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Abstract: We study the higher homotopy groups of the Thom space of

a vector bundle and connect them with the cobordism groups via the

Thom isomorphism. We rely heavily on [1, Sec. 4.1] for Section 1, on [2,

Sec. 1] and [3, Sec. 17] for Section 2 and on [3, Sec. 18] for Section 3.

1 Higher homotopy groups

In this section let X be any topological space and I := [0, 1] be the unit
interval. We call topological pair a pair (X,A) where A ⊂ X is a subset and
topological triple a triple (X,A, a) where A ⊂ X is a subset and a ∈ A is a
point in A.

1.1 Homotopy groups

Definition 1.1 Let x0 ∈ X be a point and n ∈ N.1 Define

πn(X, x0) := {f : In −→ X continuous | f(∂In) = {x0}}/'∂In ,

where ∂In = {x ∈ In |xi ∈ {0, 1} for at least one i} and two continuous
maps fi : In −→ X with fi(∂I

n) = {x0} (i = 0, 1) satisfy f0 '∂In f1 if and
only if they are homotopic through maps satisfying the same property, i.e.,
iff there exists H : [0, 1] × In −→ X continuous with H(i, ·) = fi for both
i = 0, 1 and H(t, ∂In) = {x0} for all t ∈ [0, 1].

1Call this N0 if you prefer.
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A map f : In −→ X with f(∂In) = x0 will be denoted by f : (In, ∂In) −→
(X, x0).

2 In case n ≥ 1, the set πn(X, x0) can be identified with that of
pointed homotopy classes of continuous maps from the n-dimensional sphere
Sn = In/∂In to X.

Examples 1.2

1. For n = 0 the set π0(X, x0) can be identified with that of path-
connected components of X. This is independent of x0 because of
∂I0 = ∅, in particular it can be denoted by π0(X) instead of π0(X, x0).

2. For n = 1 the set π1(X, x0) is the usual (pointed) fundamental group.

Proposition 1.3 Let x0 ∈ X and n ∈ N\{0}. Then πn(X, x0) has a natural
group structure which is furthermore abelian if n ≥ 2.

From now on πn(X, x0) will be called (in case n ≥ 1) the nth-homotopy group
of X with basepoint x0. The group structure will be denoted multiplicatively
if n = 1 and additively if n ≥ 2.
We look at the dependence of the homotopy groups upon the basepoint.
Given any two points x0, x1 ∈ X joined by a continuous path c : [0, 1] −→
X (where c(i) = xi, i = 0, 1), there is a natural map

{
f : (In, ∂In) −→

(X, x0) continuous
}

γc−→
{
f : (In, ∂In) −→ (X, x1) continuous

}
, where

γc(f) : (In, ∂In) −→ (X, x1) is obtained as in the (missing) figure. Note that,
if n = 1, the map γc(f) is the composition of the paths usually denoted by
cfc (see below), where c(t) := c(1 − t). The following lemma shows that γc
induces a group isomorphism πn(X, x0) −→ πn(X, x1) (where n ≥ 1) which
only depends on the homotopy class of c.

Lemma 1.4 (π1-action on πn) Let x0, x1 ∈ X lie in the same path-con-
nected component of X, let c : [0, 1] −→ X be a continuous path from x0 to
x1 and f, f ′ : (In, ∂In) −→ (X, x0) be continuous maps. Assume n ≥ 1.

i) If f '∂In f ′, then γc(f) '∂In γc(f ′). In particular, the map γc induces
a map γc : πn(X, x0) −→ πn(X, x1).

ii) γc(f ·f ′) '∂In γc(f) ·γc(f ′). In particular, γc is a group homomorphism.

iii) If c′ : [0, 1]→ X is a continuous path from x0 to x1 with c '∂I c′, then
γc(f) '∂In γc′(f). In particular, γc only depends on the homotopy class
of c (where homotopies fix ∂I).

2More generally, the notation f : (X,A) −→ (Y,B) means f is a map from X into Y
sending A ⊂ X into B ⊂ Y .
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iii)’ If c is constant, then γc = idπn(X,x0).

iv) If c′ : [0, 1] → X is a continuous path from x1 to x2 ∈ X, then
γcc′(f) '∂In γc(γ

′
c(f)), where cc′ : I → X, t 7→ c(2t) for 0 ≤ t ≤ 1

2

and t 7→ c′(2t − 1) for 1
2
≤ t ≤ 1, is the natural composition of paths.

In particular, γc is a group isomorphism.

As a consequence, [c] 7→ γc induces a group homomorphism π1(X, x0) −→
Aut(πn(X, x0)), which turns πn(X, x0) into a Z[π1(X, x0)]-module.

Note in particular that, of X is path connected (i.e., if π0(X) = 0), the groups
πn(X, x0) and πn(X, x1) are isomorphic for all x0, x1 ∈ X and n ≥ 1. In that
case, they are usually denoted by πn(X) instead of πn(X, x0).

Like the fundamental group, homotopy groups have the following functorial
property.

