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Introduction
This lecture deals with linear wave equations on Lorentzian manifolds. We first
recall the physical origin of that equation which describes the propagation of
a wave in space. Consider R3 with its canonical cartesian coordinates and let
u(t, x) denote the height of the wave at x = (x1, x2, x3) ∈ R3 and at time
t ∈ R. Then u solves
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is the so-called d’Alembert operator

on the 4-dimensional Minkowski space R4 = R× R3.
What can be said on the solutions u to the wave equation, or equivalently
on the kernel of �? The operator � is obviously linear, so that its kernel is
a vector space. The functions (t, x) 7→ cos(nt) cos(nx1), for n running over
Z, all belong to Ker(�) so that it is infinite dimensional. However, if one
prescribes the height and the speed of the wave at some fixed time then it is
well-known (see also Sec. 4.3) that the corresponding solution must be unique.

Our aim here is to handle wave equations associated to some kind of gene-
ralized d’Alembert operators on any Lorentzian manifold. In particular we
want to discuss the local and global existence of solutions as well as give a
short motivation on how those provide the fundamental background for some
quantization theory.

The first section makes the concept of generalized d’Alembert operator more
precise and recalls the central role of fundamental solutions for differential ope-
rators. Fundamental solutions for the d’Alembert operator on the Minkowski
space can be obtained from the so-called Riesz distributions: this is the ob-
ject of Section 2. They are called advanced or retarded fundamental solutions
according to their support being contained in the causal future or past of the
origin. Turning to “curved” spacetimes, i.e., to Lorentzian manifolds, there
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does not exist any analog of Riesz distribution, at least globally. Nevertheless
using normal coordinates it is always possible to transport Riesz distributions
from the tangent space at a point to a neighbourhood of this point. The dis-
tributions obtained do not lead to local fundamental solutions for the classical
d’Alembert operator in a straightforward manner (Sec. 3.1), however combi-
ning linearly an infinite number of them, solving the wave equation formally
(Sec. 3.2) and correcting the formal series using a cut-off function one obtains
a local fundamental solution up to an error term (Proposition 2 in Sec. 3.3).
General methods of functional analysis then allow one to get rid of this er-
ror term and construct true local fundamental solutions for any generalized
d’Alembert operator (Corollary 2). Those fundamental solutions are in some
sense near to the formal series from which they are constructed (Corollary 3).

The global aspect of the theory is based on a completely different approach.
First it would be illusory to construct global fundamental solutions on any
spacetime, therefore we restrict the issue to globally hyperbolic spacetimes,
which can be thought of as the analog of complete Riemannian manifolds
in the Lorentzian setting. In that case global fundamental solutions for gen-
eralized d’Alembert operators are provided by the solutions to the so-called
Cauchy problem associated to such operators, see Section 4. After discussing
uniqueness of fundamental solutions (Sec. 4.1) we show how local and then
global solutions to the Cauchy problem can be constructed (Sec. 4.2 and 4.3)
and global fundamental solutions be deduced from them (Sec. 4.4). Here it
should be pointed out that the local existence of fundamental solutions (Sec.
3.3) actually enters this global construction in a crucial way since it provides
(local) solutions to the so-called inhomogeneous wave equation, see Proposi-
tion 6.
We end this survey by introducing the concept of (advanced or retarded)
Green’s operators associated to generalized d’Alembert operators and by
showing their elementary properties, in particular their tight relationship with
fundamental solutions (Sec. 5). Green’s operators constitute the starting point
for the so-called local approach to quantization, since their existence together
with a few additional assumptions on a given spacetime directly provide a C∗

-algebra in a functorial way, see K. Fredenhagen’s lecture for more details.

This lecture is intended as an introduction to the subject for students from
the first or second university level. Only the main results and some ideas are
presented, nevertheless most proofs are left aside. We shall also exclusively
deal with scalar operators, although all results of Sections 3 to 5 can be
extended to generalized d’Alembert operators acting on sections of vector
bundles. For a thorough and complete introduction to the topic as well as a
list of references we refer to [1], on which this survey is widely based.
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1 General setting

In this section we describe the general frame in which we want to work.

1.1 Generalized wave equations

In the following and unless explicitly mentioned (Mn, g) will denote an n-
dimensional Lorentzian manifold and K := R or C.

Definition 1. A generalized d’Alembert operator on M is a linear differential
operator of second order P on M whose principal symbol is given by minus
the metric.

In the scalar setting, a generalized d’Alembert operator P is a linear differen-
tial operator of second order which can be written in local coordinates

P = −
n−1∑
i,j=0

gij(x)
∂2

∂xi∂xj
+

n−1∑
j=0

aj(x)
∂

∂xj
+ b1(x)

where aj and b1 are smooth K-valued functions of x and (gij)i,j := (gkl)−1
k,l .

In particular, if P is a generalized d’Alembert operator on M then so is its
formal adjoint P ∗.

Examples

1. The d’Alembert operator of (Mn, g) is defined on smooth functions by

�f := −trg(Hess(f)),

where Hess(f)(X,Y ) := 〈∇Xgradf, Y 〉 and trg is the trace w.r.t. the me-
tric g. Here we denote as usual by ∇ the Levi-Civita covariant derivative
on TM and by gradf the gradient vector field of the (real- or complex-
valued) function f . In normal coordinates about x ∈M

�f = −µ−1
x

n−1∑
j=0

∂

∂xj
(µx(gradf)j),

with µx := |det((gij)i,j)|
1
2 , therefore the principal symbol of � is given

by minus the metric. For instance on the Minkowski space M = Rn one
has µx = 1, hence

�f = −
n−1∑
j=0

∂

∂xj
(εj

∂f

∂xj
) =
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∂x2
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−
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j

,

where ε0 := −1 and εj := 1 for every j ≥ 1.
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2. The general form of a generalized d’Alembert operator is actually given
by � + a + b, where a and b are linear differential operators of first and
zero order respectively (b is a smooth function on M). In particular the
Klein-Gordon operator �+m2, where m > 0 is a constant, is a generalized
d’Alembert operator.

Other examples of generalized d’Alembert operators are given by the square
of any generalized Dirac operator on a Clifford bundle (see [3] for definitions)
such as the classical Dirac operator acting on spinors or the Euler operator
acting on differential forms. For the sake of simplicity we do not deal with
vector bundles, hence we restrict the whole discussion to scalar operators, i.e.,
to operators acting on scalar-valued functions. From now on any differential
operator will be implicitly assumed to be scalar.

Definition 2. Let P be a generalized d’Alembert operator on a Lorentzian
manifold M . The wave equation associated to P is

Pu = f

for a given f ∈ C∞(M,K).

We want to prove existence and uniqueness results - locally as well as globally -
for waves, i.e., for solutions u ∈ C∞(M,K) to this generalized wave equation
for given data f lying in a particular class of functions. In this context we
recall the central role played by fundamental solutions.

1.2 Fundamental solutions

We first recall what we need about distributions.

Definition 3. The space of K-valued distributions on M is defined as

D′(M,K) := {T : D(M,K) −→ K linear and continuous},

where D(M,K) := {ϕ ∈ C∞(M,K), supp(ϕ) compact} denotes the space of
K-valued test-functions on M .

