Penrose's singularity theorem

Nicolas Ginoux

Seminar on general relativity theory - University of Regensburg

November 5, 2013

Abstract: We discuss Penrose's singularity theorem as stated and proved in [1, Sec. 2.9], which itself closely follows [4, Ch. 14].

1 Main statement

Theorem 1.1 (Penrose's singularity theorem [4, Thm. 14.61]) Let (M^n, g) be a spacetime with

- noncompact Cauchy hypersurface,
- $\operatorname{ric}_{g}(X, X) \geq 0$ for all $X \in TM$ lightlike,
- a nonempty compact achronal spacelike (embedded) submanifold N^{n-2} with past-oriented timelike mean curvature vector field.¹

Then (M^n, g) is not future lightlike geodesically complete, i.e., there exists a noncomplete future-directed lightlike geodesic in (M^n, g) .

Proof: We argue by contradiction and assume that (M^n, g) were future lightlike geodesically complete. Up to restricting ourselves to a connected component of M^n containing a connected component of N, we may assume that M itself is connected.

Claim 1: The subset $\partial I_+(N)$ is a nonempty compact achronal topological hypersurface of (M^n, g) .

Proof of Claim 1: Since M^n has a Cauchy hypersurface, it is globally hyperbolic, see e.g. [2, Sec. 3.1]. As a consequence, all subsets of the form $J_{\pm}(x)$, $x \in M$, are closed in M and so is $J_{\pm}(N)$ since N is compact (see also [2,

¹Such a submanifold is called *strictly trapped* by M. Kriele, see [3, Def. 9.2.1].

Sec. 3.1]). Therefore, because of $I_+(N) \subset J_+(N) \subset \overline{I_+(N)}$ (true in general) we obtain $J_+(N) = \overline{I_+(N)}$ and thus $\partial I_+(N) = J_+(N) \setminus I_+(N)$ by the fact that the chronological future $I_+(N)$ is open in M. Proposition 1.2 applied to the (nonempty) future set $I_+(N)$ implies that $\partial I_+(N)$ is a closed (as a subset) achronal topological hypersurface of M; note that $I_+(N) = M$ cannot occur since otherwise it would contradict the achronality of N. By Proposition 1.3 below, we also deduce that $\partial I_+(N)$ is compact. It remains to show that $\partial I_+(N) \neq \emptyset$: but if $\partial I_+(N) = \emptyset$, then $I_+(N) = J_+(N)$ would hold, in particular the nonempty open and closed subset $I_+(N)$ must coincide with M since M is connected; again, this would contradict the achronality of N. \checkmark **Claim 2**: The hypersurface $\partial I_+(N)$ is homeomorphic to a (hence any) Cauchy hypersurface of (M^n, g) .

Proof of Claim 2: Let S be any topological Cauchy hypersurface of (M^n, g) . Note that, M being assumed to be connected, so is S. Let X be a complete smooth (future-oriented) timelike vector field whose integral curves are inextendible²; for instance, pick any *complete* Riemannian metric h on M (there is always one), any smooth timelike vector field \widetilde{X} on M and set $X := \frac{\widetilde{X}}{\sqrt{h(\widetilde{X},\widetilde{X})}}$.

We show that the flow of X provides the desired homeomorphism. Namely denote by $\phi^X : \mathbb{R} \times M \to M$ the flow of X and consider the map

$$\rho: \partial I_+(N) \longrightarrow S$$

$$x \longmapsto y \text{ where } \phi^X(\mathbb{R}, x) \cap S = \{y\}.$$

Note that the map ρ is well-defined since the timelike curve $t \mapsto \phi^X(t, x)$ is inextendible and S is a Cauchy hypersurface, hence is met exactly once by that curve. By definition, ρ can be written as the composition $p_2 \circ \psi^{-1}$, where $p_2: \mathbb{R} \times S \to S$ is the projection onto the second factor and $\psi: \mathbb{R} \times S \to M$, $(t,x) \mapsto \phi^X(t,x)$ is a homeomorphism, see e.g. [1, Satz 2.5.13]; in particular, ρ is continuous. Since $\partial I_+(N)$ is achronal by Claim 1, ρ is injective. By compactness of $\partial I_+(N)$, $\rho: \partial I_+(N) \to \rho(\partial I_+(N))$ is a homeomorphism, hence $\rho(\partial I_+(N))$ is an n-1-dimensional topological manifold. Brouwer's theorem about the invariance of the domain (see e.g. [5, Thm 1.31]) implies that $\rho(\partial I_+(N))$ must be open in S^3 . It follows that $\rho(\partial I_+(N))$, being closed, open in S and nonempty (Claim 1), must coincide with S. Therefore, $\rho: \partial I_+(N) \to S$ is a homeomorphism. $\sqrt{}$ We obtain a contradiction since $\partial I_+(N)$ is compact whereas no Cauchy hypersurface of (M^n, g) is by assumption. Therefore, (M^n, g) is not future lightlike geodesically complete.