Lemma 1.5 (πn is a functor) Let Y be any topological space with base-
point y0 and assume n ≥ 1. Let ϕ : (X, x0) −→ (Y, y0) be any continuous
map. Then [f ] 7→ [ϕ◦f ] defines a group homomorphism πn(ϕ) : πn(X, x0) −→
πn(Y, y0) satisfying:

i) For any continuous map ψ : (X, x0) −→ (Y, y0) homotopic to ϕ (through
maps sending x0 to y0), we have πn(ψ) = πn(ϕ).

ii) For any continuous map χ : (Y, y0) −→ (Z, z0) (where Z is an arbitra-
ry topological space and z0 ∈ Z), we have πn(χ ◦ ϕ) = πn(χ) ◦ πn(ϕ).
Moreover, πn(idX) = idπn(X,x0).

As a straightforward consequence, the group homomorphism πn(ϕ) is an iso-
morphism as soon as ϕ is a homotopy equivalence (with basepoint).

The nth homotopy group of a product is the product of the nth homotopy
groups of the factors:

Lemma 1.6 Let (Xi)i∈I be an arbitrary family of path-connected topological
spaces. Then πn(

∏
i∈I

Xi) −→
∏
i∈I

πn(Xi), [f ] 7→ ([fi])i∈I is a well-defined group

isomorphism.

Thanks to the lifting property of maps and homotopies through coverings,
the higher homotopy groups do not see covering maps:
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Lemma 1.7 If p : (X, x0) −→ (Y, y0) is a covering map, then πn(p) is an
isomorphism for all n ≥ 2.

Examples 1.8

1. A space X is called n-simple if and only if it is path-connected and the
π1-action on πk(X) (see Lemma 1.4) is trivial for all 1 ≤ k ≤ n.

2. A space X is called aspherical if and only if it is path-connected and
πn(X) = 0 for all n ≥ 2. For instance, all contractible spaces are
aspherical. More generally, all spaces with contractible universal cover
are aspherical.

3. In case X = Sn one has πm(Sn) = 0 for m < n and πn(Sn) = Z as
a corollary of Hurewicz theorem below. However, the higher homotopy
groups of Sn are only partially known, see table on [1, p.339].

Definition 1.9 A topological space X is called n-connected if and only if
πk(X) = 0 for all 0 ≤ k ≤ n.

Obviously, a spaceX is n-connected with n ≥ 1 if and only if every continuous
map Sn → X is (freely) homotopic to a constant map.

1.2 Hurewicz theorem

Homology and homotopy are related via the famous Hurewicz theorem (the
second part can be found in [2, p.207]):

Theorem 1.10 (Hurewicz) Let X be an (n−1)-connected topological space
with n ≥ 2. Then the (well-defined) group homomorphism

h : πk(X) −→ Hk(X,Z)

[f ] 7−→ Hk(f)([Sk])

is an isomorphism for all 1 ≤ k ≤ n, where [Sk] ∈ Hk(S
k,Z) ∼= Z is the

generator fixed by the canonical orientation of Sk. If moreover X is a finite
CW-complex, then h has finite kernel and cokernel for all 1 ≤ k < 2n− 1.

For n = 1 it is well-known that h is surjective with kernel the commutator
subgroup [π1(X), π1(X)] of π1(X), in particular h induces an isomorphism
π1(X)/[π1(X), π1(X)] −→ H1(X,Z).

There exists a relative version of this theorem: if a topological pair (X,A)
is (n − 1)-connected with n ≥ 2 and 1-connected A 6= ∅ (meaning that
πk(X,A) = 0 for all 1 ≤ k ≤ n− 1 and X is path-connected), then πk(X,A)
is canonically isomorphic to Hk(X,A) for all 1 ≤ k ≤ n.

4



1.3 Relative homotopy groups

In this subsection, we denote by Jn−1 := ∂In \ In−1 ⊂ ∂In, where In−1 =
In−1 × {0} ⊂ ∂In.

Definition 1.11 Let A ⊂ X be an arbitrary subset with x0 ∈ A and n ∈
N \ {0}. Define

πn(X,A, x0) := {f : In −→ X cont. | f(∂In) ⊂ A and f(Jn−1) = {x0}}/',

where two continuous maps fi : In −→ X with fi(∂I
n) ⊂ A and fi(J

n−1) =
{x0} (i = 0, 1) satisfy f0 ' f1 if and only if they are homotopic through
maps satisfying the same property, i.e., iff there exists H : [0, 1]× In −→ X
continuous with H(i, ·) = fi for both i = 0, 1 and H(t, ∂In) ⊂ A as well as
H(t, Jn−1) = {x0} for all t ∈ [0, 1].

As in the non-relative case, we have the following:

Proposition 1.12 Let A ⊂ X with x0 ∈ A and n ∈ N \ {0, 1}. Then
πn(X,A, x0) has a natural group structure which is furthermore abelian if
n ≥ 3.

In case n ≥ 2, the set πn(X,A, x0) is called nth homotopy group of X relative
to A. Note that, obviously, πn(X, {x0}, x0) = πn(X, x0). Beware there is no
natural group structure in case n = 1.

The set πn(X,A, x0) for n ≥ 2 can be seen as that of all pointed homo-
topy classes of continuous maps (Dn, Sn−1 = ∂Dn, s0) → (X,A, x0), where
Dn := {x ∈ Rn | |x| ≤ 1} is the usual closed n-dimensional disk and s0 ∈ Sn−1
is e.g. the North pole.

