case when A\ = 0, meaning that 1 is parallel for the
magnetic connection V", or A7 # 0 meaning that ¢ is Killing.

VY = —

Let us first discuss the case where 9 is V¥-parallel. When V1) = 0, the magnetic Schrodinger-
Lichnerowicz formula gives that itdn - ¢ = —iS@Z). Therefore from (3.2)), we deduce that

S = 4tL%J%\d77] > 0. Hence, we get that S = QL%J%M\ Therefore by [12 Prop. 3.3], the
universal cover of M is isometric to either a spin manifold with parallel spinors, a Kéhler-
Einstein manifold of nonnegative scalar curvature or the Riemannian product of a Kahler-
Einstein manifold of nonnegative scalar curvature with R. Now, the last two cases cannot occur
since Kahler-Einstein manifolds cannot have Ricci form equal to 2itdn. Indeed, the Ricci form
of a Kahler-Einstein manifold is equal, up to some constant, to the Kahler form of that manifold
which cannot be an exact form. Hence the universal cover should be Ricci-flat and thus, S = 0.
Therefore 2 must vanish, i.e. dnp = 0, which contradicts the fact that dn is of maximal rank.
This shows that the case of 1) being V*-parallel cannot occur.

Let us now discuss the case when A7 # 0. Hence, by rescaling the metric into the form g = c%g
where ¢ = 2%“7, we obtain A\ € {£5}. Namely taking a metric of the form g = c?g for some
constant ¢ to be determined, the first equation in (3.2)) becomes with respect to the metric g

equal to
Nn__ _ oo —
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By choosing ¢ such that —ﬂ =+t35 L the equation then reduces to

Vxt = %Xf P — itn(X)i. (3.3)

Now a simple computation gives that |dn|, = ¢?|dn|s. Therefore the magnetic Friedrich inequal-
ity — and thus its equality case as well — remain unchanged. Hence, the second equation in ([3.2)
becomes

dy ) =il 5 J 2 |dnlgp (3-4)

where the action of dn is glven by dij- =3, ; d77(eZ7 €j)€; - €; ~. The equality case together with
A e {£2} yields S — 4tL2J |dn|g = n(n— 1). From [29, Thm. 4.1], the universal cover (M, 9)

of M must be a Sasakian manifold. Notice here that M cannot be Einstein, since otherwise
this would imply dn = 0 [29, Prop. 4.2] which would again contradict the maximality of the
rank. This proves the first part of the theorem. To show the second part, where we assume
from now on that n has constant length, we first notice that n'7 = C%nﬂg, and therefore, nf@
will stay geodesic of constant norm with respect to the metric g. Up to replacing n by ﬁ and
t by |n|t, we may assume that 1 is of unit length. To simplify the notations, we will denote
(M,q) by (M,g). Taking the derivative of , the curvature of the spinor v is equal to
R(X, Y)Y = i(Y X —X.Y) ¢ —itdn(X,Y ). Hence by tracing and using the Ricci identity
formula —Ric(X) - =Y, e; - R(X,e;)1 (see e.g. [21, Lemma 1.2.4]), we deduce that

Ric(X) - =(n—1)X - ¢+ 2it(X 1dn) - 9, (3.5)

for all X € TM. As M is Sasakian, we denote by C the corresponding Reeb vector field. Since
Rlc(C) =(n— 1)(, we get from (3.5) that C.dif = 0, where 77 is the pull-back of 1 to M. On
the other hand, we have from the fact that 7% is geodesic of constant norm that 7fs_di = 0.
Hence, as the rank of dn (and, thus, of d7) is maximal equal to n — 1 because of n = 2m + 1

being odd, we deduce that C must be parallel to 7. Therefore C +n*s. Up to replacing C by

—C , we may assume that C = 7. Using Equation (3.4) and the fact that M is Sasakian of
dimension n = 2m + 1, we deduce that

d¢ - ¢—2L 12 (dCly = 2imy,

and, thus, Q- 1 = imap, where Q= %dg is the transversal Kéahler form of the Sasakian manifold
M. Here, we use the fact that the norm of the transversal Kahler form is equal to

QP = Qex, ) = ZgJemel =m,

k<l

where {ex}r=1,..2m is a local orthonormal frame of Z L. Hence, according to the decomposition
, we deduce that ¢ € X, M. Therefore, by the identities (X_,Q) Y =—iX ¢ forall X L Z
and Cp = in (for zp exX M) we obtain 5 (XJdC) p=—i X p— C( )¢ for all tangent vectors
X, including X = C . Hence ) becomes

Ric(X) ¢ = (n—1)X -1+ 2it(—2iX -1 — 2((X)0)
= ((n—1+40)X — 4(X)C) - 2,

for any X € TM. _Therefore, the manifold M is n-Einstein with Ricci tensor equal to Ric =
(n—144t)g — 4t¢ ® ¢ and, thus, of constant scalar curvature equal to S = (n — 1)(n + 4t).
Note that M must be compact because of Ric > (n — 1)g.

To check the converse, we let (M?™*! g n) to be any simply connected closed n-Einstein
Sasakian spin manifold of constant scalar curvature equal to 2m(2m — 4b + 1) with b € R.
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It is shown in [I9, Thm. 6.3] and [I9, Thm. 8.4] that the manifold M admits a Sasakian quasi-
Killing spinor v,,, € X,, M of type (_71, b). Hence v, is an eigenspinor for the Dirac operator

associated with the eigenvalue 2"5—“ — b and we have
. 2m +1
Dtnwm:D¢m+Ztn'¢m:< 9 _b_t>wm>
where we use that 7+, | = i(—=1)"""Id|; . Hence for b = —t, we get that 2mtl js an eigenvalue
of the magnetic Dirac operator D®. On the other hand, we compute for n = 2m+1 and b = —t

n o, n o1 2m +1 (2m +1)?
L N T - 2m(2m + 4t + 1) — = Emr )
=1 in (S t{2j2\dn]> S (2m(2m + 4t + 1) — 8mit) 1

Here, we use the fact that |dn|?> = 4m. Therefore, the equality in the magnetic Friedrich
inequality is attained.
O

Simply-connected closed n-Einstein Sasakian spin manifolds can be constructed as circle bun-
dles over simply-connected closed Kéahler-Einstein manifolds with positive scalar curvature, see
[19, Example 6.1]. The scalar curvature of such a Sasaki manifold can be adjusted to the form
above up to rescaling the metric on the Kéhler-Einstein base.

In the following, we generalize Bér’s [2] and Hijazi’s [26] lower bounds for the smallest Dirac-
eigenvalue to the magnetic Dirac operator, and, simultaneously, extend Reuf}’s inequality [34]
Theorem 1] to nonzero eigenvalues of the magnetic Dirac operator.

Theorem 3.2. Let n € Q'(M,R) be any real one-form on a closed connected spin manifold
(M™, g). Let X" be any eigenvalue of the magnetic Dirac operator D".

(1) If n =2 and the Euler characteristic x(M) of M is nonnegative, then

27x (M)

NN > ——— — .
N2 ey~ Il

(3.6)

Moreover, equality is attained if and only if n =0 and M is either a round 2-sphere or
a flat 2-torus with trivial spin structure.
(2) If n >3 and Y (M, [g]) > 0, then

NIVOI(M, )% 2 [ sy (M f]) = (37)
where Y (M, [g]) := inf Ju FLY d,ugn_2 is the Yamabe invariant of (M, [g])

= in o

feC>(MR)\{0} (foy fr=2dug) =
and L = 42—:5A + S is the Yamabe operator of (M, g). Moreover, equality when A" # 0
and n # 0 can only occur when M is, up to rescaling the metric g, a Sasaki manifold
admitting a real Killing spinor and with corresponding Reeb vector field n. If equality
holds when A" = 0 and n # 0, the manifold M is conformally equivalent to an FEinstein
Sasaki manifold of positive scalar curvature whose Reeb vector field is the conformal
change of n, which means that (M, g = e*'g, €|7nu|77) has to be Einstein-Sasaki of positive

scalar curvature for some choice of the function u.
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Proof. Let ¢ € T'(XM). Using the Schrédinger-Lichnerowicz formula for D as well as the
pointwise identity |Ve|? = |Py|? + L|Dy|? involving the Penrose operator P, we have

1
[ pean, = [ (|V90|2—|D90|2> i,
M M n
S 1
_ Dol2— 2102 — Z1Dol2) d
[ (106 = 5162 = L1Del ) aiy
n—1 S
—_ D 2_7 2 d
/M< - | Dyl 4|<p\> g,

where S is the scalar curvature of (M™, g). It can be deduced that

Dol2— — " __Slp2)d :n/P2d >0
/M(\ vl =) lol” | dng = —— M\ el dug >

for any spinor field ¢ defined on (M,g). Let ¢ € I'(XM) be any \-eigenspinor for D" i.e.,

D = XMip — in - 1. If, instead of g, we consider any metric § := e?“g in its conformal

class, where u € C*°(M,R) is arbitrary, then setting @ := 67%"@ and observing that Dp =
e " (N1 —in - P), we obtain

-2 — -2 n 52
UNTG — 4 - S — dyz> 0
/M<e [\ — i - ¢ =) |s0|> pig >

[ et =iy > s [ e, (3.5)

Here, we use the fact that dug = e™"duy. The key point is now to choose a suitable function u.