For the definition of the topology of D(M,K) we refer to e.g. [1, Chap. 1].
We next describe how functions can be understood as distributions and how
differential operators act on distributions:

• For any fixed f ∈ C∞(M,K) the map ϕ 7→
∫

M
f(x)ϕ(x)dx, D(M,K) → K,

defines a K-valued distribution on M . Here and in the following we denote
by dx the canonical measure associated to the metric g on M . We denote
this distribution again by f , i.e., we identify C∞(M,K) as a subspace of
D′(M,K).
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• Given T ∈ D′(M,K) and a linear differential operator P on M one can
define

PT [ϕ] := T [P ∗ϕ]

for any ϕ ∈ D(M,K), where P ∗ denotes the formal adjoint of P . It is an
easy exercise using the definition of the topology of D(M,K) to show that
PT ∈ D′(M,K).

Definition 4. Let P be a generalized d’Alembert operator on M and x ∈M .
A fundamental solution for P at x on M is a distribution F ∈ D′(M,K) with

PF = δx,

where δx is the Dirac distribution in x (i.e., δx[ϕ] := ϕ(x) for all ϕ ∈
D(M,K)).

What do fundamental solutions for P - which are distributions - have to do
with solutions of the wave equation Pu = f - which we wish to be smooth
functions? The idea is that one can construct from the fundamental solutions
for P solutions u to the wave equation Pu = f for “any” given f . We state
this in a bit more precise but purely formal manner, see e.g. Proposition 6 for
a situation where the following computation can be carried out under some
further assumptions.
Assume namely one had at each x ∈ M a fundamental solution F (x) ∈
D′(M,K) for P at x on M and moreover that F (x) depends continuously on
x, meaning that x 7→ F (x)[ϕ] is a continuous function for all ϕ ∈ D(M,K).
Fix f ∈ C∞(M,K) and consider

u[ϕ] :=
∫

M

f(x)F (x)[ϕ]dx

for all ϕ ∈ D(M,K). In other words, u is some kind of convolution product
of f with F . Assume u to be a well-defined distribution, then for every ϕ ∈
D(M,K) one has

Pu[ϕ] = u[P ∗ϕ]

=
∫

M

f(x)F (x)[P ∗ϕ]dx

=
∫

M

f(x)PF (x)[ϕ]dx

=
∫

M

f(x)ϕ(x)dx

= f [ϕ],

that is, Pu = f in the distributional sense. Thus every wave equation asso-
ciated to P can be solved on M , at least in D′(M,K).
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Therefore we momentarily forget about the wave equation itself and concen-
trate on the search for fundamental solutions. As we shall already see in the
next section, if there exists one fundamental solution then there exist many of
them in general, hence one has to fix an extra condition to single one particu-
lar fundamental solution out. The most natural condition here deals with the
support of the fundamental solution (recall that the support of a distribution
on a manifold M is the complementary subset of the largest open subset of
M on which the distribution vanishes). Namely, assuming that M is a space-
time (connected timeoriented Lorentzian manifold), we look for fundamental
solutions F+(x), F−(x) ∈ D′(M,K) for P at x on M such that

supp(F+(x)) ⊂ JM
+ (x) resp. supp(F−(x)) ⊂ JM

− (x), (1)

where JM
+ (x) and JM

− (x) are the causal future and past of x in M respec-
tively. Such an F+(x) (resp. F−(x)) will be called advanced (resp. retarded)
fundamental solution for P at x on M . In physics this condition has to do
with the finiteness of the propagation speed of a wave.

Remark. The most naive condition would be to require the support to be
compact. There exists unfortunately no fundamental solution with compact
support in general, as the example of P = � on M already shows. Indeed if
such a distribution F existed it could be extended to a continuous linear form
on C∞(M,K) (see e.g. A. Strohmaier’s lecture), hence any non-zero constant
ϕ would satisfy

ϕ(x) = �F [ϕ] = F [ �ϕ︸︷︷︸
0

] = 0,

which would be a contradiction. In particular there exists no fundamental
solution for � on compact Lorentzian manifolds.

2 Riesz distributions on the Minkowski space

In this section we describe the fundamental solutions for the d’Alembert o-
perator at 0 on the Minkowski space (Rn, 〈〈· , ·〉〉0) (recall that 〈〈x, y〉〉0 :=
−x0y0 +

∑n−1
j=1 xjyj for all x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1)

in Rn) for n ≥ 2.

Definition 5. For α ∈ C with <e(α) > n let R+(α) and R−(α) be the func-
tions defined on Rn by

R±(α)(x) :=

C(α, n)γ(x)
α−n

2 if x ∈ J±(0)

0 otherwise,

where γ := −〈〈· , ·〉〉0, C(α, n) := 21−απ
2−n

2

( α
2−1)!( α−n

2 )!
and z 7→ (z−1)! is the Gamma-

function.
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Recall that the Gamma-function is defined by {z ∈ C, <e(z) > 0} → C, z 7→∫∞
0
tz−1e−tdt. It is a holomorphic nowhere vanishing function on {<e(α) > 0}

and satisfies
z! = z · (z − 1)! (2)

for every z ∈ C with <e(z) > 0.

The function R±(α) is well-defined because of γ ≥ 0 on J±(0), it is continuous
on Rn and Ck as soon as <e(α) > n + 2k. For any fixed ϕ ∈ D(Rn,C) the
map α 7→ R±(α)[ϕ] is holomorphic on {<e(α) > n}. Moreover R±(α) satisfies
the first important property:

Lemma 1. For all α ∈ C with <e(α) > n one has

�R±(α+ 2) = R±(α). (3)

In particular the map α 7→ R±(α), {<e(α) > n} → D′(Rn,C) can be holo-
morphically extended on C such that (3) holds for every α ∈ C.

Of course by holomorphic extension we mean that, for every fixed ϕ ∈
D(Rn,C), the function α 7→ R±(α)[ϕ] can be holomorphic extended on C.

Proof. The identity (3) follows from the two following ones:

• 1st identity:
γ ·R±(α) = α(α− n+ 2)R±(α+ 2). (4)

Proof of (4): Both l.h.s and r.h.s vanish outside J±(0) so that we just have
to prove the identity on J±(0). By Definition 6 one has on J±(0):

γ ·R±(α) = C(α, n)γ
α+2−n

2

=
C(α, n)

C(α+ 2, n)
R±(α+ 2),

with

C(α, n)
C(α+ 2, n)

=
21−απ

2−n
2

(α
2 − 1)!(α−n

2 )!
·
(α

2 − 1 + 1)!(α+2−n
2 )!

21−α−2π
2−n

2

(2)
= 4 · α

2
· α+ 2− n

2
= α(α− n+ 2), (5)

which achieves the proof of (4).
• 2nd identity: for every X ∈ Rn,

∂Xγ ·R±(α) = 2α∂XR±(α+ 2). (6)

Proof of (6): From its definition, R±(α + 2) is C1 on Rn. We show the
identity on I±(0). On this domain and for every X ∈ Rn,
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∂Xγ ·R±(α) = C(α, n)γ
α−n

2 · ∂Xγ

=
2C(α, n)
α+ 2− n

∂X(γ
α+2−n

2 ),

with 2C(α,n)
α+2−n

(5)
= 2αC(α+ 2, n), so that

∂Xγ ·R±(α) = 2αC(α+ 2, n)∂X(γ
α+2−n

2 )
= 2α∂XR±(α+ 2)

which is (6).