As before, relative homotopy groups with different basepoints can be related
in a natural way provided there is a curve joining them running in the subset
A:

Lemma 1.13 (π1-action on πn, relative case) For x0, x1 ∈ A ⊂ X as-
sume the existence of a continuous map c : I −→ A with c(i) = xi, i = 0, 1.
Then for every n ≥ 2 there is a natural group isomorphism γc : πn(X,A, x0)→
πn(X,A, x1), only depending on the homotopy class of c in A and satisfying
γx0 = id for the constant path x0 as well as γcc′ = γc ◦ γc′ for c′ : [0, 1] −→ X
continuous with c(0) = x1. In particular, there is a natural group homomor-
phism π1(A, x0) −→ Aut(πn(X,A, x0)).
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Again, if A is path-connected, the group πn(X,A, x0) is often denoted simply
by πn(X,A). Relative homotopy groups also give rise to a functor:

Lemma 1.14 (πn is a functor, relative case) Let (Y,B) be any topolo-
gical pair, y0 ∈ B a point and assume n ≥ 2. Let ϕ : (X,A, x0) −→ (Y,B, y0)
be any continuous map (hence ϕ(A) ⊂ B and ϕ(x0) = y0). Then [f ] 7→
[ϕ ◦ f ] defines a group homomorphism πn(ϕ) : πn(X,A, x0) −→ πn(Y,B, y0)
satisfying:

i) For any continuous map ψ : (X,A, x0) −→ (Y,B, y0) homotopic to ϕ
(through maps (X,A, x0)→ (Y,B, y0)), we have πn(ψ) = πn(ϕ).

ii) For any continuous map χ : (Y,B, y0) −→ (Z,C, z0) (where (Z,C, z0)
is an arbitrary topological triple), we have πn(χ ◦ ϕ) = πn(χ) ◦ πn(ϕ).
Moreover, πn(idX) = idπn(X,A,x0).

There is however a particular feature about relative homotopy groups:

Proposition 1.15 (long exact homotopy sequence) Let (X,A, x0) be a
topological triple. Then the following sequence is exact:

. . . −→ πn(A, x0)
πn(i)−→ πn(X, x0)

πn(j)−→ πn(X,A, x0)
∂n−→ πn−1(A, x0) −→ . . . −→ π0(X, x0),

where i : (A, x0)→ (X, x0) and j : (X, {x0}, x0)→ (X,A, x0) are the natural
inclusions and ∂n([f ]) := [f|In−1 ] (again In−1 ∼= In−1 × {0} ⊂ ∂In).

Exactness when no group structure is at hand means what it usually means:
the set of elements mapped to 0 (which is the homotopy class of the constant
map) is the image of the preceding arrow.

The proof of Proposition 1.15 is elementary and relies on the following so-
called “compression lemma”:

Lemma 1.16 Let f(In, ∂In, Jn−1) −→ (X,A, x0) be a continuous map. Then
[f ] = 0 ∈ πn(X,A, x0) if and only if f is homotopic relatively to ∂In = Sn−13

to a continuous map f ′ : In −→ A.

2 Cobordisms and cobordism groups

Unless otherwise mentioned, all manifolds in this section will be assumed to
be smooth - but not necessarily connected!

3meaning that the homotopy restricted to ∂In does not depend on t

6



2.1 Cobordisms

Definition 2.1

i) A (smooth) manifold triad is a triple (W ;V0, V1), where W is a compact
manifold with boundary ∂W = V0

∐
V1 (hence V0 and V1 are closed

hypersurfaces of W ).

ii) A cobordism from a manifold M0 to another manifold M1 is a 5-tuple
(W ;V0, V1;h0, h1), where (W ;V0, V1) is a manifold triad and hi : Vi −→
Mi are (smooth) diffeomorphisms, i = 0, 1.

In particular, M0 and M1 have to be closed and to have the same dimension
in order for a cobordism from M0 to M1 to exist.

Examples 2.2

1. Given any closed manifold M , there is always a cobordism from M to
itself: just take (W := [0, 1]×M,V0 := {0} ×M,V1 := {1} ×M ;h0 :=
p2, h1 := p2), where p2 is the projection onto the second factor.

2. More generally, if h : M →M ′ is a diffeomorphism between two closed
manifolds M and M ′, then (W := [0, 1] × M,V0 := {0} × M,V1 :=
{1} ×M ;h0 := p2, h1 := h ◦ p2) is a cobordism from M to M ′.

3. If we accept ∅ as a closed manifold (of any dimension), then for any
compact manifold W , there is a cobordism from the closed manifold
M := ∂W to ∅. In particular, if (W ;V0, V1;h0, h1) is a cobordism from
M0 to M1, then W can also be seen as a cobordism from M0

∐
M1 to

∅. For instance, using Example 2.2.1 just above, there always exists a
cobordism from M

∐
M to ∅.

Note that, if we did not impose W to be compact, then there would exist
a cobordism from every boundaryless manifold M to ∅: just consider W =
M × [0,∞[.

Definition 2.3 Two cobordisms (W ;V0, V1;h0, h1) and (W ′;V ′0 , V
′
1 ;h′0, h

′
1)

from a manifold M0 to a manifold M1 are called equivalent if and only if
there exists a diffeomorphism g : W −→ W ′ with h′i ◦ g = hi for both i = 0, 1
(in particular g(Vi) = V ′i ).