S Sd
If n = 2, then choosing u € C*°(M, R) such that Au = —— —|— M, which is equivalent to

2Area(M)
2mx (M _
Au = S + m by the GauB-Bonnet theorem, and using the identity Se?* = S + 2Au,
Area(M)

the inequality (3.8]) becomes

_ . QWX(M)/ -~ 9
U — im - Pdy, > T ulah|2d
/Me |NTap —in - )| M9 Z Rreadl) Juy € [V dpg,

that is,

which yields

2mx (M)
)\77 oo —_—
(V] + Il 2 T

and, provided x(M) > 0, also Now, let us assume that equality holds in . Then
Pp = 0 i.e., p must be a tw1stor splnor on (M,g = e*"g), the pointwise norm of 1 must be
constant and there must exist some nonnegative real number p such that in -y = —puATy. If
n # 0, then necessarily p > 0 and A" # 0. But the existence of a nowhere vanishing one-form
n on M forces x(M) = 0 and therefore A7 = 0 = |n| as well by the equality case, which is a

contradiction. Therefore n = 0 on M and the equality case is that of Bar’s inequality, see [2].
This shows part of the Theorem.

When n > 3, we first assume that ¢x # 0 for every x € M. Let u := (|@Z}|)

g= \w|ﬁg = fﬁg where f := |¢]n I. Observe then that e “[y|? = f2. By Sf = f- 1Lf
the inequality . becomes

Vi U, s / FLf dp
/ X W 2 A1) g
By Holder inequality, we have

J P =il e < W = n- il U9
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from which
Lfd
=i Sz I e
Y] Y] An=1) I 2, — A= 1)
and (3.7) follows in case Y (M, [g]) > 0. As in [16] 34], let us now assume v to possibly have
4 4

zeroes on M and set, for any >0, [V = V/JYP 4+ 2> 0. Let g := eXeg = [Y|2 7 g = f g
as above, where f. := |¢|s > 0. We handle the left- and the right-hand-side of (3.8]) separately.

For the l h.s., we can still write

e\ a2 _ n ¥
/Me N1 =i - o dpy /M‘A vl

which is bounded above by (|)\’7|V01(M,g)% +1nllLn)? - || f-|I? 2. taking |th| < |¢|- into account.
L=z
As for the r.h.s. of (3.8]), we have

Y(M, [g])

. ¢ 2 .2
_Z - —_— d 5
(ATREEL

o o 2
[ seiutan, = [ e vl g,
M M

|2
4 2
g Eﬁ X 2‘ ‘¢‘ d
/ f fa ‘w|2 Ng
P2
/ Jelde g ts
2 2 2(n—1
:ZI2 =1- |;|2 =1—-¢é%f. <"’2>, so that
U2, 4(n—1) VP2 ol
EL € = 4 dsad € d S e
], et na [ e ) g+ [ S22
4(n —1
= D et 21 iy
Q(n—l)
/Sfa (-2 "2 ) dy,
_ n_l) n52 2(: 21) 2
- n_z/“m_sz Nel i
Q(n 1)
/ SPAL—2f "7 Ydpy
2(n—1)
- / JoLfe dpig + A= DE / O |an 2 dpg
—€ /MSfE "2 dpy,
S Q%d
S e e 39)
Lizz
Therefore, we get
L 2 n o i Sf:"? dpg
(INTIVOL(M, )7 -+ llln)? 2 s (Y (M g — 250 ms—=22), (3.10)
[ n—2

Next, we inspect the only term involving € as ¢ — 0. Obviously, we have || f5|] 2,
E—
2

||f|] 2 >0 with f:= ]1/1]n i > 0 and where 1 does not vanish identically. As for e2f. "2, it
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n—2
is sufficient to observe that f. > e»-1 to obtain

2 2(n—2)

2
62f5 n—2 S 62 n—1 — g n—1

2
Sf "2y
2fM ||ff7‘2 Hg _>O 0 and the inequality (3.7 . ) follows from (3.10))
15 2n E—>
Ln—2

in the case of Y/ (M, [g]) > 0. Assume now (3.7 to be an equality. We mimic the proof of [34]

Theorem 22]. Fix € > 0. Then, for the eigenspinor ¢ and the function f. := |1/1]Z%§ > 0 defined
above, we have by (3.9)) that

LWMMMmﬁ+wmewmwﬁgzi(/fuﬁd%+A@», (3.11)

uniformly on M, so that e

2(n—1) 2

where A(e) := 471((7171)8 I fo " |df)? dpg — €2 S Sf. "% du,. Now, replacing the expres-

sion (|]A"7[Vol(M, g) + |nllz»)? by PTEsy) Y (M, [g]), we observe that

v, [g)) » D JRledits | A©) sy

. A(e)
el 2, Il 2
Ln—2 Ln—2

1£el? 2
Ln—2

_ 2
from which A(e) < 0 can be deduced. But, because of €2 [, Sfe " dug = 0 as we have seen
E—

above,

2(n—1)
/ fo "2 |df5]2d,ug—>0

_ 2
must hold. Note that we have used the inequality [ v Sfe "7 dug > 0 which is a consequence of

(3.10). Now, since A(e) " 0 and f. — f= |1j)|27j # 0 in any LP-norm, p > 1, the L?-norm
e— e—
of df: must remain bounded as € — 0. Namely, (3.11)) implies that

1
7= < (IA"VOI(M, )7 + ]| n)* - IIﬁsHQLn2

([ si2du,+a0).

whose r.h.s. remains bounded as ¢ — 0. The key argument is now [16, Lemma 9|, which

states that, under our assumptions, the function f must be weakly differentiable and that

ldf||2. < liggf]\df5||%2. Therefore, as € — 0, we obtain from (3.11]) that

n—l

Jar S5 df 12 + S 2 dug
Y/(M, [g]) > "= >
1717
Ln—2

Jar 2552 |df 12+ dpg
1P 2
Ln—2

abe functional and therefore to be positive. This 1mphes that ¢ has no zero on M. Therefore

we can use the first part of the proof of inequality (3.7)) where the eigenspinor ¢ is assumed to
have no zero on M.

Y(M,[g)),

such that Y (M, [¢]) =

actually holds, which shows f to minimize the Yam-

We first handle the case where A" 7é 0. Since is an equahty, P% = 0 must first hold for the

4
conformal metric g = [¢)|»-1g = fn 2gon M ie.,p= | I is a twistor-spinor on (M, ). Observe

that, since P is a twistor-spinor of constant length 1 on (M,g), it must be either a parallel spinor
or the sum of two real (nonparallel) Killing spinors for opposite Killing constants. Actually
1) must be a parallel or real Killing spinor. Namely, equality in the Minkowski inequality
H)\”% —in- % |Ln < |A7[Vol(M, g)% +||n|| L~ implies the existence of a nonnegative real number
won M such that in -1 = —uA"Y on M. If n vanishes at some point, then p or A7 vanishes as
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well and thus 7 = 0 on M, such that the equality case is just that of Hijazi’s inequality for the
standard Dirac operator. Otherwise, necessarily p > 0, the function |n| = p|A\"| > 0 is constant

on M and
il = et (3.12)
Inl
must hold on M, where ¢ = —sgn(A7) € {£1}. In turn, this implies that i * @ = ¢|n|p =
ep|\@ = —uA"p holds as well. But then Dp = e™* (\N"p — i - ¢) = N(1 + p)e %y, which
implies with P = 0 that

A1+ p)e
n

vx@z—%X@@:— X9

for all tangent vectors X to M. By [26, Cor. 3.6], such an identity implies the function u to
be constant and therefore @ to be a real Killing spinor on (M,7). Because u (and hence |1|)
is constant on M, the spinor ¢) must be a real Killing spinor on (M, g). Up to rescaling 1,
we may assume that [¢)| = 1 on M. It remains to note that, up to rescaling g so as to make
In| = 1, the identity provides a Sasaki structure on (M, g), in particular M must be odd-
dimensional. This must be long known, but we write down an elementary proof for the sake of
being self-contained. Up to replacing n by en, it can be assumed that ¢ = 1 in . Note
that 7 is a unit Killing vector field then because it coincides (up to sign) with the Killing vector
field which is naturally associated with . Up to rescaling the metric ¢ — and n accordingly —

€

on M, it can be assumed that ¢ is an §-Killing spinor on (M, g) for some € € {£1}. Then, for

every tangent vector X on M, we have iVxn- v+ in- Vxy = eV xy that is,
Vxn - =e(g(X,n —iX - 1) (3.13)
on M. Replacing X by Vxn, it follows that, for all X € n*,
Vo - =-X 1,

meaning that (Vn)? = —Id, . holds on nt € TM. It remains to notice that Vx(Vn)(Y) =
g(Y,n)X — g(X,Y)n holds for all X,Y € TM, which follows from differentiating (3.13) again.
Namely, for all tangent vectors X,Y on M,

VxVyn-¢ = Vx(Vyn-¢)—Vyn-Vxy
= e(9(VxY,n) +9(Y,Vxn) Y —ieVxY -9
e (9(Yom) —iY) Vxv = SVyn - X -9

= g(VxY,n) —ieVxY ¢ +e( gV, V) + (X, Vy) Jv
0

1 1 €
+§Q(Y,7])X'¢—§Y'X'ZZ)+§X'VY77‘¢

= G(VXYond — VY G gV X v — (VXX V)
= eg(VxY,n)Y —ieVxY -+ g(Y,n)X - ¢ +ig(X,Y)v,
so that, recalling that in - ¢ = 1, we obtain
Vx(Vn)(Y) - = VxVyn -9 —Vyyn ¢
= eg(VxY,n)¢ —ieVxY -+ g(Y,n)X - +ig(X,Y)
—e(g(VxY,n)y —iVxY - 1)

= gY,mX ¢ +ig(X,Y)y
= g¥Y,mX ¢ —g(X,Y)n-¢.