We now prove (3). Let first α ∈ C with <e(α) > n+2. The function R±(α+2)
is then C2 on Rn and for every X ∈ Rn,

∂2
XR±(α+ 2)

(6)
=

1
2α
∂X(∂Xγ ·R±(α))

=
1
2α

(
∂2

Xγ ·R±(α) + ∂Xγ · ∂XR±(α)
)

(6)
=

1
2α

(
∂2

Xγ ·R±(α) +
1

2(α− 2)
(∂Xγ)2 ·R±(α− 2)

)
,

with (∂Xγ)x = −2〈〈x,X〉〉0 and ∂2
Xγ = 2γ(X) for any x ∈ Rn. Hence, if

(ej)0≤j≤n denotes the canonical basis of Rn,

�R±(α+ 2) = −
n∑

j=0

εj
∂2R±(α+ 2)

∂x2
j

= − 1
2α

n∑
j=0

(
2εjγ(ej)R±(α) +

2
α− 2

εj〈〈· , ej〉〉20R±(α− 2)
)

= − 1
α

(
− nR±(α)− 1

α− 2
γ ·R±(α− 2)

)
(4)
=

1
α

(
nR±(α) + (α− n)R±(α)

)
= R±(α),

where, as usual, ε0 = 〈〈e0, e0〉〉0 = −1 and εj = 〈〈ej , ej〉〉0 = 1 for every
1 ≤ j ≤ n − 1. This proves (3) for <e(α) > n + 2. It follows from the
holomorphic dependence in α of both distributions R±(α) and �R±(α + 2)
that (3) must actually hold on the whole domain {<e(α) > n}.
Equation (3) allows one to define inductively R±(α) for every α with <e(α) >
n−2k with k ∈ N. Indeed one can define the distributionR±(α) := �R±(α+2)
for all α ∈ C with <e(α) > n − 2. For <e(α) > n this is of course not a
definition but simply coincides with (3). Fix now ϕ ∈ D(Rn,C). Since α 7→
R±(α)[ϕ] is holomorphic on {<e(α) > n} then so is α 7→ �R±(α)[ϕ]. Hence
the extension of α 7→ R±(α)[ϕ] onto {<e(α) > n − 2} is again holomorphic
and (3) is again trivially satisfied for those α. This shows the first step of the
induction and achieves the proof of Lemma 1.
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Definition 6. The advanced (resp. the retarded) Riesz distribution to the
parameter α ∈ C is defined to be R+(α) (resp. R−(α)).

The second important properties for our purpose are the following:

Lemma 2. The Riesz distributions satisfy:

1. For any α ∈ C one has supp(R±(α)) ⊂ J±(0).
2. R±(0) = δ0, the Dirac distribution at the origin.

The first assertion follows directly from the definition of the Riesz distribu-
tions and from � being a differential operator. The second one requires a
more technical and detailed study of the distribution R±(2), we refer to [1,
Prop. 1.2.4] for a proof. Note also that, although R±(α) is complex-valued on
D(M,C), its restriction to D(M,R) for real α gives a real-valued distribution.

As a consequence of Lemmas 1 and 2 we obtain:

Corollary 1. The Riesz distribution R±(2) satisfies∣∣∣∣∣∣
�R±(2) = δ0

supp(R±(2)) ⊂ J±(0).

In particular R+(2) (resp. R−(2)) is an advanced (resp. retarded) fundamental
solution for � at 0 on Rn.

Remark. The set of fundamental solutions for a generalized d’Alembert ope-
rator P at a point is an affine subspace of D′(M,K) with direction Ker(P ). For
M = Rn, since Ker(�) contains all constant extensions of harmonic functions
on the spacelike slice Rn−1, the space of fundamental solutions for � at 0
on Rn is at least 2-dimensional for n = 2 and is infinite dimensional for
n ≥ 3 (remember that holomorphic functions on C are harmonic). This shows
evidence that there exist significantly more than one fundamental solution as
soon as there is one. Actually even if one keeps the support conditions (1) there
may exist more than one fundamental solution. Consider for instance P := �
on M := R×]− 1, 1[⊂ R2 with the induced Lorentzian metric. The restriction
F+ of R+(2) on M is an advanced fundamental solution for � at 0 on M . On
the other hand the map ϕ 7→ R+(2)[ϕ ◦ ((0, 3) + Id], D(R2,C) → C defines a
distribution on R2 which is obviously an advanced fundamental solution for
� at x = (0, 3) on R2, thus its restriction G+ onto M lies in Ker(�) with
support contained in J+(3) ∩M which is again a subset of JM

+ (0). Therefore
F+ +G+ is another advanced fundamental solution for � at 0 in M .
However we shall see in Corollary 4 that, on Rn, there exists exactly one
advanced and one retarded fundamental solution for � at 0.
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3 Local fundamental solutions

In this section we come back to the general setting and construct local funda-
mental solutions for any generalized d’Alembert operator on any Lorentzian
manifold.

3.1 Attempt

We first examine the case where P = � on M . From the local point of view
the most naive attempt to obtain fundamental solutions for � on M consists
in pulling the Riesz distributions R±(2) back from the tangent space at a
point onto a neighbourhood of that point:

Definition 7. Let Ω be a geodesically starshaped neighbourhood of a point x in
a Lorentzian manifold (Mn, g). Let expx : exp−1

x (Ω) → Ω be the exponential
map and µx : Ω → R, µx := |det((gij)i,j)|

1
2 . The Riesz distribution at x on

Ω to the parameter α ∈ C is defined by

RΩ
±(α, x) : D(Ω,C) −→ C

ϕ 7−→ R±(α)[(µxϕ) ◦ expx],

where R±(α) denotes the Riesz distribution to the parameter α.

The factor µx enters the definition of RΩ
±(α, x) in order to take the difference

between the volume form of M and that of TxM (w.r.t. gx) into account:
indeed dvolg = µx(exp−1

x )∗dvolgx on Ω.

By definition RΩ
±(α, x) is a distribution on Ω. It can be relatively easily de-

duced from its definition and from Lemmas 1 and 2 that RΩ
±(α, x) satisfies

the following [1, Prop. 1.4.2]:

Lemma 3. Let Ω be a geodesically starshaped neighbourhood of a point x in a
Lorentzian manifold (Mn, g). Then the Riesz distributions at x on Ω satisfy:

1. RΩ
±(0, x) = δx.

2. supp(RΩ
±(α, x)) ⊂ JΩ

± (x).
3. �RΩ

±(α + 2, x) = (�Γx−2n
2α + 1)RΩ

±(α, x) for every α 6= 0, where Γx :=
γ ◦ exp−1

x on Ω.

Although the first two properties make RΩ
±(2, x) a good candidate to become

a fundamental solution for � at x, the third one sweeps this hope away since
the term �Γx − 2n does not vanish in general. Therefore one has to look for
another approach to find fundamental solutions for �.
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3.2 Formal ansatz

Considering again any generalized d’Alembert operator P we fix a point x ∈
M and a geodesically starshaped neighbourhood of x in (Mn, g). We look for
fundamental solutions for P of the form

T± :=
∞∑

k=0

V k
x ·RΩ

±(2k + 2, x),

where, for each k, V k
x is a smooth coefficient depending on x. Of course this

series is a priori only formal. Nevertheless if one plugs it into the equation
PT± = δx, differentiates it termwise, uses relations satisfied by the Riesz dis-
tributions such as (4), (6) or Lemma 3 and identifies the coefficients standing
in front of the RΩ

±(2k + 2, x) then one obtains [1, Sec. 2.1]

∇gradΓxV
k
x − (

1
2
�Γx − n+ 2k)V k

x = 2kPV k−1
x (7)

for every k ≥ 1 as well as V 0
x,x = 1. This leads to the following

Definition 8. Let Ω ⊂M be convex. A sequence of Hadamard coefficients for
P on Ω is a sequence (V k)k≥0 of C∞(Ω×Ω,C) which fulfills (7) and V 0

x,x = 1,
for all x ∈ Ω and k ≥ 1, where we denote by V k

x := V k
x,· ∈ C∞(Ω,C).