This obviously defines an equivalence relation on all cobordisms from M0 to
M1. Cobordisms having a boundary piece in common can be glued together
thanks to the following
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Lemma 2.4 (Gluing cobordisms) Let (W ;V0, V1) and (W ′;V ′1 , V2) be two
manifolds triads with V1 6= ∅. Assume the existence of a diffeomorphism

V1
h−→ V ′1 and consider W ∪h W ′ := W

∐
W ′
/x ∼ h(x) with its quotient

topology. Then W ∪hW ′ admits a smooth manifold structure such that both
inclusions W,W ′ ↪→ W ∪hW ′ are smooth embeddings. This smooth structure
is unique up to diffeomorphisms leaving V0, V1 ∼= V ′1 and V2 fixed.

In a formal way, we can now form a category whose objects are the closed
manifolds and whose morphisms from M0 to M1 are the equivalence classes of
cobordisms from M0 to M1. In case the corresponding morphism-sets are non-
empty, the composition map Mor(M1,M2) ×Mor(M0,M1) → Mor(M0,M2)
is given by the gluing procedure above (Lemma 2.4), where one should pay
attention to the fact that the gluing is still well-defined on the level of
cobordism-classes and that the composition we obtain is associative. Each
monoid Mor(M,M) has a neutral element, namely ιM := [([0, 1]×M, {0} ×
M, {1} ×M ; p2, p2)] (from Examples 2.2.1).

Note 2.5 Two cobordism-classes C and C ′ satisfying CC ′ = ιM do not neces-
sarily satisfy C ′C = ιM , as the following simple example with M = S1 shows
[figure: 2 cylinders glued together; moreover, a disk of the left part belongs
to the right one].

The set Mor(M,M) of cobordism classes from M to itself will be henceforth
denoted by HM and that of invertible cobordism classes by GM . Example
2.2.2 provides a map Diffeo(M) → HM via h 7→ Ch := [([0, 1] ×M, {0} ×
M, {1} ×M ; p2, h ◦ p2)]. It is elementary to show that ChCh′ = Ch′◦h, thus
h 7→ Ch is a group-antihomomorphism Diffeo(M) → GM . It is however not
injective in general. In order to describe its kernel, we need the notion of
pseudo-isotopy.

Definition 2.6 Two diffeomorphisms h0, h1 : M −→ M ′ are called pseudo-
isotopic if and only if there exists a diffeomorphism [0, 1]×M g−→ [0, 1]×M ′

such that g(i, ·) = (i, hi(·)) for both i = 0, 1.

Recall that two diffeomorphisms h0, h1 : M −→ M ′ are called isotopic if
and only if they are (smoothly) homotopic through diffeomorphisms, i.e., iff
there exists a smooth map H : [0, 1]×M −→ M ′ with H(i, ·) = hi for both
i = 0, 1 and H(t, ·) : M −→ M ′ is a diffeomorphism for all t ∈ [0, 1]. Any
isotopy is obviously a pseudo-isotopy (just set g(t, x) := (t,H(t, x)) for all
(t, x) ∈ [0, 1]×M), the converse being wrong in general.

Lemma 2.7 Given any two closed manifolds M and M ′, isotopy and pseudo-
isotopy define equivalence relations on Diffeo(M,M ′).
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We can now describe the kernel of the above map h 7→ Ch.

Proposition 2.8 With the above notations, two diffeomorphisms h0, h1 :
M −→M ′ satisfy Ch = Ch′ if and only if they are pseudo-isotopic.

2.2 Oriented cobordisms

There is an oriented version of cobordisms. Given an oriented manifold M ,
we shall denote by −M the manifold with the same smooth structure and
opposite orientation.

Definition 2.9

i) An oriented manifold triad is manifold triad (W ;V0, V1), where W is
oriented.

ii) An oriented cobordism from an oriented manifold M0 to an oriented
manifold M1 is a 5-tuple (W ;V0, V1;h0, h1), where (W ;V0, V1) is an
oriented manifold triad and h0 : V0 −→ M0, h1 : V1 −→ −M1 are
(smooth) orientation-preserving diffeomorphisms.

Beware that, if W is oriented, then ∂W carries an induced orientation as
follows: a basis (X2, . . . , Xn+1) of Tx∂W is oriented iff (X1, X2, . . . , Xn+1) is
an oriented basis of TxW for an (hence all) outward-pointing vector X1 ∈
TxW (and all x ∈ ∂W ). In case W is 1-dimensional (hence a union of finitely
many compact intervals), we define the orientation at a point x ∈ ∂W to
be 1 or −1 according to that point standing to the right or left end of the
corresponding interval respectively.

2.3 Cobordism groups

Definition 2.10 Two (closed) manifolds M0 and M1 are called

i) cobordant if and only if there exists a cobordism from M0 to M1.

ii) oriented cobordant if and only if they are oriented and there exists an
oriented cobordism from M0 to M1.