Therefore, (M, g,n) must be a Sasaki manifold.
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Assume now equality is realized for \7 = 0, we then have as before that % is a twistor spinor
2

of length 1. The manifold (M, g) has to be Einstein of scalar curvature vol(M",q)” »Y (M, [g]).

Namely, the scalar curvature of g has to be equal to

4(n—1) |Dgl*  4(n—1)

§ p— — p—
T n

e~ 24|n|*> = const, (3.14)

since we have Dp = —ie™ % - . From the fact that ||n||z» = \/AL(TH—UY(Mv [g]), we deduce

that this constant must be vol(M”,g)f%Y(M, [g]). If S is zero, then 1 must be zero which is
a contradiction. Hence S is positive, meaning that 1 cannot have any zero. In this case, % is
a sum of two Killing spinors of different constants. Indeed, @ can be written as @ = ¢4 + ¢_
where

1 )

1— 1
= (@+-Dp)==(PF —7°p).
pr =5+ DY) Q(sothn ?)

Here, we have ¢ := / 4(23) = e ¥n| and Dp = —ie~“5 - p. The spinors ¢ are Killing spinors

associated with the Killing numbers :F%ln‘. Moreover, an easy computation shows that

77 o = Fin|px.

Hence, we are in the same case as before. Therefore, (M,g, \%I) has to be Einstein-Sasaki of
positive scalar curvature. O

Note that two further inequalities can be deduced from (3.8) in case n > 3: on the one hand,

. _
N+ [Inl| g )? > sup I (5e™),
(A" + [l £o-) 4(n —1) yeo=(MR) M( |

on the other hand

n

AT LD —
(N + ) 2 g,
where p is the smallest eigenvalue of L. Those inequalities, along with (3.7)), extend Hijazi’s
inequalities [26] to the magnetic Dirac operator. Remark in particular that (3.7)) is a conformal

lower bound for the normalized quantity |\7|Vol(M™, g)%

Remark 3.3. We give a simple proof of Reuf}’s result [34, Theorem 1]. Let 1) # 0 be a spinor
satisfying D"y = 0. Assume first that 1 has no zeroes and let us make the conformal change of

the metric g := |n|%?g = €2%g. As above, we let B := e_n%l“@ and obtain
Dg = —ie "7 @ =il "7 %

Therefore, by the min-max principle, we find that

2 _ Ju 1DPlgdug s Inlmlglel dpg

(AM9)* < 312 = B2
S @2 dpg Jas [@2dpg

= 1.

Thus, by the standard Hijazi inequality, we deduce that

n - 1 1

iy YO D) < NN )% < Vol (M )% =
which is the inequality of [34, Theorem 1]. Note that this still works in dimension n = 2 up to
replacing ﬁY(M7 [g]) by 2mx(M). If now n does have zeroes on M, then as before we let

n

Inle := v/(In]? +&2) for any ¢ > 0 and set g. := |n|2g on M. If D" = 0 on M, then we let
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Q= |77|5_nT_1J As above, Dp = —|n|-1i% * % holds and, by the min-max principle, we obtain
S [D?*dpig,
Jar [P dpig,
fM %Wdﬂge
S (P12 dpg,
fM ||g;||§ Hg.

fM |90| d:ugE

NI(D)?

= 1-
< I

so that, by Bar’s resp. Hijazi’s inequality in dimension n = 2 resp. n > 3, we obtain

_\2 — _ 2 2x (M) forn =2
Inlell7» = Vol(M,g.)» > A](D)*Vol(M,g.) > { Y (M[g) forn>3.  (319)

It remains to notice that, since ||[n|e — |n|||; —; 0, we have |[|n]:]|%. = In||2. and the same
e— e—

inequality follows. Note that this enhances inequality (3.6]) in dimension n = 2 and for A7 = 0
since we now have ||n||r2 instead of |||/ pe.

It is essential here to point out that inequality
2mx (M)
~ Area(M)’
which is a reformulation of without the square root, is actually trivial when the genus of
M is positive (including for the 2-torus), because then x(M) < 0. When M = S?, it turns out

that 0 cannot be a D"-eigenvalue. To see that, we consider the general case of a Kéhler spin
manifold (M?™, g, J). Recall that the action of the Kihler form Q(-,-) = g(.J-, -) splits the spinor
m

(N + [l ) =

bundle XM into XM = @ >» M, where ¥, M is the eigenspace associated with the eigenvalue

r=0
i(2r—m) of Q for each r € {0,...,m}. Moreover forany X e TM,p_(X)-X,M € ¥,_1 M and
p(X)-3.M € ¥,.1 M, where pi(X) 3(X FiJX) is the standard projector onto pointwise
+i-eigenspaces of J. Also, we have that X, M = @ YoM and X_M = @ .M.

T even r odd

Proposition 3.4. Let (M?™, g,J) be a Kdhler spin manifold. Then for any n € QY(M) and
smooth function f, we have

DY — of pre=/ (3.16)
on oM. The same identity holds on X, M by replacing f by —f on the r.h.s. In particular,
on S?, we have ker(D") = ker(D) = {0}.

Proof. For any section vg € YoM we have
DIy, = DMy + iJdf - g where Dipg € T'(31 M)

= Do+ ip(Jdf) - o since p_(Jdf) - 1o = 0

= DMy — p+(df) - o because p (Jdf) = ip(df)

= DMy —df - o since p_(df) - 1o =0

= /D Tyy).
The computation of D"H/#q),. is similar. To prove the second part, we use the Hodge de-
composition theorem. Namely, there exists h € C®(M,R) as well as w € Q2?(M) such
that 7 = dh + 0w (there is no nonzero harmonic 1-form on S?). By Proposition since
D +0w and D are unitarily equivalent, it is sufficient to assume that 7 = dw is co-exact,

hence n = §(fvoly) = =V favoly = —Jdf for some real-valued function f, where J is the
natural Kéhler structure on M provided by its orientation. Let @ € ker(D"). By writing
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Y=o+ € (XM @ X1 M), we get ¢ and 1 € ker(D~/#). Hence, from (3.16)), we deduce
ef1py and e=F1py are in ker(D) = {0}. Thus, ¥ = 11 = 0 and therefore, ¥ = 0. O

Apart from generalizing Friedrich’s inequality we also present an estimate for the eigenvalues
of the magnetic Dirac operator that involves the nodal set of the corresponding eigenspinors
which is based on the ideas presented in [6l [7]. More precisely, we have the following

Theorem 3.5. Let (M, g) be a closed spin surface and /\i be the k-th eigenvalue of the magnetic
Dirac operator (D")2. Then the following eigenvalue estimate holds

2 2mx(M) Jas ldnldpg 4 Ny,
"= vol(M,g)  vol(M,g) ' vol(M,g)’

where x (M) is the Euler characteristic of M and Ny, denotes the sum of the order of the zeros
of an eigenspinor Yy, belonging to the k-th eigenvalue of the magnetic Dirac operator, that is

(3.17)

Ni = max Z np | . (3.18)
PEM, |1y | (p)=0

In the case that ¢ € T(STM) is in the kernel of the magnetic Dirac operator we have

No(y) = —L(;\/j)-

Proof. By the main result of [4] we know that on a two-dimensional manifold the zero-set of
any eigenspinor of the magnetic Dirac operator is discrete. In the following we will make use of
the energy-momentum tensor 7"(X,Y’) associated with the magnetic Dirac operator, which is
defined as follows

TNX,Y):=(X -Vyu+Y Vi),
where X, Y € I'(TM).
The following equation is a version of [20, Lemma 4.2] adapted to the case of the magnetic
Dirac operator, i.e.

W, (D) S Llidn-v) | TP (D, d(log [vf?) - )
A (e Afy[* | ’
which holds away from the zero-set of v, see also [7, Lemma 2.1]. Note that a different sign
convention for the Laplace operator was used in [0 [7]. In order to establish (3.19) we define a
new magnetic connection on the spinor bundle by
Vi = Vit — 20(X)$ — B(X) -9 — X - ¢
with a one-form a and a symmetric (1, 1)-tensor 8 which are given by
P 1)
2y’ 2[y[?
A direct calculation then shows that
0 < [VT* =[V"|? + 2|af*[¢* + [B |0 — da(e)(VE, ¥)
+2(¥, B(ei) - VEU) + 2(D", - ).
Now, direct calculations using (2.2) show that

S
VI = = ASKP + (6, (DM29) = 2l — (idn- ),

|d|y ||
Al

+ Alog 9| — (3.19)

Bi=

a(e) (VI ¢) =|al?|y|* =
s
A2’

(Blei) - Vi) =
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Moreover, recall that on a closed Riemannian surface we have that if the zero set of [¢] is
discrete and [¢| does not vanish identically, then the following equality holds

pv.(Alogle)=2r Y ny, (3.20)

PEM, || (p)=0
where p.v. stands for the Cauchy principal value of the distribution and n, is the order of |¢|
at the point p, see [6] for a proof. As a next step we apply for 1) being an eigenspinor
of (D")? in which case we can also estimate the energy-momentum tensor by |77|? > 2)\2||*.

Thus, from (3.19)) we obtain
K
A* > - = |dn| + 2Alog Y],

where K denotes the Gaussian curvature of M. The first claim now follows from integrating
the above inequality and application of the Gauss-Bonnet theorem.