The equation (7) that Hadamard coefficients must satisfy turns out to be a
singular differential equation and can be solved without any further assump-
tion [1, Sec. 2.2 & 2.3]. For the sake of simplicity we give a formula for the
Hadamard coefficients only in the case where the operator P has no term of
first order (the general formula involves the parallel transport of the connec-
tion which is canonically associated to P , see [1, Lemmas 1.5.5 & 2.2.2]).

Proposition 1. Let Ω ⊂M be a convex open subset in a Lorentzian manifold
(Mn, g) and P be a generalized d’Alembert operator on M of the form P =
�+b, where b ∈ C∞(M,K). Then there exists a unique sequence of Hadamard
coefficients for P on Ω. It is given for all x, y ∈ Ω by

V 0
x,y = µ

− 1
2

x (y)

and, for all k ≥ 1,

V k
x,y = −kµ−

1
2

x (y)
∫ 1

0

µ
1
2
x (Φ(y, s))sk−1 · (P(2)V

k−1
x (Φ(y, s))ds,

where Φ(y, s) := expx(s exp−1
x (y)), Φ : Ω × [0, 1] → Ω.

The index “(2)” in P(2)V
k−1
x stands for P acting on z 7→ V k−1(x, z). The

existence of Hadamard coefficients leads to the following definition:
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Definition 9. Let Ω ⊂ M be a convex open subset in a Lorentzian manifold
(Mn, g) and P be a generalized d’Alembert operator on M . Let (V k)k≥0 be the
sequence of Hadamard coefficients for P on Ω. The (advanced or retarded)
formal fundamental solution for P at x ∈ Ω is the formal series

RΩ
±(x) :=

∞∑
k=0

V k
x ·RΩ

±(2k + 2, x).

3.3 Exact local fundamental solutions

The existence of Hadamard coefficients still does not provide any (local) fun-
damental solution, since the series defining RΩ

±(x) may diverge. The idea pre-
sented here for the construction of local fundamental solutions (which is that
of [1]) consists in keeping the first terms of the formal fundamental solutions
unchanged while multiplying the higher ones by a cut-off function.
More precisely, consider again a convex open subsetΩ′ inM . Let σ : R → [0, 1]
be a smooth function with supp(σ) ⊂ [−1, 1] and σ|[− 1

2 , 1
2 ]

= 1. Fix an integer

N ≥ n
2 (this is just to ensure RΩ′

± (2k+ 2, x) be a continuous function for any
k ≥ N) and a sequence (εj)j≥N of positive real numbers. Set

R̃±(x) :=
N−1∑
j=0

V j
x ·RΩ′

± (2j + 2, x) +
∞∑

j=N

σ(
Γx

εj
) · V j

x ·RΩ′

± (2j + 2, x) (8)

for every x ∈ Ω (recall that Γx := γ ◦ exp−1
x with γ := −〈〈· , ·〉〉0). The identity

(8) does not a priori define a fundamental solution since it does not even
define a distribution. However, for εj small enough both conditions are almost
fulfilled (see [1, Lemmas 2.4.2-2.4.4]):

Proposition 2. Let Ω′ ⊂ M be convex and Ω ⊂⊂ Ω′ be relatively compact.
Fix an integer N ≥ n

2 . Then there exists a sequence (εj)j≥N of positive real
numbers such that, for all x ∈ Ω, R̃±(x) defines a distribution on Ω satisfying:

a) P(2)R̃±(x)− δx = K±(x, ·), where K± ∈ C∞(Ω ×Ω,C),
b) supp(R̃±(x)) ⊂ JΩ′

± (x),
c) y 7→ R̃±(y)[ϕ] is smooth on Ω for all ϕ ∈ D(Ω,C).

In other words, choosing suitably the εj leads to a distribution depending
smoothly on the base point and which is near to a fundamental solution in
the sense that the difference P(2)R̃±(x) − δx is a smooth function. How to
obtain now a “true” fundamental solution? The main idea is to get rid of
the error term using methods of functional analysis. Namely setting, for all
u ∈ C0(Ω,C),

K±u :=
∫

Ω

K±(·, y)u(y)dy,
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the identity a) of Proposition 2 can be rewritten in the form

P(2)R̃±(·)[ϕ] = (Id +K±)ϕ

for all ϕ ∈ D(Ω,C). One can therefore look for an inverse to the operator
Id+K±. It is well-known that, given a bounded endomorphism A of a Banach
space, the operator Id + A is invertible as soon as ‖A‖ < 1. This is the main
idea underlying the following proposition (see [1, Lemma 2.4.8]):

Proposition 3. Let Ω ⊂⊂ Ω′ be a relatively compact causal domain in Ω′

and assume that Vol(Ω) ·‖K±‖C0(Ω×Ω) < 1. Then Id+K± is an isomorphism
Ck(Ω,C) → Ck(Ω,C) for all k ∈ N.

Setting
FΩ
± (·)[ϕ] := (Id +K±)−1(y 7→ R̃±(y)[ϕ]).

for all ϕ ∈ D(Ω,C), we really obtain what we wanted: for any x ∈ Ω and
ϕ ∈ D(Ω,C),

(PFΩ
± (x))[ϕ] = FΩ

± (x)[P ∗ϕ]

= {(Id +K±)−1(y 7→ R̃±(y)[P ∗ϕ])}(x)
= {(Id +K±)−1(y 7→ P(2)R̃±(y)[ϕ]︸ ︷︷ ︸

(Id+K±)ϕ

)}(x)

= ϕ(x),

that is, PFΩ
± (x) = δx. The other properties FΩ

± (x) should satisfy can be
relatively easily checked, hence we can state the following

Proposition 4. Under the assumptions of Proposition 3 the map ϕ 7→
FΩ

+ (x)[ϕ] is an advanced fundamental solution on Ω for P at x ∈ Ω and
the map ϕ 7→ FΩ

− (x)[ϕ] is a retarded one.

To sum up:

Corollary 2. Let P be a generalized d’Alembert operator on a Lorentzian
manifold (Mn, g). Then every point of M possesses a relatively compact causal
neighbourhood Ω such that, for every x ∈ Ω, there exist fundamental solutions
FΩ
± (x) on Ω for P at x satisfying

a) supp(FΩ
± (x)) ⊂ JΩ

± (x) and
b) x 7→ FΩ

± (x)[ϕ] is smooth, for all ϕ ∈ D(Ω,C).

3.4 Comparison of formal and exact local fundamental solutions

In this section we show that the formal fundamental solutions obtained in
Section 3.2 is asymptotic to the true one along the light cone. More precisely
[1, Prop. 2.5.1]:
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Proposition 5. Let Ω ⊂⊂ Ω′ be as in Proposition 3. Fix N ≥ n
2 and for

k ∈ N set

RN+k
± (x) :=

N+k−1∑
j=0

V j
x ·RΩ′

± (2j + 2, x),

where (V j)j≥0 is the sequence of Hadamard coefficients for P on Ω′. Then
for every k ∈ N the map

(x, y) 7→ (FΩ
± (x)−RN+k

± (x))(y)

is a Ck-function on Ω ×Ω, where FΩ
± is given by Proposition 4.