Both define equivalence relations on the set of all n-dimensional closed mani-
folds (resp. all oriented n-dimensional closed manifolds): each such manifold
is bordant to itself (via ιM , which also respects orientations in case M is
oriented), symmetry is clear (change the orientation of W in the oriented
case) and transitivity follows from Lemma 2.4, which also adapts to the
oriented case and to the case where M1 = ∅ (then just consider W0

∐
W2,

where ∂W0 = V0 and ∂W2 = V2).
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Definition 2.11 Let n ∈ N.

i) The nth cobordism group is defined as

ΩO
n := {closed n-dimensional manifolds}/∼,

where M0 ∼M1 iff there exists a cobordism from M0 to M1.

ii) The nth oriented cobordism group is defined as

ΩSO
n := {oriented closed n-dimensional manifolds}/∼or

,

where M0 ∼or M1 iff there exists an oriented cobordism from M0 to M1.

Both ΩO
n and ΩSO

n are abelian groups in a very natural way: define the additive
law via [M ]+ [M ′] := [M

∐
M ′] in both cases. This is obviously well-defined,

commutative and associative, with neutral element [∅], and the inverse of
[M ] is [M ] in the unoriented case and [−M ] in the oriented one. Note in
particular that [M ] = 0 if and only if M bounds a compact manifold (and an
oriented one in the oriented case). If one lets n runs over N, then one actually
obtains a (graded) ring structure on ΩO :=

⊕
n∈N

ΩO
n and ΩSO :=

⊕
n∈N

ΩSO
n via

[M ] · [N ] := [M ×N ].

Examples 2.12

1. For n = 0 it is easy to see that ΩO
0
∼= Z2 since any two points can be

joined by a segment. Moreover, ΩSO
0
∼= Z, where the isomorphism is

given by the sum of the signs of the (finitely many) points.

2. For n = 1 both ΩO
1 = ΩSO

1 = 0 since S1 obviously bounds an oriented
manifold.

3. For n = 2 the oriented cobordism group ΩSO
2 also vanishes since any

orientable closed surface bounds a compact manifold (called “handle-
body” in higher genus). It is a bit of work to show that ΩO

2
∼= Z2, with

the class of the real projective plane as a generator.

4. It is however not trivial to show that ΩSO
3 = 0 (Rokhlin’s theorem).

All cobordism groups turn out to be finitely generated, see Corollary 3.10.
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3 Thom spaces, their homology and homo-

topy

3.1 The Thom space of a vector bundle

Definition 3.1 Let E −→ B be a Riemannian (real) vector bundle over a
topological space B. The Thom space of E is the topological quotient T (E) :=
E/A, where A := {X ∈ E, |X| ≥ 1}.

Notes 3.2

1. In particular there exists a preferred point t0 := [A] ∈ T (E).

2. The map X 7→ X√
1−|X|2

defines a homeomorphism E \ A→ E. In par-

ticular, if the base B is compact, then the Thom space of E is homeo-
morphic to the Alexandrov 1-point compactification Ê := E

⊔
{∞} of

E (map t0 to ∞).

3. As another consequence of Note 3.2.2, Thom spaces associated to dif-
ferent Riemannian metrics on E are homeomorphic. Therefore, we do
not need any longer to specify any metric on E.

If B is a CW-complex, so is its Thom space:

Proposition 3.3 Let E −→ B be an n-ranked real vector bundle over a CW-
complex B. Then T (E) is an (n−1)-connected CW-complex with exactly one
0-cell and one (n+ k)-cell for each k-cell in B.

Proof: If eα ⊂ B is an open k-dimensional cell (that is, eα is homeomorphic

to
◦
Dk), then π−1(eα)∩ (E \A) is homeomorphic to

◦
Dn ×

◦
Dk∼=

◦
Dn+k, so that

π−1(eα)∩ (E \A) is an open (n+ k)-cell. Together with the 0-cell {t0}, their
disjoint union is T (E). The characteristic maps gluing the cells together can
be constructed as follows: if φα : Dk → B is a characteristic map for eα

(that is, φα is continuous, maps
◦
Dk homeomorphically onto eα and φα(∂Dk)

is contained in the union of finitely many cells of lower dimension), then the
pull-back bundle φ∗αE → Dk is trivial because of Dk being contractible (see
e.g. [4, Sec. 11.3] for the lifting property of homotopies in C0 bundles), hence
there exists a disk-bundle isomorphism Fα : Dk × Dn → φ∗α(E \ A). Com-
posing with the canonical projection E \ A→ T (E), we obtain a continuous
map Φα : Dk ×Dn → T (E) which turns out to be a characteristic map for
the open cell π−1(eα) ∩ (E \ A). �
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3.2 Homology groups of the Thom spaces

Proposition 3.4 Let E −→ B be an oriented n-ranked real vector bundle
over a topological space B. Then there exists a canonical group isomorphism
Hn+k(T (E), t0;Z)→ Hk(B;Z) for all k ∈ Z.