Regarding the second claim on the zero-set of spinors in the kernel of the magnetic Dirac
operator we assume that ¢ € T'(XTM) is in the kernel of the magnetic Dirac operator D" such
that we get

K 1(idy-o,0)  [vi2 1]dy?]?
Bkl *+*Z77|w|2 TP 2| |w|4|

which follows by a direct calculation using (2.2]). Now, since ¢ € T'(X*M) is harmonic with
respect to the magnetic Dirac operator D" we can use the same strategy as in [6, Proposition

3.2] to establish that ‘dlw\zf = 2|y|%|V"9|2. Moreover, using the skew-symmetry of both dn
and Clifford multiplication we find

(dn) - = 2e1 - e2 - (dn)(e1, e2) = —2dn(e1, e2)iwg - .
By assumption we have that 1 € I'(X* M) such that we are left with

K
—Alog|y| = o £ di(e, e2)
and the claim follows by integrating over M. O

4. DIAMAGNETIC INEQUALITY

In this section, we give an obstruction for the diamagnetic inequality to hold. Recall that
this inequality relates the eigenvalues of the magnetic Dirac operator to those with vanishing
magnetic field. We also investigate this inequality on Einstein Sasakian manifolds.

Proposition 4.1. Let (M",g) be a closed Riemannian spin manifold, n € QY (M) and 1) be an
etgenspinor of the Dirac operator associated with the eigenvalue A. Then, for any t € R, we

have
fM (dn -y =2V, 9)dp
T

where S resp. N denote the imaginary resp. real parts of a complex number. In particular, if
fM S(dn - = 2V, h)dpg > 0, for some eigenspinor 1, then

AV < L

()P < A% - =+ 2l

holds for small positive parameter t.

Proof. Using the min-max principle, we compute for any eigenspinor field v the following

Jur (D), ) dg

(A2 <
! 1o
2.3 . _
32 g gL Rl 0 =290 )ity o
T
S{dn - 1 — 2V b, ) dp
_ el d TS

ol
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Hence, if fM S(dn - — 2V p,)dpg > 0, we deduce that, for small ¢, the r.h.s. of the above
inequality is less than \2. O

We now state the following

Corollary 4.2. Let (M*™*! g.n) with m > 1 be any simply connected closed n-Einstein
Sasakian spin manifold of constant scalar curvature equal to 2m(2m — 4b + 1) with (b < 27”72“)
or (b > 2L and m is odd). For any small positive t, we have

2m +1
AT < | —bl.
In particular, when b = 0, we deduce that
2m+1
’)\tln‘ < = |)‘1|)

meaning that the diamagnetic inequality does not hold on simply connected closed Einstein
Sasakian manifolds.

Proof. As mentioned at the beginning of Section (3, any simply connected n-Einstein Sasakian
manifold admits a Sasakian quasi-Killing spinor ¢, of type (—3,b) with b € R. The same holds
for 1y € XoM when m is odd. Hence 1)y, (resp. o when m is odd) is an eigenspinor associated
with the eigenvalue QLZ‘H — b. Hence, we compute

[ Sl = 2V g = [ S Qi ~ 2=+ D0 i )y
M M

= (2m+1- 2b)/ |t |2 dpg > 0,
M

when b < 2m+1 In the last equality, we use the fact that n - ¥, = it,,. When m is odd, we

have using a smnlar strategy

/ {dn - 1o — 2V ytbo, Yo)dpg = —(2m + 1 — 2b)/ 1o |*dpag-
M M

Hence the condition in Proposition is satisfied and, therefore we deduce, for small positive
t, the required inequality. The last part comes from the fact that # is the lowest eigenvalue
of the Dirac operator in absolute value. O

For the 3-dimensional case, we have the following

Corollary 4.3. Let S? be the 3-dimensional sphere with metric of the form g := 3277®77+sgo|nl

for some s € (0,00), where n is the Reeb one-form and go is the standard round metric of
constant sectional curvature 1. Denote by S its (constant) scalar curvature. Then, for any
sufficiently small positive parameter t, the following estimate holds

3 S
A <S4 2.
X <15+ 3

Proof. As before, it is shown in [19, Thm. 8 4] that there exist two Sasakian quasi-Killing spinors
g and ¥; on YoM and ¥1 M of type ( 2, 4 S) Hence, both ¢ and v; are eigenspinors of
the Dirac operator for the eigenvalue 3 $+ 15’ As before, we have

3 1
/ %<d77 1 — erﬂ/}h Q;Z)1>d,ug = (5 + 45)/ |¢1|2d,ug,
M M
and [, S{dn - o — 2V,1b0, Yo)dug = —(3 + 15) [, [¥o|>dpg. This concludes the proof. O

5. COMPUTATIONS OF THE SPECTRUM

In this section, we compute explicitly the spectrum of the magnetic Dirac operator on the round
3-sphere and on the n-dimensional flat torus.
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5.1. The 3-dimensional round sphere. The spectrum of the magnetic Dirac operator on the
3-dimensional round sphere associated with the Reeb vector field can be described as follows,
see also [14] for a related computation.

Theorem 5.1. Let S be the round sphere equipped with the metric of curvature 1. Let n be
the Reeb vector field that defines the Hopf fibration. Then, for any t € R, the spectrum of the
magnetic Dirac operator D' is given by

3 1
§:|:t+k,§:i:\/(1—l—t—l—2p—k)2+4(k:—p)(p+l),

forp,k e N with 0 <p<k.

Proof. Recall that the Hopf vector field on the round sphere S? C C? equipped with the metric
g of curvature 1 is given by n = Z?zl(—yjﬁmj +2;0y,;). Next, we follow the computations done
in [11] for the spectrum of the magnetic Laplacian (see also [32]). We let Y5 = n,Y3,Y) to be
the Killing vector fields given by

Yo, = —y18x1 + x18y1 — yanz + l’gayz,
Y; = —ygﬁxl — I'Qayl + ylﬁm + x13y2,
Y, = 9:28@ — y28y1 — 1318552 + y18y2.

They form a direct orthonormal basis of T(zl,ZQ)S?’ at every point (21, z2) = (21 + Y14, x2 + y21) €
S3. An easy computation shows that the Christoffel symbols of the Levi-Civita connection of g
are expressed as

Vy, Y = oY) (5.1)
with {j,k,l} = {2,3,4} for k 7&], 055 = 0 and 0923 — —0924 — —1, 032 = 043 — —034 — —0492 — 1.

Recall now that the eigenvalues of the scalar Laplacian are given by k(k + 2) for k € NU {0}
with multiplicity (k + 1)2. Each eigenspace Ej can be decomposed as

Er = Vi (ao.b0) © Vi(ar,o1) © -+ - @ Vi (ag b0) (5.2)

with any arbitrary choice of pairwise non-collinear vectors (aj,b;) € C\ {(0,0)}, where

E k-1 E—1 &
Vieap) = span(c{umb, Ugp Varbs - - - Ua,bVy p ,va’b},

ua,b(zl, 2’2) ‘= az1 + bzs, va,b(zl, 22) = bZ] — aZs,

for (a,b) € C?\{(0,0)}, see [32, Zerlegungssatz I11.6.2]. For short, we write u := Ua,p) U = V(a,b)
for some (a,b) # (0,0) and, for p € {0,...,k}, we consider

Php = uPoFP.

We also set ¢, = 0 for all other choices of p. These functions ¢y, are spherical harmonics,
that is, they are restrictions of harmonic homogeneous polynomials on C? to the unit sphere
S3. Then we have Vie,(a,p) = sPanc{eo, - - ., @1 }. A straightforward computation yields (see [27,
p. 30] or [32, Lemma II1.7.1])

Ya(drp) = (20 — k) g p,
Y3(orp) = ipdrp1+ ik —p)drpt1,
Yi(orp) = —porp-1+ (k—Dp)brpt1-

It is shown in [19, Theorem 8.4] that the spinor bundle of S? is trivialised by —%—Killing spinors
which are pointwise eigenvectors for the Clifford action of 5, all terms — including that involving
the Clifford action of the differential of the function ¢, — can be explicitly computed. Let
o, Y1 be —%—Killing spinors of unit length on S* with in - ¢; = (=1)71;, j = 0,1. We can
assume that Y3-1g = 1. Indeed, the spinor Y3 -1 is in 31 M which is also a —%—Kﬂling spinor.
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To see this, we compute
V(Y3 - 9o) Vi Ys -t + Y3 - Vyiho

(5.1) 1
2 —Y4'1/10—§Y3'77'¢0

) 1
—iY3 o — S Y51 2o

1 1
— Y3t = —=n-Y3- 1.
2377% 5" 3o

In this computation, we use the fact that Yy - ¢g = iY3 - 1), since Yy, = JY3, where J is the
complex structure on 7. In the same way, we compute

Vy;(Yz-1%0) = VyYs: 10+ Y5 Vi
—%Ys Y3 - 1o,
and
Vy, (Y3 - o) Vy, Y3 - o + Y3+ Vy,1ho

B
I 0

1
77'1#0—51/3'1/4'%
1
= —§Y4‘Y3'1/JO-

In the last equality, we use the fact that n - g = Y3 - Yy - 1)y since the volume form —n- Y3 - Yy-
acts by the identity on ©S?. As the space of —%—Killing spinors in Y1 M is one-dimensional, we
deduce that Y3 -1 is collinear to ;. Hence up to rescaling 1y, we can assume that Y31y = 9.
For j € {0,1}, we have that D"; = Dip; +itn-1p; = (34 (—1)7t)1); and, therefore, we compute

(D = D) Grgy) = DD = 3005 + -

= oy (G4 (1= 5 ) v+ dony

= (1+ (—1)jt)¢k7p1/)j +dog.p - ;.
Now, we explicitly compute d¢y ), - ¢j. From , we have that
dorp = (2p — k)Prpn + i(pdkp—1 + (kK — p)kp+1)Ys + ((k — D) Pk pr1 — PPkp-1)Ya,
and for both j = 0,1 we find
drp ;= (20— k)brpn - 5 + i(PPkp—1 + (K — P)Prp+1)Y3 - ;
+((k = p)Prpt1 — PPrp—1)Ya - ;
= (=1)(2p = k)orpthj + (—1)i(pdrp—1 + (k — D) Pk pr1)¥j41
+i((k — P)bk pr1 — PPrp-1)¥j11
= (=12 — k)orp;
+i (L4 (=1))(k = p)Prpr1 + (1) — D)pdp p—1) 41,
where the index j + 1 is to be understood mod 2. Note that we have used the fact that
Yy - g = iY3 - g = iyp1. Thus, it holds that
dorp Yo = (2p—k)Prptbo + 2i(k — p) bk p+191,
ddep -1 = —(2p = k)drpth1 — 2ipdrp-1¢0.