This a strong statement, since both RN+k
± (x) and FΩ

± (x) are singular along
the light cone {y ∈ Ω |Γx(y) = 0} based at x (see [1, Prop. 1.4.2]). Using an
elementary argument of differential geometry [1, Lemma 2.5.4] one can deduce
the following

Corollary 3. Under the assumptions of Proposition 5, there exists for every
k ∈ N a constant Ck such that

‖(FΩ
± (x)−RN+k

± (x))(y)‖ ≤ Ck · |Γx(y)|k

for all (x, y) ∈ Ω ×Ω.

4 The Cauchy problem and global fundamental solutions

In this section we want to construct global fundamental solutions. A naive
idea would consist in taking the local fundamental solutions constructed above
and gluing them together using a partition of unity. A quick reflection con-
vinces one of the difficulties which then may occur. Namely it is already not
clear which equation should be solved in each coordinate patch not containing
the point at which the fundamental solutions are sought after. Studying this
question in more detail one immediatly observes that the global topology and
geometry of the manifold could set up serious problems. As we have already
seen at the end of Section 1.2 there cannot exist any fundamental solution for
� on compact spacetimes. Even if the manifold is not compact the possible
existence of closed or almost-closed causal curves can make the very definition
of fundamental solutions ill-posed; indeed it could theoretically happen that
a wave overlaps itself after finite time.
Since we want to avoid this kind of situation we have to first properly choose
our Lorentzian manifolds. There exists a “good” class of Lorentzian manifolds
in this respect, which are called globally hyperbolic (see [1, Def. 1.3.8]). We
restrict the discussion of the issue to the globally hyperbolic setting, although
uniqueness as well as existence results may each be extended to broader classes
of spacetimes, see [1, Sec. 3.1 & 3.5].
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In this case we make what at first seems to be a detour: we solve the so-called
Cauchy problem, which in analogy with ordinary differential equations con-
sists in solving a wave equation fixing initial conditions on a subset of the
manifold. Since generalized d’Alembert operators are differential operators of
second order, two conditions have to be fixed:

Definition 10. Let P be a generalized d’Alembert operator on a globally hy-
perbolic spacetime (Mn, g) and S ⊂ M be a (smooth) spacelike hypersurface
with unit normal vector field ν. Let f ∈ C∞(M,K) and u0, u1 ∈ C∞(S,K).
The Cauchy problem for P with Cauchy data (f, u0, u1) is the system of equa-
tions ∣∣∣∣∣∣∣∣∣

Pu = f on M

u|S = u0

∂νu = u1 on S.

We shall be interested in solving the Cauchy problem in C∞(M,K) and with
compactly supported data (see [2] for less regular solutions). The link with
fundamental solutions will be explained in Section 4.4.

4.1 Uniqueness of fundamental solutions

We first show the uniqueness of advanced and retarded fundamental solutions
at a point on globally hyperbolic spacetimes. One of the main ingredients
involved is the local solvability of the following inhomogeneous wave equation.

Proposition 6. Under the assumptions of Proposition 3, there exists for e-
very v ∈ D(Ω,C) a function u± ∈ C∞(Ω,C) such that∣∣∣∣∣Pu± = v

supp(u±) ⊂ JΩ
± (supp(v)).

Sketch of proof. It follows from Proposition 4 that, for every x ∈ Ω, there
exist fundamental solutions FΩ

± (x) for P at x on Ω. As in Section 1.2 we set

u±[ϕ] :=
∫

Ω

v(x)FΩ
± (x)[ϕ]dx

for every ϕ ∈ D(Ω,C). There are three assertions to be shown.

• The map u± : D(Ω,C) → C is a solution of Pu± = v in D′(Ω,C): that u±
defines a distribution follows from FΩ

± (x) being one, from x 7→ FΩ
± (x)[ϕ]

being smooth for every ϕ ∈ D(Ω,C) and from an uniform estimate of the
order of the distributions FΩ

± (x) for x running in Ω, see [1, Lemma 2.4.4].
As for Pu± = v in the distributional sense, this is exactly the computation
carried out in Section 1.2 and which is justified.
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• The support condition: Let ϕ ∈ D(Ω,C) be such that u±[ϕ] 6= 0, then there
exists an x ∈ Ω such that FΩ

± (x)[ϕ]v(x) 6= 0, which implies supp(ϕ) ∩
supp(FΩ

± (x)) 6= ∅ and x ∈ supp(v). Hence supp(ϕ) ∩ JΩ
± (x) 6= ∅, i.e.,

x ∈ JΩ
∓ (supp(ϕ)), so that JΩ

∓ (supp(ϕ)) ∩ supp(v) 6= ∅, or equivalently
supp(ϕ) ∩ JΩ

± (supp(v)) 6= ∅, which was to be proved.
• The distribution u± is in fact a smooth section: this is the technical part

of the proof, which actually relies not only on Corollary 2 but also on the
explicit form of the local fundamental solutions on Ω, see [1, Sec. 2.6] for
details.

We state the main result of this section:

Theorem 1. Let P be a generalized d’Alembert operator on a globally hy-
perbolic spacetime (Mn, g). Then every solution u ∈ D′(M,C) with past- or
future-compact support of the equation Pu = 0 vanishes.

Sketch of proof. Assume u has past-compact support (the other case is com-
pletely analogous). One has to show that u[ϕ] = 0 for every ϕ ∈ D(M,C). The
idea is to apply Proposition 6 and solve the inhomogeneous wave equation to
the operator P ∗ (which is of generalized d’Alembert type, see Sec. 1.1)∣∣∣∣∣P

∗ψ = ϕ

supp(ψ) ⊂ JΩ
− (supp(ϕ))

for any fixed ϕ with “small” support (small enough in order to Proposition 6 be
applied). Since u has past-compact support one can hope for the intersection
supp(u) ∩ JΩ

− (supp(ϕ)) be compact and hence for

u[ϕ] = u[P ∗ψ]
= Pu︸︷︷︸

0

[ψ]

= 0,

which would be the result. The whole work is to justify this computation as
well as the assumptions on supp(ϕ), which requires global properties of the
causality relation, see [1, Thm. 3.1.1]. This completes the sketch of proof of
Theorem 1.

Since JM
+ (K) (resp. JM

− (K)) is past- (resp. future-) compact for any compact
subset K of a globally hyperbolic spacetime M , we obtain:

Corollary 4. Let P be a generalized d’Alembert operator on a globally hyper-
bolic spacetime (Mn, g) and x ∈ M . Then there exists at most one advanced
(resp. retarded) fundamental solution for P at x.
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4.2 Cauchy problem: local solvability

The existence of solutions to the Cauchy problem is a local-to-global construc-
tion. In this section we deal with the local aspect, which of course does not
require global hyperbolicity of the manifold.

Theorem 2. Let (Mn, g) be a spacetime and S be a smooth spacelike hyper-
surface with (timelike) unit normal vector field ν. Then for each open subset
Ω of M satisfying the hypotheses of Proposition 3 and such that S ∩ Ω is a
Cauchy hypersurface of Ω the following holds: for all u0, u1 ∈ D(S ∩ Ω,C)
and each f ∈ D(Ω,C), there exists a unique u ∈ C∞(Ω,C) with∣∣∣∣∣∣∣∣∣

Pu = f

u|S = u0

∂νu = u1.