Proof: Set T0 := T (E) \ {0− section}. Since Sn−1 is a deformation retract of
Dn \ {0}, there exists a deformation retract from T0 onto {t0}. In particular
Hl(T0, {t0};Z) = 0 for all l ∈ Z. Thus, the long exact homology sequence
for the triple (T, T0, {t0}) yields Hl(T (E), {t0};Z) ∼= Hl(T (E), T0;Z) for all
l ∈ Z. Since {t0} is closed and contained in the interior T0, an excision
argument provides Hl(T (E), T0;Z) ∼= Hl(T (E) \ {t0}, T0 \ {t0};Z), which is
by construction of T (E) just Hl(E,E0;Z), where E0 := E\{0−section}. Now
we know that there exists a unique cohomology class u ∈ Hn(E,E0;Z) such
that u|F ∈ Hn(F, F0) is the given orientation class of the fibre F , for every F ;
moreover, the map y 7→ u∩ y is an isomorphism Hn+k(E,E0;Z)→ Hk(E)(it
is the so-called Thom isomorphism), for every k ∈ Z. Since B, seen as the
zero-section of E, is a deformation retract of E, we obtain by composing the
isomorphisms above

Hn+k(T (E), t0;Z) ∼= Hn+k(T (E), T0;Z) ∼= Hn+k(E,E0;Z) ∼= Hk(E;Z)) ∼= Hk(B;Z),

which was to be shown. �

3.3 Homotopy groups of the Thom spaces

Corollary 3.5 Let E −→ B be an oriented n(≥ 2)-ranked real vector bundle
over a finite CW-complex B. Then for any m ∈ {0, . . . , n − 2} there exists
a canonical group homomorphism πm+n(T (E))→ Hm(B;Z) which has finite
kernel and co-kernel.

Proof: Since by Proposition 3.3 the Thom space T (E) is (n − 1)-connected
and, by assumption, m + n < 2n − 1, the Hurewicz homomorphism h :
πm+n(T (E)) −→ Hm+n(T (E);Z) has finite kernel and cokernel. Proposi-
tion 3.4 yields a canonical group isomorphism Hm+n(T (E);Z)→ Hm(B;Z),
which concludes the proof. �

From now on we concentrate on smooth vector bundles (over smooth bases).
We denote by s0 : B −→ E the zero-section of a vector bundle E −→ B.

Theorem 3.6 Let E −→ B be a smooth n(≥ 1)-ranked real vector bundle
over a smooth manifold B and m ≥ 0 be a non-negative integer. Then for
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any continuous map Sm+n f→ T (E), there exists a continuous map Sm+n g→
T (E) which is homotopic to f , smooth on g−1(T (E) \ {t0}) and transverse
to B ∼= s0(B). Moreover, for any such map g, the cobordism class [g−1(B)] ∈
ΩO
m only depends on the homotopy class of g. In particular, [g] 7→ [g−1(B)]

defines a group homomorphism πm+n(T (E)) −→ ΩO
m which induces a group

homomorphism πm+n(T (E)) −→ ΩSO
m in case E is oriented.

Proof: The proof of Theorem 3.6 relies on the following lemma:

Lemma 3.7 Let m,n ∈ N and f : V −→ Rn be a smooth map from an
open subset V ⊂ Rm+n into Rn. Assume that 0 ∈ Rn is a regular value of f
throughout some closed subset X of V (that is, dxf : Rm+n → Rn is surjective
for all x ∈ X). Let K ⊂ V be a compact subset. Then for every ε > 0, there
exists a smooth map g : V → Rn such that g|V \K′ = f for some compact
subset K ′ ⊂ V , the map g has 0 as a regular value throughout X ∪ K and
‖g − f‖∞ < ε.

Proof: There exist a compact neighbourhood K ′ of K in V and a smooth
function χ : V −→ [0, 1] which is 1 on a neighbourhood of K and vanishes
outside K ′. Given any regular value y of f , consider the map gy : V → Rn,
x 7→ f(x)− χ(x) · y. Then gy is smooth, has 0 as a regular value throughout
(X \ K ′) ∪ K (because of χ|K = 1 and y being a regular value of f), coin-
cides with f outside K ′ and satisfies ‖gy − f‖∞ ≤ |y|. By the Sard-Brown
theorem the set of regular values of a smooth map is dense (in the target
manifold), we can achieve ‖gy − f‖∞ < ε by choosing y sufficiently close to
0 in Rn. Moreover, since actually ‖gy − f‖C1 < C(y)|y| for some continuous
and bounded function C of y, we can by possibly making ε smaller ensure
that 0 remains a regular value of gy throughout X∩K ′ as well. On the whole,
there is an appropriate choice of y making gy fulfill all required conditions.√

First, we have to accept the existence of a map f0 : Sm+n → T (E), homo-
topic to f with f−10 ({t0}) = f−1({t0}) and such that f0 is smooth outside
f−10 ({t0}) (see [4, Sec. 6.7]). Now we prove the result for f0 instead of f .
Since f−10 (B) is compact, included in f−10 (T (E) \ {t0}) and E is locally tri-
vial, there exist finite families {Ki}1≤i≤r and {Vi}1≤i≤r of compact subsets
of f−10 (T (E) \ {t0}) and finitely many trivializing open subsets {Ui}1≤i≤r for

E (i.e., π−1(Ui) ∼= Ui × Rn where E
π−→ B is the projection map) with

f−10 (B) ⊂
⋃r
i=1

◦
Ki⊂

⋃r
i=1Ki ⊂

⋃r
i=1 Vi, and f0(Vi) ⊂ Ui for each 1 ≤ i ≤ r.