Therefore, we get

(D — D)(@eath) = (1+ Dkt + (20— Krbo + 2i(k — D) part
= (1+t+2p—k)drptbo + 2i(k — p)dkpt191,
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and similarly

(D = ) (Brgth) = (1= = 20 + W)t — 2ipdi- 11

1
Note that, even if neither ¢y 1 nor ¢y 1 are defined, we still have (D" — 5)(%7%@0) =

1
(14t + k)¢rxbo when p = k and (D" — 5)((]5;{’0%) = (1 —t+ k)¢r oY1 when p = 0. Note

also that, when p < k resp. p > 0, the spinor field ¢y, 10 resp. ¢y p11 is not an eigenvector for
1

D — 3

Now, for 0 < p < k, let cpi@o i= (Id £ ——— (D" — 1)) (¢y pt0), where fo(k,p,t) := (1 +t+

fO(kvpvt)
2p — k)2 +4(k — p)(p+ 1) > 0. Because of

(D — 2P (Gxpti0) = (D= 2) (1 + 1+ 2p — K)uptho + 20(k — p)gps 1)
= (Ut 2= KD~ ) (dkpt)

+2i(k = p)(D" = ) (Gkpirth)
= (I+t+2p—k)(L+t+2p—k)prpto + 2i(k — p)odrpr1v1)
+2i(k —p) (L=t = 2(p+ 1) + k) g pr1t1 — 2i(p + 1)@ ptbo)
= ((L+t+20— k) +4(k—p)(p+1)) drpo
= fo(k,p,t)rpto,

the spinor fields gofp o 7# 0 satisfy (D1 — %)gofp 0= iﬁgpfp o- Similarly, one could define

" V JO k7p7t
Prp1 = (Id* \/W(D“7 — D) (Srptr) for all 0 < p < k, where fi(k,p,t) :== (1 —t—2p+

k)2 +4p(k—p+1). A fundamental remark is that gpf’pl is a scalar multiple of 90%@7170: namely
filk,p,t) = fo(k,p — 1,t) by definition and the matrix expressing the pair ((pip,O’ SDI:(l::,p—i-l,l) in
terms of (¢r pto, Pk p+191) has rank at most 1. On the whole, we have found three families of

eigenvectors and eigenvalues for D' — %:

{ornrto |k €N}, {¢rotr|k €N} and {pp, oIp,k€N,0<p<k}

with the respective eigenvalues being 1 + ¢ + k, 1 — ¢t + k and ++/fo(k,p,t). Note that
(1+t+k)? = folk,k,t) and (1 —t+ k)? = fo(k,—1,t), so that all eigenvalues actually have
the same expression. The union of those three families forms an orthogonal Hilbert basis of
L*(XM) since the family {@x %00, ¢k ptb1} does. This shows the spectrum of D' as described
in the theorem.

It remains to determine the multiplicity of each eigenvalue. Since, for each p,k € N with
0 < p < k, the functions ¢y, , — which depend on u and v and therefore also on (a, b) € C?\{(0,0)}
— form a (k + 1)-dimensional space, as we have seen above, each of the above eigenvalue has
multiplicity at least k£ + 1. Beware here that ‘Pip,o is uniquely determined by ¢, and that
the eigenvalues of two of the three families may coincide for particular values of ¢. For instance,
folk,p,t) = fo(K',p',t) for k,p, k', p’ as above if and only if (1+t+2p—k)? +4(k—p)(p+1) =
(L+t+2p — k) +4(K — p')(p' + 1), which is equivalent to (t +p +p' — EEE 4 1)(p — p/ —
kgk/) +k=-p)p+1) - -p)p' +1)=0. Ifp—-p = k*Tk/ ie, k' = k+2(p — p) then
(k—p)(p+1) — (K —p) (@ +1) =0 is equivalent to (k —p)(p+1) — (k+p —2p)(p +1) =0,
which amounts to (p — p')(k+ 1 —p+p') = 0, from which either p = p’ and then k = £’
follows, or k = p — p’ — 1, which is a contradiction because of p — p’ — 1 < p < k. Therefore, if
(k,p) # (K',p), then p—p' # k_Tk/ and there exists a unique solution ¢ to fo(k, p,t) = fo(K',p',t)
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which is given by

=)'+ = (k—p)p+1)  k+k

k=F

t= ; 5
p—p -5

pfp'fl.

The other cases are analogous. For ¢ = 0, the multiplicity of the eigenvalue 1 + k of D' — 5
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FIGURE 1. Eigenvalues of D on S? as functions of ¢: % + k+t, % +k—t, % + / fo(k,p, 1)

(k+2)(k+ 1) as expected [3, Sec. 2] since there is a k 4+ 1-dimensional contribution from each

of the eigenvectors ¢y, Y0, P01, go;:po, 0<p<k.

O

Let us make some comments concerning the eigenvalue estimates discussed in the previous

sections.

Remark 5.2.

(1) The magnetic Friedrich inequality in Theorem cannot be optimal on the round
sphere, since the latter is an Einstein Sasakian manifold. However, we can check this by
the computation of the spectrum done for S3. Namely, for ¢ €]0, %], we have |)\§"| = % —1

and

inf(S — 4t| =

n 1 3
-1 " 2J2|d"7’):1(3—4t)

which is clearly strictly less than (3 — ¢)2.

(2) The inequality |\ < [A\| = 3 from Corollaryholds for any t € R\ {0} and not only
for small ¢. Indeed, the eigenvalue % —t of D' satisfies that inequality for all ¢ € (0, 3).
But so does 3 —¢ for all ¢ € (1,4). Inductively, it can be shown that the D"-eigenvalue
3 + k — t satisfies that inequality for all ¢ € (k, k + 3). Therefore, N < [\ ] = 3 holds
for all positive t. Replacing ¢t by —t and using the D!-eigenvalues % + k 4+ t, the same

holds for all negative ¢, hence the conclusion.
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(3) The inequality (3.7) is an equality for A" if and only if t € [-3,3]. Note that
1

202
ltn]| 3 (s3) = |t|w3, where w3 denotes the volume of the round 3-sphere (S?,g). On
the other hand, \/4(3 0 Y(S3[g]) =232 oJ3 = sw3. Therefore, is an equal-
ity if and only if [A}"| + t| = 3. For t € [0,3], W”y = 2 —t, so that w\ + ]t = 3.

Analogously, for ¢ € [~3,0], |\"| = 3 +¢, so that |\}"| + ]t! = 3. For |t| > 3, obviously
I [t] > 3 holds and therefore cannot be an equality. Note that |[A"| < I for
all [t| > 2, see e.g. ﬁgure

(4) When M := S3/p with round metric g of sectional curvature 1, where I' is any finite
subgroup of SUs, there exists a spin structure for which the space of %—Killing spinors is
complex 2-dimensional and that of —%—Killing spinors O-dimensional; and a spin struc-
ture for which the same holds true where the constants &3 are swapped [I, Cor. 5.2.5].
Since, as mentioned above, the spinor bundle of S? is trivialised by —%—Killing spinors
which are pointwise +1-eigenvectors of in- [19] Theorem 8.4], there exists a spin struc-
ture on M for which the spinor bundle XM is trivialised by —%—Killing spinors on M
which are pointwise +1-eigenvectors of i7-. Note that 7 is anyway I'-invariant since I'
acts on C? by unitary (thus complex—linear) isomorphisms. That spin structure being
fixed, we obtain me = O for any such —f—Kﬂling spinor ¢ and for ¢ € {:l:%} Therefore,
after using Vol(M, g) = |F|, . ) becomes

can]

S3
Y5, lgl) < E

(5.3)

When I' = {£1} i.e., when M is the 3-dimensional real projective space RP3, it is known
though nontrivial that is an equality [§]. Therefore, is also an equality on
M = RP3, in particular S? is not the only closed Riemannian 3-manifold on which
is an equality, in spite of the claim of [34, Remark 25]. For further groups T', it is still
an open question whether is an equality or not.

We end this section by pointing out that the claim of [I5, Theorem 1.1] in dimension 3 — as
well as of [I5, Theorem 1.3] in higher dimensions — is likely to be implied by [25, Lemma 3.4]
using a stereographic projection to map R into S™ and the conformal covariance of the Dirac
operator as above.