Furthermore supp(u) ⊂ JΩ
+ (K) ∪ JΩ

− (K), where

K := supp(u0) ∪ supp(u1) ∪ supp(f).

Sketch of proof. Although Proposition 6 naturally enters the proof, it does
not straightforward imply the result. One has to formulate a separate ansatz.
Namely writing Ω as the product R× (S∩Ω) (which is possible since S∩Ω is
assumed to be a Cauchy hypersurface in Ω and because of [1, Thm. 1.3.10]),
one looks for a solution of the form

∞∑
j=0

tjuj(x),

where (t, x) ∈ R× (S ∩Ω) and uj ∈ C∞(S ∩Ω,C). As for the Hadamard co-
efficients one obtains inductive relations of the form uj = F(u0, u1, . . . , uj−1)
for every j ≥ 2, which then stand as definition for the uj in terms of u0 and
u1 on the whole of S ∩Ω. Coming back to the inhomogeneous equation, one
introduces a cut-off function σ as in the construction of local fundamental
solutions (see Sec. 3.3) and sets

û :=
∞∑

j=0

σ(
t

εj
)tjuj

with the uj ∈ C∞(S ∩ Ω,C) found above and a sequence (εj)j≥0 of positive
real numbers. Choosing the εj suitably small one obtains a smooth function
û on Ω such that Pû − f vanishes not on all Ω but at least on S ∩ Ω at
infinite order. Proposition 6 then provides smooth solutions ũ+ and ũ− of the
respective inhomogeneous problems on Ω:
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supp(ũ±) ⊂ JΩ
± (supp(w±)),

where w±|
JΩ
± (S∩Ω)

:= Pû − f and vanishes on the rest of Ω. The last step

consists in showing that u± := û− ũ± solves the wave equation Pu± = f on
JΩ
± (S ∩Ω) and vanishes on JΩ

∓ (S ∩Ω). The function u defined by

u :=

∣∣∣∣∣u+ on JΩ
+ (S ∩Ω)

u− on JΩ
− (S ∩Ω)

is then a smooth function on Ω solving the requested Cauchy problem.
The uniqueness - which is actually needed for the last step of the existence just
above - follows from an independent argument, which is an integral formula
for solutions of the Cauchy problem on Ω: namely, if u ∈ C∞(Ω,C) solves
Pu = 0, then∫

Ω

u(x)ϕ(x)dx =
∫

S∩Ω

(∂ν(FΩ [ϕ])u0 − FΩ [ϕ]u1)ds

for all ϕ ∈ D(Ω,C), where FΩ [ϕ] : D(Ω,C) → C, ψ 7→
∫

Ω
ϕ(x)(FΩ

+ (x)[ψ] −
FΩ
− (x)[ψ])dx and ds is the induced measure on S ∩ Ω, see [1, Lemma 3.2.2].

Therefore if u0 and u1 vanish on S ∩Ω then u vanishes - as distribution and
hence as function - on Ω.
The control of the support of the solution follows from the corresponding one
for the inhomogeneous problem (Proposition 6) and from the integral formula
just above. This completes the sketch of proof of Theorem 2.

Note that, since every point on a spacelike hypersurface S in M admits a
basis of neighbourhoods Ωj in M such that S ∩Ωj is a Cauchy hypersurface
of Ωj (roughly speaking one just has to consider the Cauchy development of
S ∩U in an open subset U meeting S, see e.g. [1, Lemma A.5.6]), Theorem 2
actually proves that the Cauchy problem with compactly supported data is
always locally solvable.

4.3 Cauchy problem: global solvability

We come to the central result of this survey:

Theorem 3. Let P be a generalized d’Alembert operator on a globally hyper-
bolic spacetime M and S ⊂M be a spacelike Cauchy hypersurface in M with
(timelike) unit normal ν.

i) For all (f, u0, u1) ∈ D(M,C) ⊕ D(S,C) ⊕ D(S,C), there exists a unique
u ∈ C∞(M,C) such that
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Pu = f

u|S = u0

∂νu = u1.

(9)

Moreover supp(u) ⊂ JM
+ (K) ∪ JM

− (K) with

K := supp(u0) ∪ supp(u1) ∪ supp(f).

ii) The map

D(M,C)⊕D(S,C)⊕D(S,C) → C∞(M,C)
(f, u0, u1) 7→ u,

where u ∈ C∞(M,C) is the solution of (9), is linear continuous.

Sketch of proof. The existence of u in i) , which is rather technical, is proved in
two main steps. First one constructs a solution u in a strip ]− ε, ε[×S (where
M is identified with R × S) for some ε > 0: this is the easier step, since it
roughly means gluing together local solutions obtained by Theorem 2 along
the hypersurface S ' {0}×S. There is only a finite number of them to be taken
into account since (JM

+ (K)∪JM
− (K))∩S is compact (outside this intersection

u should vanish along S). In the second step one shows that u can be extended
in the whole future and past of the strip. The core of the global theory lies
here. Namely using the local theory and the global hyperbolicity of M it can
be shown that u can be continued in the future or past “independently” of the
behaviour of the already existing u; in other words, no explosion can occur.
We refer to [1, Thm. 3.2.11] for a clean and thorough argumentation.
The uniqueness of u follows from another technical argument based on the
local integral formula described in the proof of Theorem 2, see [1, Cor. 3.2.4].
This shows i).
Statement ii), which should be interpreted as a stability result for waves
(solutions of the Cauchy problem depend continuously on the data), is a not-
so-direct application of the open mapping theorem using the continuity of
linear differential operators w.r.t. the topology of C∞(M,K) or of D(M,K)
(beware that the latter is not Fréchet). This completes the sketch of proof of
Theorem 3.

Corollary 5. Let P be a generalized d’Alembert operator on a globally hy-
perbolic spacetime M and S ⊂ M be a spacelike Cauchy hypersurface in
M with (timelike) unit normal ν. Then for all (f, u0, u1) ∈ C∞(M,C) ⊕
C∞(S,C)⊕C∞(S,C), there exists a unique u ∈ C∞(M,C) solving (9). More-
over supp(u) ⊂ JM

+ (K) ∪ JM
− (K) with K := supp(u0) ∪ supp(u1) ∪ supp(f).

Proof. Uniqueness already follows from Theorem 3. Let (Kn)n be a sequence

of compact subsets of S with Kn ⊂
◦
Kn+1 and ∪nKn = S. Identify M with R×
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S and set K̃n := D(
◦
Kn)∩(]−n, n[×S), where D(

◦
Kn) is the so-called Cauchy-

development of
◦
Kn in M , see [1, Def. 1.3.5]. Then (K̃n)n is an increasing

sequence of relatively compact and globally hyperbolic open subsets of M
with ∪nK̃n = M . Furthermore

◦
Kn⊂ S ' {0} × S is a Cauchy hypersurface

of K̃n for every n. Let χn be a smooth function with compact support on
M such that χn|fKn

= 1. From Theorem 3 there exists a unique solution
vn ∈ C∞(M,C) to the Cauchy problem∣∣∣∣∣∣∣∣∣

Pvn = χnf

vn|S = χnu0

∂νvn = χnu1.

If m > n then v := vm−vn solves Pv = 0 on the globally hyperbolic manifold
K̃n with v = ∂νv = 0 on the Cauchy hypersurface

◦
Kn of K̃n, therefore

Theorem 3 implies v = 0 on K̃n. Hence u(x) := vn(x) for x ∈ K̃n defines a
smooth function u on M solving (9). The statement on the support is also a
straightforward consequence of Theorem 3. This shows Corollary 5.