We construct inductively on i continuous maps fi : Sm+n → T (E), 1 ≤ i ≤ r,
satisfying:

13



1. The map fi is homotopic and as close as desired to fi−1, f
−1
i ({t0}) =

f−10 ({t0}), fi is smooth outside f−10 ({t0}), fi|Sm+n\K′
i

= fi−1|Sm+n\K′
i

for

some compact subset K ′i of Vi;

2. The map fi is a fibrewise deformation of fi−1, that is, π ◦ fi = π ◦ f0
on Sm+n \ f−10 ({t0});

3. The map fi is transverse to B throughout K1 ∪ . . . ∪Ki.

The construction of fi from fi−1 is an elementary application of Lemma 3.7.
First we only need to care for fi one the open subset Sm+n \ f−10 ({t0}). Let

ρi := p
(i)
2 : π−1(Ui) → Rn be the second projection coming from the trivia-

lization over Ui. To construct fi on Vi we only need to define ρi ◦ fi, since
the first component of fi is determined by π ◦ fi = π ◦ f0. By assumption,
ρi ◦ fi−1 has 0 as a regular value throughout Vi ∩ (K1 ∪ . . . Ki−1) (the dif-
ferential dρi is fibrewise a linear isomorphism). Considering Vi as an open
subset of Rm+n ∼= Sm+n \ {pt} (make Vi slightly smaller in case Vi = Sm+n)
and ρi ◦ fi−1 as a smooth function V −→ Rn with 0 as a regular value
throughout the closed subset Xi := Vi ∩ (K1 ∪ . . . ∪ Ki−1) of Vi, Lemma
3.7 provides a smooth map ri : Vi −→ Rn, coinciding with ρi ◦ fi−1 outside
some compact subset K ′i of Vi and having 0 as a regular value through-
out Xi ∪ Ki = Vi ∩ (K1 ∪ . . . ∪ Ki). Define fi to be fi−1 on Sm+n \ K ′i
and fi := (π ◦ f0, ri) on Vi. Then fi is, by construction of ri, well-defined
as a map Sm+n → T (E), satisfies fi|Sm+n\K′

i

= fi−1|Sm+n\K′
i

, in particular

f−1i ({t0}) = f−10 ({t0}), fi is smooth outside f−10 ({t0}) and transverse to B
throughout K1 ∪ . . . ∪ Ki, as well as π ◦ fi = π ◦ f0 outside f−10 ({t0}). On
the whole, the map fi satisfies all we want. Now start with f0, take K0 := ∅
(keep no other condition in mind that f0 is smooth outside f−10 ({t0})) and
construct sucessively f1, . . . , fr as above. Set g := fr, then g does the job...
provided the inclusion f−1r (B) ⊂ K1 ∪ . . . ∪Kr is fulfilled. Note that the ho-
motopy property fi−1 ' fi at each step can be achieved by choosing and ri
sufficiently close to ρi◦fi−1. Even better: since f0 is away from B on the com-

pact subset Sm+n \ (
⋃r
i=1

◦
Ki), one can choose at each step the corresponding

εi small enough such that fi again remains away from B. Therefore, by an
appropriate choice of the ri’s at each step, we obtain the required map g.
Next we prove that the oriented cobordism class of the submanifold g−1(B)
only depends on the homotopy class of g. Let g, g′ : Sm+n → T (E) be
continuous maps with g−1({t0}) = g′−1({t0}), g and g′ are smooth out-
side g−1({t0}), are homotopic to each other and transverse to B. Then
there exists a homotopy (actually homotopic to the homotopy from g to g′)
h0 : [0, 1]×Sm+n −→ T (E) from g to g′ which is smooth outside h−10 ({t0}) and
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satisfies h0(t, ·) = g for all 0 ≤ t ≤ 1
3

as well as h0(t, ·) = g′ for all 2
3
≤ t ≤ 1.

As above one constructs a new continuous map h : [0, 1] × Sm+n → T (E)
with h−1({t0}) = h−10 ({t0}), which is smooth outside that subset, coincides
with h0 outside a compact subset of ]0, 1[×Sm+n and is transverse to B;
beware that the transversality throughout ([0, 1

3
] ∪ [2

3
, 1]) × Sm+n has to be

required to be preserved at each step. Now h−1(B) is a cobordism4 from
g−1(B) = h−1(B) ∩ ({0} × Sm+n) to g′−1(B) = h−1(B) ∩ ({1} × Sm+n) and
induces the desired orientations on both g−1(B) and g′−1(B). The groups laws
on πm+n(T (E), t0) and ΩSO

n are respected by the assignment [g] 7→ [g−1(B)],
since by definition of the composition in πm+n(T (E)) and because of t0 /∈ B
the submanifold we obtain from f ∨ f ′ is g−1(B)

∐
g′−1(B).

By forgetting about orientations, the proof of the oriented case obviously
adapts to the non-orientable case, giving rise to a group homomorphism
πm+n(T (E)) −→ ΩO

m for all smooth n-ranked real vector bundles E −→ B
and all m ∈ N. This concludes the proof of Theorem 3.6. �

Next we look at the particular case where E is either the universal bundle
γn := γn(R∞)→ Gn(R∞) or the oriented universal bundle γ̃n := γ̃n(R∞) −→
G̃n(R∞). The main theorem of this section is the following:

Theorem 3.8 (R. Thom) Let n ∈ N\{0, 1}. Then for all m ∈ {0, . . . , n−
2}, the homomorphisms πm+n(T (γn)) → ΩO

m and πm+n(T (γ̃n)) → ΩSO
m of

Theorem 3.6 are isomorphisms.