²as curves, which is not guaranteed by the fact that X is complete! ³This is a *nontrivial* statement!

Proposition 1.2 Let (M^n, g) be a connected spacetime and $\emptyset \neq A \subsetneq M$ be any future set (i.e., $I_+(A) \subset A$). Then ∂A is an achronal closed (as a subset) topological hypersurface of M^n .

As emphasized in [4, Ch. 14], the main idea in the proof of Theorem 1.1 consists in turning the *differential geometric* condition for N to be (strictly) trapped into a *causal* condition:

Proposition 1.3 Let (M^n, g) be a future lightlike geodesically complete spacetime satisfying $\operatorname{ric}_g(X, X) \geq 0$ for all $X \in TM$ lightlike. Let N^{n-2} be a compact achronal spacelike submanifold with past-oriented timelike mean curvature vector field. Then N is future-trapped, i.e., $J_+(N) \setminus I_+(N)$ is compact.

Proof: Fix an arbitrary Riemannian metric h on M and consider the submanifold

 $\widehat{N} := \{X \in T^{\perp}N, X \text{ future-oriented lightlike with } h(X, X) = 1\}$

of $T^{\perp}N$. Since N has codimension 2 in M, there are at each point $x \in N$ exactly two future-oriented lightlike vectors with unit h-length in $T_x^{\perp}N$, hence the restriction of the projection map $\pi : T^{\perp}N \to N$ to \widehat{N} is a two-fold covering map $\widehat{N} \to N$. In particular, \widehat{N} is compact since N is. Now the map $T^{\perp}N \to \mathbb{R}, X \mapsto g(H(\pi(X)), X)$, is continuous and positive on \widehat{N} (for any $v \in \mathbb{R}^m$ past-oriented timelike and $w \in J_+(0)$, one has $\langle\!\langle v, w \rangle\!\rangle > 0$), therefore there exists a b > 0 with

$$g(H(\pi(X)), X) \ge \frac{1}{b} \qquad \forall X \in \widehat{N}.$$

Because M is assumed to be future lightlike geodesically complete, the geodesic $t \mapsto \exp(tX)$ is defined on $[0, \infty[$ for any $X \in TM$ future-oriented lightlike; in particular, for any $X \in \hat{N}$, the geodesic $c_X : t \mapsto \exp(tX)$ is defined on [0, b]. By Lemma 1.4 below, c_X must have a focal point in [0, b]. Pick any point $q \in J_+(N) \setminus I_+(N)$. By Theorem 1.5 below, there exists a (future-oriented) lightlike geodesic c in M with $c(0) \in N$, $\dot{c}(0) \in T_{c(0)}^{\perp}N$, (w.l.o.g.) $h(\dot{c}(0), \dot{c}(0)) = 1$ and without any focal point between c(0) and q. By uniqueness of geodesics, we have $c = c_X$ for $X = \dot{c}(0) \in \hat{N}$; by the preceding argument, if $t_0 \in [0, \infty[$ is such that $c(t_0) = q$, then $t_0 \leq b$. It follows that

$$J_+(N) \setminus I_+(N) \subset \exp(K),$$

where $K := \{tX, X \in \widehat{N} \text{ and } t \in [0, b]\} \subset T^{\perp}N$. Since K is compact, so is $\exp(K)$. It remains to prove that $J_{+}(N) \setminus I_{+}(N)$ is closed in $\exp(K)$. But this follows from $\exp(K) \subset J_{+}(N)$ by definition of K: if $(q_m)_m$ is any sequence of $J_{+}(N) \setminus I_{+}(N)$ converging to some $q \in \exp(K)$, then $q \in J_{+}(N)$ by $\exp(K) \subset J_{+}(N)$, and on the other hand $q \notin I_{+}(N)$ since $I_{+}(N)$ is open. On the whole, $J_{+}(N) \setminus I_{+}(N)$ is compact, QED. \Box

The central argument in the proof of Theorem 1.1 is hence reduced to the following lemma.