5.2. The flat torus. In this section, we compute the spectrum of the spin® Dirac operator on
the flat torus T", the case of the flat three torus was already studied in [28] and the spectrum
of the spin Dirac operator on flat T" was computed in [I8]. We start with the case where the
auxiliary one-form is parallel, the case where that one-form is only assumed to be closed being
discussed after the proof of Theorem We emphasize that, because every spin® structure
on the torus actually reduces to a spin structure, spin® Dirac operators on T" coincide with
magnetic Dirac operators. The notations needed to understand the statement of Theorem
will be introduced in its proof.

Theorem 5.3. For a positive integer n letT' C R™ be a lattice and T™ := I‘\Rn the corresponding
n-dimensional flat torus. Let Py, — M be a fized U;-bundle and let a square root of that bundle
be given. Fiz a basis (y1,...,7) of I and 01,...,0, € {0,1}. Denote by 01,...,0, € [0,1]
the real numbers fizing the square root of Py, — M. Let A be a parallel one-form on T".
Then the spectrum of the Dirac operator of T" endowed with the induced flat metric and the
spint-structure provided by (01,...,0n) and (61,...,0y) is given by

{j:27r\7 +§Z(5J+9j)7j+g|a v el },
j=1
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where T := {6 € (R")*|0(T") C Z} is the dual lattice and (77, ...,7)) the basis of T'* dual to
(Y1y---ym). If non-zero, the eigenvalue provided by ~v* has multiplicity at least 231-1 Further-
more, 0 is an eigenvalue if and only if there exists v* € I'* such that A = —4xn(y*+ % 2?21(51‘ +

Hj)'yj"f) and, in that case, its multiplicity is exactly 212) and the corresponding eigenspace consists
of VA-parallel spinors.

Proof. Let Py, — T" be any auxiliary U;-bundle on T", which can be described by a group-
homomorphism §: I' — U;. A spin® structure on T" with associated Uj-bundle provided
by [ is then fully described by a group-homomorphism B: I' — Spin;, such that, for ev-
ery v € I', we have n°(8(7)) = (1,8(7)). Here n°: Spin¢ — SO, x Uy, is the nontrivial
2-fold covering. The reason for the first component of the group-homomorphism (1,/) to
be 1 is that I' acts trivially on the tangent bundle of R", since it consists of translations
only. Now recall that Spin;, = Spin,, x UI/Z2 via the surjective map Spin, x U; — Spin,
(u,2) + zu with kernel {£(1,1)}; and that, via that identification, n°([(u,2)]) = (n(u), 2%)
for all (u,z) € Spin,, x U, where n: Spin,, — SO,, is the nontrivial twofold covering. Fix
v € I and write 8(y) = [(u(v),2(7))] for some u(y) € Spin, and z(y) € U;. Then the
identity 7°(8(7)) = (1,8(7)) is equivalent to n(u(y)) = 1 and z(y)2 = B(y). But because
of ker(n) = {+£1}, the identity n(u(vy)) = 1 is equivalent to u(vy) € {£1} C Spin,. There-
fore, B can be written in two ways. Either a square-root 8: I' — Uj of 8 is fixed and then
B(v) = [(e(v),B(7))] for all 4 € I and some group-homomorphism e: I' — {£1}; or the first
component of 3 is fixed to 1 i.e., 3(v) = [(1,3'(v))] for all 4 € T and some group-homomorphism
5’ : I' = U; which is a square-root of 3. One way or the other, there are as many spin® structures
on T" with auxiliary U;-bundle given by 8 as group-homomorphisms I' — {£1}. In particular,
there are 2™ such spin® structures on T since I" has a basis consisting of n linearly independent
vectors of R”. Note that the existence of a square-root of 3 is anyway ensured by I' being finitely
generated (define the square-root on a chosen basis and extend it as a group-homomorphism on

the whole I).

As a consequence, any spin® structure on T" reduces to a spin structure via the above map
Spin,, x U; — Spin;,. In the former description where the square-root 5 of § is fixed, the spin®
structures on T" stand in one-to-one correspondence with spin structures on T", a square-root-
bundle of the auxiliary bundle being fixed. In the latter description where the Spin,-component
of B is fixed to 1, the spin® structures on T" stand in one-to-one correspondence to the trivial
spin structure cross a square-root-bundle of the auxiliary bundle.

Let the square-root 3: I' — Uy of 3 be fixed and let e: T' — {#1} describe the spin® structure
on T". Then a spinor field ¢ on T" may be identified with a spinor field ¢ on R” satisfying, in
the above notations,

¢z +7) = e(1)B(7)o(x),
for all x € R® and v € T'.

Let (71, -..,7,) be a fixed basis of the lattice I and denote €% := B(~;) for §; € [0,1[and 1 <
j <m. Forall1<j<nletB(y;):=e™ and define §; € {0,1} via (—1)% := £(7;). Denoting
by I'* the dual lattice (those 1-forms on R™ with integral values on I') and by (o1,...,0nx) an
orthonormal basis of ¥, = CV (where N := 2[%]), we let, for any v* € T'*,

* 1 . * *
Oy ="+ 3 > 65+ 07 € (R,
j=1
where (7],...,7;) denotes the dual basis to (y1,...,7). Fixing a real valued 1-form A on T"
or, equivalently, a I'-invariant 1-form on R", we consider the induced connection 1-form iA on

the auxiliary U;-bundle. Then the Levi-Civita covariant derivative VA4 on spinors induced by
the metric and A is given by V4¢ = Vx¢ + 5A(X)e, for all vector fields X and spinor fields
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¢ on T™. Here, V denotes the Levi-Civita covariant derivative on spinors, which exists because
of the existence of a reduction of the spin® structure to Spin,, x Uy, as explained above.

Now let, for v* € IT* and £ € {1,...,N},

(bﬁ/*’Z = eQiﬂ'e,y* UZ
This defines a spinor field on T™: for any 7' € ' and any = € R",
Py (x+) = Xt g,

= e%ﬂev*w)%*,f(x)
— 2im(y (V)5 2y (654+05)7] (71))(%*,5@)

2Ty (7) .(_1)2}7:1 5577 (V) | gim X 9;‘7}(7’)¢7*’€(x)

1
= e(V)B(OY) by ().
Letting 9’7* =0 + ﬁ € (R™)*, we compute, for any vector field X on T",
. A(X .
VX byr o = 20 <9“/* (X) + 4(177)> Gye 0 = 2im0 (X) P -

As a consequence, for the associated Dirac operator D4 = 3" e, - VA we have
’ =17 ej’

DA g = 2imbl - P . (5.4)
If 0’7* = 0, which happens iff A = —476,~ (and is in particular constant i.e., parallel), then

¢+ o € ker(DA). But in that case ker(D?) consists of V4-parallel spinor fields because of the
Schrédinger-Lichnerowicz formula

g .
(DY) = (V) v4 + Z1d + %dA-

and the fact that S = 0 (the metric is flat, thus scalar-flat) and dA = 0 since A is then parallel.

Therefore, if 0. = 0, then ker(D4) is exactly N = 2l%]_dimensional and spanned by the ¢+ 4,

1 < ¢ < N (recall that v* is fixed here). If 9’7* # 0, we have to pay attention to the fact that
9;* may vanish pointwise because A is not assumed to be constant. At those points where 9;*

does not vanish, we may split
Id) P ker ( . +Id>

3, = ker <‘

In dimension n = 1, only one of those subspaces is nonzero, and then complex 1-dimensional,
which forces the other one to vanish. This means that, still at those points where 6’7* does
r —2m|6.[. In di-
mension n > 2, both subspaces have to be exactly %-dimensional since the Clifford action
of any (pointwise) nonzero tangent vector which is orthogonal to ny* (such a vector exists if
n > 2) anti-commutes with the Clifford action of 9’7* and hence exchanges both subspaces iso-
morphically. Then the original constant basis (o1, ...,0n) of ¥, can be replaced by a pointwise

9
basis (o) ,...,0%,070,...,0 N) consisting of +1-eigenvectors of the Clifford action i/ | 7 The
2

not vanish, ¢« is a DA_eigenspinor associated to the eigenvalue

Ll
problem is now that the 1dent1tles above for V4 and hence D# do not hold any longer since

af’ Y ,J—&,Jl_ y-+.,0n now do depend on the base-point and hence are not a priori constant,

2 2
except for instance if A is. We conclude that this splitting does not allow us to make further
progress in the general case which is different to the spin case.

If Ais parallel then so is 9’ « and, letting gbg* R 20 oy for 1 < 4 <N 5 and ¢ € {£1}, we
deduce from ) that
A
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foralll </ < % and both ¢ € {#1}. This provides the spectrum of D in that case but beware
that it is not necessarily symmetric about 0 any longer since —v* — Z?Zl(éj +0;)7; does not
belong to I'* any more because of 6; € [0, 1] (except when 6; = 0 for all j of course). O

In case A is closed, the Hodge decomposition yields A = h + df for some real function f and
harmonic 1-form A, which is actually parallel by the Bochner formula because of the torus being
Ricci-flat. Then, from Proposition the operators D4 and D" are unitarily equivalent and
therefore have the same spectrum.