Proof: As in [3], we only prove the surjectivity, which follows from the

Lemma 3.9 Let k,m, n ∈ N with m ≤ k, n. Then the homomorphisms
πm+n(T (γn(Rn+k))) −→ ΩO

m and πm+n(T (γ̃n(Rn+k))) −→ ΩSO
m of Theorem

3.6 are isomorphisms.

Proof: Pick [Mm] ∈ ΩSO
m . By the Whitney embedding theorem, there exists an

embedding Mm ↪→ Rm+n because of n ≥ m. Since Mm is embedded in Rm+n,
there exists an open tubular neighbourhood U of M in Rm+n which is dif-
feomorphic to the normal bundle T⊥M →M of M in Rm+n. Composing the
Gauß map M → G̃n(Rm+n), x 7→ T⊥x M with the canonical embedding by the

first coordinates G̃n(Rm+n) → G̃n(Rk+n), we obtain a map M → G̃n(Rn+k)

4If f : W → N is a smooth map from a manifold with boundary to another manifold and
y ∈ N is a regular value of f (meaning that dxf : TxW → TyN and dx(f|∂W

) : Tx∂W →
TyN are surjective for x ∈ f−1({y}) ∩ (W \ ∂W ) and x ∈ f−1({y}) ∩ ∂W respectively),
then f−1({y}) is a smooth submanifold with boundary f−1({y}) ∩ ∂W . Similarly, if B is
a boundaryless submanifold of N and f is transverse to B in a sense analogous to the one
above, then f−1(B) is a manifold with boundary f−1(B) ∩ ∂W .
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which obviously pulls γ̃n(Rn+k)→ G̃n(Rn+k) back to T⊥M . Therefore, we ob-
tain a smooth map U −→ γ̃n(Rn+k) which is fibrewise a diffeomorphism and

hence transverse to the zero-section B = G̃n(Rn+k) of γ̃n(Rn+k)→ G̃n(Rn+k).
Composing this map with the inclusion γ̃n(Rn+k)→ T (γ̃n(Rn+k)), we obtain
a continuous map U −→ T (γ̃n(Rn+k)) which can be extended to a continuous

map Sm+n = Rm+n
⊔
{∞} g−→ T (γ̃n(Rn+k)) by sending Rm+n \U onto {t0}.

By construction, g is smooth outside g−1({t0}), transverse to B = G̃n(Rn+k)
with g−1(B) = M . Moreover, the orientation of M obviously coincides with

that induced by g and γ̃n(Rn+k) → G̃n(Rn+k). In other words, [M ] is the
image of g through the homomorphism πm+n(T (γ̃n(Rn+k))) −→ ΩSO

m . Note
that, forgetting again about the orientation, the same arguments show that
the homomorphism πm+n(T (γn(Rn+k))) −→ ΩO

m is surjective.
√

For sufficiently large k the inclusion γ̃n(Rn+k)→ γ̃n(R∞) induces an isomor-
phism πm+n(T (γ̃n(Rn+k))) → πm+n(T (γ̃n(R∞))), therefore the group homo-
morphism πm+n(T (γ̃n(R∞))) −→ ΩSO

m is an isomorphism. The non-orientable
case is analogous. �

Corollary 3.10 The oriented cobordism group ΩSO
m is finite for all m /∈ 4Z

and finitely generated with rank the number of partitions of m
4

for m ∈ 4Z.

Proof: By Lemma 3.9, the group ΩSO
m is the image of the homomorphism

πm+n(T (γ̃n(Rn+k))) −→ ΩSO
m as soon as k, n ≥ m. But since G̃n(Rn+k) is

a finite CW-complex, Corollary 3.5 states the existence of a group homo-
morphism πm+n(T (γ̃n(Rn+k))) → Hm(G̃n(Rn+k);Z) with finite kernel and

cokernel, at least if n ≥ m + 2. Now Hm(G̃n(Rn+k);Z) is finite if m /∈ 4Z
and finitely generated with rank equal to the number p of partitions of m

4
if

m ∈ 4Z. Therefore ΩSO
m is finite if m /∈ 4Z and is finitely generated with rank

at most the number of partitions of m
4

if m ∈ 4Z. Now an explicit computa-
tion shows that the products CP2k1 × . . .×CP2kr , where k1, . . . , kr run over
the set of partitions of r = m

4
, all have different Pontrjagin numbers (see [3,

Sec. 16 & 17]), therefore they give linearly independent elements in ΩSO
m . On

the whole the rank of ΩSO
m is at least and hence equal to p in the case where

m ∈ 4Z. �

References

[1] A. Hatcher, Algebraic topology, Cambridge University Press, 2002.

16



[2] J. Milnor, Lectures on the h-cobordism theorem, Princeton University
Press, Princeton, 1965.

[3] J. Milnor, J.D. Stasheff, Characteristic classes, Annals of Mathematics
Studies 76, Princeton University Press, 1974.

[4] N. Steenrod, The Topology of Fibre Bundles, Princeton Mathematical
Series 14, Princeton University Press, 1951.

17


	Higher homotopy groups
	Homotopy groups
	Hurewicz theorem
	Relative homotopy groups

	Cobordisms and cobordism groups
	Cobordisms
	Oriented cobordisms
	Cobordism groups

	Thom spaces, their homology and homotopy
	The Thom space of a vector bundle
	Homology groups of the Thom spaces
	Homotopy groups of the Thom spaces

	References