4.4 Global existence of fundamental solutions on globally
hyperbolic spacetimes

We come back to the issue of finding global fundamental solutions on globally
hyperbolic spacetimes. Although they seem to be far away, Theorem 3 makes
fundamental solutions easily accessible:

Theorem 4. Let P be a generalized d’Alembert operator on a globally hyper-
bolic spacetime M . Then there exists for each x ∈ M a unique fundamental
solution F+(x) with past-compact support for P at x and a unique one F−(x)
with future-compact support.
They satisfy:

• supp(F±(x)) ⊂ JM
± (x) and

• for every ϕ ∈ D(M,C) the map M → C, x 7→ F±(x)[ϕ] is a smooth
function with

P ∗(x 7→ F±(x)[ϕ]) = ϕ.

Proof. Uniqueness has already been obtained in Corollary 4, so that we just
have to prove existence. Identify M with R × S, where ∂

∂t is future-directed
and each {s} × S is a smooth spacelike Cauchy hypersurface (this is always
possible on globally hyperbolic spacetimes, see [1, Thm. 1.3.10]). Fix a smooth
unit vector field ν normal to all {s} × S. Set, for x ∈M and ϕ ∈ D(M,C),

F+(x)[ϕ] := (χϕ)(x),
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where χϕ is the solution of the Cauchy problem∣∣∣∣∣∣∣∣∣
P ∗χϕ = ϕ

χϕ|{t}×S
= 0

∂νχϕ|{t}×S
= 0

(10)

and t is chosen such that supp(ϕ) ⊂ IM
− ({t} × S) (such a t can be found

because of the compactness of supp(ϕ)). If t is fixed then the existence of
a solution of (10) is guaranteed by Theorem 3. However one has to show
that χϕ is well-defined, i.e., does not depend on t. Let t′ ∈ R be such that
supp(ϕ) ⊂ IM

− ({t′} × S) and with, say, t < t′. Let (χϕ)′ be the solution of
(10) with t′ instead of t. We show that (χϕ)′ vanishes as well as its normal
derivative on {t} × S.
Since supp(ϕ) is compact there exists a t− < t such that supp(ϕ) ⊂ IM

− ({t−}×
S). Consider

Mt− := ∪τ>t−{τ} × S,

which is a globally hyperbolic spacetime in its own right and in which {t′}×S
sits again as a Cauchy hypersurface. By assumption supp(ϕ) is contained
in the complement of Mt− in M , so that the restriction of (χϕ)′ onto Mt−

solves the Cauchy problem Pu = 0, u|{t′}×S
= 0 and ∂νu|{t′}×S

= 0. The
uniqueness of solutions (Theorem 3) implies that (χϕ)′|Mt−

= 0, in particular

(χϕ)′ vanishes in a neighbourhood of {t} × S.
Now the smooth function χ := χϕ − (χϕ)′ satisfies P ∗χ = 0 on M and
χ|{t}×S

= ∂νχ|{t}×S
= 0, hence by Theorem 3 again one concludes that χ = 0

on M . Therefore χϕ (and thus F+(·)[ϕ]) is well-defined.
We next show that, for a fixed x ∈M , the map ϕ 7→ F+(x)[ϕ] is an advanced
fundamental solution for P at x on M . The linearity as well as the continuity
of F+(x) both directly follow from Theorem 3. On the other hand, given ϕ ∈
D(M,C), the function ϕ itself provides an obvious solution to P ∗u = P ∗ϕ with
u|{t}×S

= ∂νu|{t}×S
= 0; since supp(P ∗ϕ) ⊂ supp(ϕ) is compact, Theorem 3

may be applied and we deduce that χP∗ϕ = ϕ, which in turn implies from the
definition of F+(x) that

PF+(x)[ϕ] = F+(x)[P ∗ϕ]
= (χP∗ϕ)(x)
= ϕ(x).

This holds for all ϕ ∈ D(M,C), that is, PF+(x) = δx.
The support condition is equivalent to supp(χϕ) ⊂ JM

− (supp(ϕ)) for every
ϕ ∈ D(M,C). But for any such ϕ the open subset M ′ := M \ JM

− (supp(ϕ))
of M is again a globally hyperbolic manifold containing {t} × S as Cauchy
hypersurface, where t is chosen as above (this follows from e.g. [1, Lemma
A.5.8] and a short reflection). The function u := χϕ|M′ satisfies P ∗u = 0 with
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u|{t}×S
= ∂νu|{t}×S

= 0, hence Theorem 3 again implies that χϕ|M′ = 0, which
was to be proved.
Thus F+(x) is an advanced fundamental solution for P at x on M . That
x 7→ F+(x)[ϕ] is smooth with P ∗(x 7→ F+(x)[ϕ]) = ϕ for any ϕ ∈ D(M,C) is
trivially seen from the definition of F+(·). The construction of F− is completely
analogous, replacing all “+” by “−” and vice-versa. This achieves the proof
of Theorem 4.

In particular the wave equation Pu = f with f ∈ D(M,C) possesses a unique
solution u± ∈ C∞(M,C) with supp(u±) ⊂ JM

± (supp(f)), or equivalently with
supp(u+) (resp. supp(u−)) being past- (resp. future-) compact on a globally
hyperbolic spacetime M .

Remark. Because of the definition of Riesz distributions we have only proved
the existence of solutions to wave equations as well as fundamental solutions
for K = C. In fact, all existence and uniqueness results from Corollary 1
to Theorem 4 still hold replacing C by K = R for real-valued generalized
d’Alembert operators P , where “real-valued” means that Pu ∈ C∞(M,R)
whenever u ∈ C∞(M,R) (or, equivalently, that the coefficients aj and b1
in local coordinates are real-valued functions, see Section 1.1). Indeed, we
have already noticed in Section 2 that Riesz distributions for real parameters
are real-valued; moreover, if P is real-valued then all objects involved in the
local construction are real-valued (e.g. the Riesz distributions RΩ

±(2k + 2, x)
or the Hadamard coefficients, see Proposition 1) hence provide real-valued
fundamental or classical solutions. In case uniqueness is available (such as in
Theorems 3 and 4) the existence of real-valued solutions for such a P and for
real-valued data straightforward follows from the corresponding result in the
complex case, since the complex conjugate u of the distribution u then solves
the same equation as u, hence u = u.

5 Green’s operators

We now briefly sketch how solutions of wave equations can be encoded into a
pair of operators, which furthermore offer an entrance door to (local) quantum
field theory for generalized d’Alembert operators.

Definition 11. Let P be a generalized d’Alembert operator on a spacetime
M . A linear map

G+ : D(M,K) −→ C∞(M,K),

satisfying:

i) P ◦G+ = IdD(M,K),
ii) G+ ◦ P |D(M,K) = IdD(M,K),
iii) supp(G+ϕ) ⊂ JM

+ (supp(ϕ)) for all ϕ ∈ D(M,K)
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is called advanced Green’s operator for P on M .

A retarded Green’s operator G− for P on M is a linear map D(M,K) −→
C∞(M,K) satisfying i), ii) and supp(G−ϕ) ⊂ JM

− (supp(ϕ)) for all ϕ ∈
D(M,K).