Remark 5.4. We notice that the diamagnetic inequality for the magnetic Dirac operator may
or may not hold on T" according to the choice of 7, at least when the underlying spin structure
is nontrivial; recall that 0 lies in the Dirac spectrum when the spin structure on T" is trivial
ie., when 0; = ... =4, = 0. Namely if §; = ... = 6, = 0 (the auxiliary U;-bundle should be
trivial) and at least one d; = 1, then the smallest Dirac-eigenvalue in absolute value is given

1 n
by |A1] = 27|y + 3 Z(Sj’yﬂ > 0 for some v* € I'* (we keep the notations of Theorem [5.3]).

j=1
But choosing n = % to be a positive multiple of ~* + % Z?Zl (5]-7;»‘, the smallest positive D-
eigenvalue will be strictly larger than |A;| for small positive ¢t. Conversely, if n = % is a negative

multiple of v* 4 % Z;‘:l dj7;, then the smallest positive D'-eigenvalue will be strictly smaller
than |A;| for small positive t.

6. KILLING MAGNETIC FIELD

In this section, we consider the particular case when the magnetic field is a Killing vector field
of constant norm. This gives rise to local Riemannian submersions with one-dimensional fibers
given by the integral curves of the magnetic field. We will then estimate a part of the spectrum
of the corresponding magnetic Dirac operator in terms of the geometry of those submersions.
In the following, we review some basic facts on spin Riemannian flows, which can be found in
[9, 22, 24, 33 38].

Let (M™,g,() be a closed oriented Riemannian manifold together with a unit Killing vector
field ¢, that is L;g = 0. In this case, ¢ defines a Riemannian foliation, called Riemannian flow,
whose leaves are given by the integral curves of ¢. In the following we denote by @ = ¢+ the
normal bundle of the flow. Locally, a Riemannian flow is given by a Riemannian submersion
whose fibers are the leaves of the foliation and the normal bundle corresponds to the tangent
space of the base manifold. It is known that the bundle @) carries a natural covariant derivative
V¥ given for all Y € T'(Q) by

([, Y]) i X =,
Ve =
m(VxY) if X e I'(Q),
where V is the Levi-Civita connection on M and 7: TM — (@) is the orthogonal projection.
This connection V¥ is compatible with the induced metric 9|, On (@ and has a free torsion given
by TY(X,Y) := Ver(Y) — V¢r(X) — x([X,Y]) for all X,Y € T(TM). An easy computation
gives the relation between V and V& through the formulas

VY = VY +h(Y),

VxY = VRY —g(h(X),Y)C,

for all X,Y € I'(Q), where h := V( is a skew-symmetric endomorphism on T'M called the
O’Neill tensor [30]. Now assume that M is spin and let us denote by XM its spinor bundle.
Since TM = R( & @, the bundle @ carries also a spin structure and its spinor bundle Q)
can be canonically identified with the one on M when n is odd and when n is even, we have
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XM ~3XQ®XQ. Also the Clifford multiplication on M and @ can be identified by Y g =Y -¢
when n is odd and, when n is even, we have Y - (- o = (Y - @ —Y-g)p for all Y € I'(Q). The

. . R e . 0 Idy .
Clifford action of iC is given by Ids+g @ —Ids-¢ if n is odd and by (- = < Idso OQ > if
n is even. The spinorial connections of ¥} and XM are related by

Vep= Vil +1Q-¢,
(6.1)
Vyp= Vy%e+3C-hY) o,

for all Y € I'(Q). Here Q := 1d(® is the two-form that is associated to h via Q(Y,Z) :=
g(h(Y),Z), for any Y, Z € I'(Q)). Notice that the notion of the Lie derivative of any spinor in the

direction of ¢ defined in [5] is just the covariant derivative V?Q. Namely, by [5, Prop. 17], the Lie
derivative of a spinor field ¢ is expressed by the formula Voo = Lo+ id( >.. Hence using that
d¢® = 20 and by comparing with (6.1), we get Lep = V?ng. Therefore basic spinors, i.e. those
spinors ¢ satisfying V?an = 0, correspond to the so-called projectable spinors. The transversal

Dirac operator is the first-order differential operator defined by D¢ := ZZ;% ek "Q VeEkQ on
I'(2Q), where {eg}r=1,..n—1 is a local orthonormal frame of I'(Q). It is a transversally elliptic
and self-adjoint operator when restricted to basic spinors, in particular it has a discrete spectrum
[13]. This is called the basic Dirac operator and is often denoted by Dj. Now, with the help of
(6.1)), the Dirac operator D on M is related to the transversal Dirac operator D¢ by [24]

Do -3¢ Q- +¢- V.9 if n is odd,
D= (6.2)
¢ (D& (~Dq)) — 3¢ Q- +¢ V%9 if nis even.

It is shown in [24, Lem. 2.6] that the Dirac operator D preserves the set of basic spinors

I'y(XQ) and, thus, it decomposes as an L?-orthogonal sum D|Fb<m) ® D) sk when n is odd.
b

An analogous decomposition holds when n is even. Therefore, the spectrum of D consists of
eigenvalues of the form {);}72, U{ux}72, that correspond to the restriction of D to L3(TH(2Q))

and L?(TH(2Q))*.

We set 7 = ¢” to be the one-form on M associated to the vector field ¢ by the musical isomor-
phism and consider the magnetic Dirac operator D' = D + itn-, for t € R. Since by 22, p.71]
(see also [24, Lem. 2.2]) we have [ViQ,n-] = 0, for any vector field X € I'(T'M), the mag-
netic Dirac operator preserves the set of basic spinors as well as its L?-orthogonal complement.
Therefore, we shall denote by {)\?]}]‘?‘;1 U {,u',;n}zo:l the set of eigenvalues corresponding to this

decomposition. In the following, we will give estimates for the eigenvalues {)\;n}j?‘il. For this,
we need the following lemma:

Lemma 6.1. Let (M™,g,() be a closed Riemannian spin manifold of odd dimension n equipped
with a unit Killing vector field (. Let ¢ be a basic eigenspinor of the magnetic Dirac operator
D' associated with an eigenvalue A\, we have

) 1 .
A“7/ R(C - o, p)dug = —2/ <Q's0,w>dug+t/ o2 dpg. (6.3)
M M M

Proof. Using the fact that [ViQ, n:] = 0 for any X € T'(T'M) and the identification of the Clifford
multiplications between M and @ as n is odd, we can easily deduce that Dy(¢:) = —( - Dp. We
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compute for any basic spinor ¢

/ (DypriC - 9)idpg
M

/ (02 iDs(C - ©))ditg

M

= —/ (¢, iC - Dypp)dpug
M

= —/ (iC - ¢, Dypp)djug.
M

Hence, we deduce that [ 1 R Dyp, iC-p)dpug = 0 for any spinor field . When ¢ is an eigenspinor
of the magnetic Dirac operator, we use (6.2) to deduce (6.3]). O

Now, we state the main result of this section:

Theorem 6.2. Let (M",g,() be a closed Riemannian spin manifold with nonnegative scalar
curvature S. We assume that M carries a unit Killing vector field . Then any eigenvalue of
the Dirac operator D' restricted to basic spinors (or equivalently projectable spinors) satisfies,

forn >3,
—1
M > inf | — 2 M 2
A !_mf< +\/t +4(n_2)(5+2|§2| ))

and, for n = 3, the first positive eigenvalue )\tln satisfies

171
(25121

b 1
n - z 24 = 2
)\1_1nf<2+ t+2(S—|—Qb)>,
where h = bJ is the O’Neill tensor.

Proof. The key point of the proof is to define the transversal twistor operator as follows: For
all X e I'(Q) and ¢ € T'y(XQ)

1
>
PRo =V + X QDo

An easy computation shows that |PPp|? = |[V*@p|? — _L-|Dy¢|?. Therefore, with the help of

the transversal Schrodinger-Lichnerowicz identity D = V*V + %SQ where S€ is the transversal
scalar curvature [23], we deduce that

n—2 1
[ 1Py =222 [ (DigPay — 5 [ 5Py (6.4)
M n M M

Let us first consider the case when n is odd. Let ¢ be a basic spinor which is also eigenspinor
for D' associated with the eigenvalue A\, Identity (6.4]) reduces to

n—1
0< PQoyl|?d
_n—Z/M| el dug

n—1
= | |DyplPdug — ——— ?p|%d
/MI bl dpg 4(n_2)/MS el dpg

[ (0216l + 3102 0 + 210 = XIRUQ- 9, - ) = 2ATRLC - 0,)

. n—1
—tR(Q2 - <P7190>>dﬂg T in—2) /M S9pl2dpg

(©.3) 1 n—1
B [ (021l + 110 o — 2l - XIR(2 0.6 ) ) ity — s [ 5ol
M (n—=2) Ju

The case when n is even gives also the same inequality as above. Namely, the spinor bundle of
M can be identified with ©Q @ XQ and we write any eigenspinor of D as ¢ = @1 + 2. Now
the equation D¢ = A" can be equivalently written as

Dy = Ay —it¢ -1 and Dy = ANy — it( - po.
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Therefore, using (6.2)), we get the following expressions for the basic Dirac operator of 1 and
P2

1 , 1 .
Dyp1 = =A"¢C - g + 59 1 — ity and  Dypg = N1 — §Q - o + itps. (6.5)
Applying Inequality (6.4) to ¢1 gives that
1
0 [ (Pl + 110 1P + Elor = XIRUD- 91,6 2] (6.6

n—1
+ 2S((C - 2, 1)) — 1S((Q - 1, 901>)> dpg — in=2) /M 591 dpg-

By taking the Hermitian inner product of the first equation in (6.5 with ¢ and identifying the
imaginary parts, we get that

1
A'”7/ %(<C-w2,w1>)dug—2/ SUQ - 1, 01))dpg = —t/ o1 [*dpuyg.
M M M

Replacing this last identity into gives that

1 n—1
0< / (X200 + = |Q - 1| — 21 |2 — AR 01, (- 2)) | — / S9p1 [dpg.

Now, we do the same computations as before by applying inequality (6.4]) to @2 and find after
adding both inequalities

1 n—1
0< / M2l + 212 o = 2l = ATRUQ - 9,¢ - ) ) dpg — 77— / SO Pdpsg-

In the following, we will distinguish the cases when n =3 and n > 3. When n = 3, the O’Neill
tensor h can be written as h = bJ for some real valued function b : M — R, where J is the
complex structure on the bundle ). In this case, we have Q- ¢ = b( - ¢. Hence the above
inequality reduces to

b? 1
0< / <(/\“7)2 +— — 2 — A — 5Q> lp|?dpg
M 4 2

b 1 b 1
= /M ()\“7 -5+ \J12 + 2SQ> (At" —5- \/ 12+ 25Q> o> dpg.

Recall now that the following relation S® = S + 2|Q|? holds [30]. Thus, if S > 0, then S is
also nonnegative and we can write

1 1
\/t2+23Q = \/t2+ 35+ Q2 > |Q] = [b] > ig-

Hence the first positive eigenvalue satisfies

b / 1
t?’]>. e 2 - Q
)\1 1nf(2—|— t—|—25’>.

When n > 3, we use the pointwise estimate |2 - ¢| < [”T_l]%KZng] which can be proven in the
same way as in [25, Lem. 3.3] to obtain

1n—1 -1
< tm\2 |+ 02 2 tn Q 2

n—112 n—171
_ M) 9 n—1 oo m o )29 g n—1 oo 2
/M <|/\ |+72 +4/t +74(n_2)s |A |+72 t +74(n_2)8 lo|“dpg,

which gives the estimate

1
. [2F]219] n—1
A > inf | ——2 2 Q
\ \_1}1\14( 5 + t+4(n72)5

n—1.1 n
7]2|Q|_
2 4
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as required. Notice that, when the parameter ¢ is big enough, this lower bound is positive. [

Remark 6.3. When M = S? equipped with the metric of curvature 1, we take b = 1 and,
therefore, the estimate in Theorem [6.2] becomes

1
A?z§+wh2+4

This lower bound appears in the set of eigenvalues studied in Theorem Also, on the round
sphere (S", g,n) with n = 2m 4+ 1 > 3 and 7 is the Reeb vector field, the lower bound obtained
in (3.7) is [A\"7] > & —t. However, the lower bound in Theorem |6.2]is

> | -

n—1 (n—1)2(n+1)
T\ Iy

Hence, for t > % the above lower bound is better than & — ¢.

REFERENCES

[1] B. Ammann, A variational problem in conformal spin geometry, Habilitation thesis, Universitdt Hamburg,
2003.

[2] C. Bar, Lower eigenvalue estimates for Dirac operators, Math. Ann. 293 (1992), No. 1, 39-46.

[3] C. Bar, The Dirac operator on space forms of positive curvature, J. Math. Soc. Japan 48 (1996), No. 1, 69-83.

[4] C. Bar, Zero sets of solutions to semilinear elliptic systems of first order, Invent. Math. 138 (1999), no. 1,
183-202.

[5] J.P. Bourguignon, P. Gauduchon, Spineurs, opérateurs de Dirac et variations de métriques, Comm. Math.
Phys. 144 (1992), 581-599.

[6] V. Branding, An estimate on the nodal set of eigenspinors on closed surfaces, Math. Z. 288 (2018), no. 1-2,
1-10.

[7] V. Branding, A note on twisted Dirac operators on closed surfaces, Differential Geom. Appl. 60 (2018), 54—65.

[8] H.L. Bray, A. Neves, Classification of prime 3-manifolds with o-invariant greater than that of RP®, Ann.
Math. (2) 159 (2004), No. 1, 407-424; corrigendum ibid 159 (2004), No. 2, 887.

[9] Y. Carriere, Flots riemanniens, in Transversal structure of foliations (Toulouse, 1982), Astérisque 116 (1984),
31-52.

[10] N. Charalambous, N. Grofie, A note on the spectrum of magnetic Dirac operators, SIGMA 19 (2023), 102,
12 pages.

[11] M. Egidi, K. Gittins, G. Habib, N. Peyerimhoff, Figenvalue estimates for the magnetic Hodge Laplacian on
differential forms, J. Spec. Theory 13 (2023), 1297-1343.

[12] F. El Chami, G. Habib, N. Ginoux, R. Nakad, Rigidity results for Riemannian Spin® manifolds with foliated
boundary, Results in Math. 72 (2017), 1773-1806.

[13] A. El Kacimi, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Com-
positio Mathematica 73 (1990), 57-106.

[14] L. Erdés, J.P. Solovej, The kernel of Dirac operators on S* and R, Rev. Math. Phys. 13 (2001), no. 10,
1247-1280.

[15] R.L. Frank, M. Loss, Which magnetic fields support a zero mode?, J. Reine Angew. Math. 788 (2022), 1-36.

[16] R.L. Frank, M. Loss, A sharp criterion for zero modes of the Dirac equation, arXiv:2201.03610 [math-ph],
to appear in J. Eur. Math. Soc. (JEMS).

[17] T. Friedrich, Der erste Eigenwert des Dirac Operators einer kompakten Riemannschen Mannigfaltigkeit
nichtnegativer Skalarkrimmung, Math. Nachr. 97 (1980), 117-146.

[18] T. Friedrich, Zur Abhdngigkeit des Dirac-Operators von der Spin-Struktur, Colloq. Math. 48 (1984), 57-62.

[19] T. Friedrich, E.C. Kim, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33
(2000), 128-172.

[20] T. Friedrich, E.C. Kim, Some remarks on the Hijazi inequality and generalizations of the Killing equation
for spinors, J. Geom. Phys. 37 (2001), no. 1-2, 1-14.

[21] N. Ginoux, The Dirac spectrum, Lecture Notes in Mathematics 1976, Springer (2009).

[22] N. Ginoux, G. Habib, Geometric aspects of transversal Killing spinors on Riemannian flows, Abh. Math.
Sem. Univ. Hamburg 78 (2008), 69-90.

[23] J. Glazebrook, F. Kamber, Transversal Dirac families in Riemannian foliations, Comm. Math. Phys. 140
(1991), 217-240.

[24] G. Habib, K. Richardson, Riemannian flows and adiabatic limits, Inter. J. Math. 29 (2018), 1850011.

[25] M. Herzlich, A. Moroianu, Generalized Killing spinors and conformal eigenvalue estimates for spin® mani-
folds, Ann. Glob. Anal. Geom. 17 (1999), 341-370.

[26] O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors,
Commun. Math. Phys. 104 (1986), 151-162.



ON THE SPECTRUM OF THE MAGNETIC DIRAC OPERATOR 29

[27] N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1-55.

[28] J.F. Meier, Dirac operators over the flat 3-torus, Balkan J. Geom. Appl. 17 (2012), no. 1, 78-87.

[29] A. Moroianu, Parallel and Killing spinors on spin® manifolds, Comm. Math. Phys. 187 (1997), 417-427.

[30] B. O’Neill, The fundamental equations of a submersion, Mich. Math J. 13 (1966), 459-469.

[31] M. Okumura, Some remarks on space with a certain contact structure, Téhoku Math. J. 14 (1962), 135-145.

[32] N. Peyerimhoff, Fin Indexsatz fiir Cheegersingularititen im Hinblick auf algebraische Flichen, PhD thesis,

Universitat Augsburg, 1993.

[33] B. Reinhart, Foliated manifolds with bundle-like metrics, Ann. Math. 69 (1959), 119-132.

[34] J. ReuB, A note on the existence of nontrivial zero modes on Riemannian manifolds, arXiv:2503.01602
[math.DG].

[35] S. Roos, Eigenvalue pinching on Spin® manifolds, J. Geom. Phys. 112 (2017), 59-73.

[36] N. Savale, Koszul complezxes, Birkhoff normal form and the magnetic Dirac operator, Anal. PDE 10 (2017),
1793-1844.

[37] N. Savale, A Gutzwiller type trace formula for the magnetic Dirac operator, Geom. Funct. Anal. 28 (2018),
1420-1486.

[38] Ph. Tondeur, Foliations on Riemannian manifolds, Springer, New York, 1988.

UNIVERSITY OF ROSTOCK, INSTITUTE OF MATHEMATICS, ULMENSTRASSE 69, 18057 ROSTOCK, GERMANY
Email address: volker.branding@uni-rostock.de

UNIVERSITE DE LORRAINE, CNRS, IECL, F-57000 METZ, FRANCE
Email address: nicolas.ginoux@univ-lorraine.fr

LEBANESE UNIVERSITY, FACULTY OF SCIENCES II, DEPARTMENT OF MATHEMATICS, P.O. Box 90656 FANAR-
MATN, LEBANON AND UNIVERSITE DE LORRAINE, CNRS, IECL, F-54506, NANCY, FRANCE
Email address: ghabib@ul.edu.1lb



	1. Introduction
	2. Review on the magnetic Dirac operator
	3. Eigenvalue estimates for the magnetic Dirac operator
	4. Diamagnetic inequality
	5. Computations of the spectrum
	5.1. The 3-dimensional round sphere
	5.2. The flat torus

	6. Killing magnetic field
	References