For P a (retarded or advanced) Green’s operator is almost an inverse: it is a
right inverse to P , however a left inverse to P|D(M,K)

and not to P itself. This
consideration reminds us of Section 1.2, where we have seen how fundamen-
tal solutions generally provide solutions to the corresponding wave equation
for “every” right member. One could therefore expect a direct relationship
between fundamental solutions and Green’s operators. In fact Green’s opera-
tors and fundamental solutions are two different versions of mainly the same
concept:

Proposition 7. Let P be a generalized d’Alembert operator on a spacetime
M . Then advanced (resp. retarded) Green’s operators for P stand in one-to-
one correspondence with retarded (resp. advanced) fundamental solutions for
P ∗. More precisely, if there exists for every x ∈ M a fundamental solution
F±(x) for P ∗ at x on M with

a) supp(F±(x)) ⊂ JM
± (x),

b) x 7→ F±(x)[ϕ] is smooth and
c) P (x 7→ F±(x)[ϕ]) = ϕ

for each ϕ ∈ D(M,K), then the formula

(G∓ϕ)(x) = F±(x)[ϕ] ∀x ∈M, ∀ϕ ∈ D(M,K) (11)

defines a linear map G∓ : D(M,K) → C∞(M,K) satisfying i), ii) in Defini-
tion 11 as well as supp(G∓ϕ) ⊂ JM

∓ (supp(ϕ)).
Conversely, every linear map G∓ : D(M,K) → C∞(M,K) having those pro-
perties defines at each point x ∈M through (11) a fundamental solution F±(x)
for P ∗ satisfying a), b) and c).

The proof of Proposition 7 is an easy exercise left to the reader. Combining
it with Theorem 4, we obtain the

Corollary 6. Every generalized d’Alembert operator on a globally hyperbolic
spacetime admits a unique advanced and a unique retarded Green’s operator.

We next list the properties which are needed for quantum field theory. On a
given spacetime M we introduce the space

C∞sc (M,K) := {u ∈ C∞(M,K) | ∃K ⊂M compact s.t.
supp(u) ⊂ JM

+ (K) ∪ JM
− (K)}.

The “sc” stands for “spacelike compact”, since in caseM is globally hyperbolic
the intersection of JM

+ (K)∪JM
− (K) with any Cauchy hypersurface is compact.
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It can be proved that C∞sc (M,K) is a Fréchet vector space w.r.t. the topology
for which a sequence (uj)j converges towards 0 if and only if there exists a
compact K ⊂ M with supp(uj) ⊂ JM

+ (K) ∪ JM
− (K) for all j and such that

(uj)j converges to 0 in every Ck-norm on any compact subset of M .

Proposition 8. Let P be a generalized d’Alembert operator on a spacetime
M . Let G+, G− be advanced and retarded Green’s operators for P on M . Set
G := G+ −G−. Then the following holds:

i) The sequence

0 −→ D(M,K) P−→ D(M,K) G−→ C∞sc (M,K) P−→ C∞sc (M,K) (12)

is a complex (i.e., the composition of any two successive maps is zero)
which is exact at the first D(M,K).

ii) If M is globally hyperbolic, then the formal adjoint of G± coincides with
G∗∓, where G∗+, G∗− are the Green’s operators for P ∗ on M .

iii) If M is globally hyperbolic, then the complex (12) is exact everywhere and
all maps are sequentially continuous.

Proof. By definition of Green’s operators, (12) is obviously a complex. Fur-
thermore, if ϕ ∈ D(M,K) solves Pϕ = 0, then applying e.g. G+ one has
G+(Pϕ) = ϕ = 0, which shows exactness at the first D(M,K) and i).
Assume now that M is globally hyperbolic. Let ϕ,ψ ∈ D(M,K), then
supp(G±ϕ) ∩ supp(G∗∓ψ) is compact, so that the following computation is
justified: ∫

M

〈G±ϕ,ψ〉dx =
∫

M

〈G±ϕ, P ∗G∗∓(ψ)〉dx

=
∫

M

〈PG±ϕ,G∗∓ψ〉dx

=
∫

M

〈ϕ,G∗∓ψ〉dx,

where 〈· , ·〉 denotes the natural Euclidean or Hermitian inner product on K.
This proves ii).
Still assuming M to be globally hyperbolic, let ϕ ∈ D(M,K) be such that
Gϕ = 0. Then the function ψ := G+ϕ = G−ϕ is smooth with supp(ψ) ⊂
JM

+ (supp(ϕ)) ∩ JM
− (supp(ϕ)), which is compact. Moreover, Pψ = PG+ϕ =

ϕ. This shows exactness at the second D(M,K). Let now u ∈ C∞sc (M,K)
solve Pu = 0. After possibly enlarging K we may assume that a compact
subset K of M exists such that supp(u) ⊂ IM

+ (K) ∪ IM
− (K). Let {χ+, χ−}

be a partition of unity subordinated to the open covering {IM
+ (K), IM

− (K)}
of IM

+ (K) ∪ IM
− (K). Setting u± := χ±u we obtain u = u+ + u−, where

u± is smooth with supp(u±) ⊂ IM
± (K). Set now ϕ := Pu+ = −Pu−. It

is a smooth function with supp(ϕ) ⊂ JM
+ (K) ∩ JM

− (K), which is compact,
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hence ϕ ∈ D(M,K). We check that Gϕ = u. Although u± does not have
compact support, we may integrate G±ϕ against any ψ ∈ D(M,K); using the
compacity of supp(u±) ∩ JM

∓ (supp(ψ)) and ii) we obtain∫
M

〈G±ϕ,ψ〉dx =
∫

M

〈ϕ, (G±)∗ψ〉dx

=
∫

M

〈ϕ,G∗±ψ〉dx

= ±
∫

M

〈Pu±, G∗∓ψ〉dx

= ±
∫

M

〈u±, P ∗G∗∓ψ〉dx

= ±
∫

M

〈u±, ψ〉dx,

that is, G±ϕ = ±u±, so that Gϕ = u+ + u− = u. This shows exactness
at the first C∞sc (M,K). The sequential continuity of all maps of (12) follows
from P being a differential operator and from Theorem 3. This shows iii) and
completes the proof of Proposition 8.

One of the reasons why Green’s operators are so important for quantum field
theory is the following: given a formally self-adjoint generalized d’Alembert
operator P on a globally hyperbolic spacetime M , one can form a symplectic
vector space in a canonical way. Namely, set

V := D(M,K)/Ker(G),

where G := G+ − G− as above and G+, G− are the Green’s operators for
P . From Proposition 8.ii) the map (ϕ,ψ) 7→

∫
M
〈Gϕ,ψ〉dx defines a skew-

symmetric bilinear form on V , which is by definition non-degenerate and hence
a symplectic form on V . Now independently of this there also exists a cano-
nical way to produce a C∗-algebra out of a symplectic vector space, which
consists in defining its so-called CCR-representation, where CCR stands for
“canonical commutation relations”. Composing both one obtains a kind of
map - actually a functor - associating to each pair (M,P ) a C∗-algebra. Of
course this construction is made so as to translate into algebraic properties
the analytical ones of the operator and the geometric ones of the underlying
manifold; for example, an inclusion of manifolds corresponds to an inclusion
of algebras (this has to do with functoriality) and if two globally hyperbolic
open subsets of M are causally independent (i.e., if there is no causal curve
from the closure of one to the closure of the other one) then the corresponding
algebras commute. Since quantization is not the topic of this lecture, we stop
here and refer the reader to other introductory lectures such as K. Freden-
hagen’s one and [1, Chap. 4].
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