Lemma 1.4 Let (M^n, g) be any $n \geq 3$ -dimensional Lorentzian manifold, $N^{n-2} \subset M$ be any spacelike submanifold and $c : [0, b] \to M$ be any lightlike geodesic with $c(0) = x \in N$ and $\dot{c}(0) \in T_x^{\perp}N$, for some b > 0. Assume furthermore that

- i) $\operatorname{ric}_q(\dot{c}(t), \dot{c}(t)) \geq 0$ for all $t \in [0, b]$ and
- ii) $g(H(x), \dot{c}(0)) \ge \frac{1}{b}$, where $H := \frac{1}{n-2} \operatorname{tr}_g(\mathbb{I})$ is the mean curvature vector of N in M.

Then c has a focal point in [0, b].

Proof: First recall that a focal point is a point along the geodesic c for which nontrivial *infinitesimal*⁴ geodesic deformations of c exist fixing that point while keeping the deformed geodesic normal to the submanifold N. In other words, call $c(t_0)$ $(t_0 \in]0, b]$ a focal point iff the space

$$\left\{ J \text{ Jacobi v.f. along } c, \ J(0) \in T_{c(0)}N, (\frac{\nabla^M J}{dt}(0))^T = -\mathbb{I}^*(J(0), \dot{c}(0)) \text{ and } J(t_0) = 0 \right\}$$

is nonzero, where $\mathbb{I}^*(X,\nu) \in TN$ is defined by $g(\mathbb{I}^*(X,\nu),Y) = g(\mathbb{I}(X,Y),\nu)$ for all $X, Y \in T_x N$ and $\nu \in T_x^{\perp} N$.

We argue by contradiction and assume c had no focal point in]0, b]. Fix an orthonormal basis $\{e_1, \ldots, e_{n-2}\}$ of $T_x N$ and consider the Jacobi vector fields J_1, \ldots, J_{n-2} along c with $J_j(0) = e_j$ as well as $\frac{\nabla J_j}{dt}(0)^T = -\mathbf{I}^*(e_j, \dot{c}(0))$. Let $J_0(t) := t\dot{c}(t)$ be the Jacobi vector field along c with $J_0(0) = 0$ and $\frac{\nabla J_0}{dt}(0) = \dot{c}(0)$.

Claim A: For all $t \in [0, b]$, the vectors $J_0(t), J_1(t), \ldots, J_{n-2}(t)$ form a basis of $\dot{c}(t)^{\perp} \subset T_{c(t)}M$.

Proof of Claim A: Since c is lightlike, we have $g(J_0(t), \dot{c}(t)) = 0$ for all $t \in$

⁴Thank you Bernd.

[0, b]. Moreover, because J_1, \ldots, J_{n-2} are Jacobi vector fields along c, we have $\frac{d^2}{dt^2}g(J_j, \dot{c}) = -g(R_{J_j,\dot{c}}\dot{c}, \dot{c}) = 0$ on [0, b]; but by $g(J_j(0), \dot{c}(0)) = g(e_j, \dot{c}(0)) = 0$ and $\frac{d}{dt}(g(J_j, \dot{c}))(0) = -g(\mathbb{I}^*(e_j, \dot{c}(0)), \dot{c}(0)) = 0$ (since $\dot{c}(0) \in T_{c(0)}^{\perp}N$), we deduce that $g(J_j, \dot{c}) = 0$ on [0, b], for all $1 \leq j \leq n-2$. This shows that $J_j(t) \in \dot{c}(t)^{\perp}$ for all $0 \leq j \leq n-2$.

If $J_0(t), J_1(t), \ldots, J_{n-2}(t)$ were linearly dependent for some $t \in]0, b]$, then there would exist $(\lambda_0, \lambda_1, \ldots, \lambda_{n-2}) \in \mathbb{R}^{n-1} \setminus \{0\}$ with $\sum_{j=0}^{n-2} \lambda_j J_j(t) = 0$. The Jacobi vector field $J := \sum_{j=0}^{n-2} \lambda_j J_j$ would satisfy $J(t) = 0, J(0) = \sum_{j=1}^{n-2} \lambda_j e_j \in T_{c(0)} N \setminus \{0\}$ as well as

$$\frac{\nabla J}{dt}(0)^T = \lambda_0 \underbrace{\dot{c}(0)^T}_0 + \sum_{j=1}^{n-2} \lambda_j \frac{\nabla J_j}{dt}(0)^T = -\mathbb{I}^* (\sum_{j=1}^{n-2} \lambda_j e_j, \dot{c}(0)) = -\mathbb{I}^* (J(0), \dot{c}(0)).$$

This would imply that t is a focal point for c in]0, b], contradiction to the assumption. Therefore, $\{J_0(t), J_1(t), \ldots, J_{n-2}(t)\}$ is a basis of $\dot{c}(t)^{\perp}$. \checkmark **Claim B**: For all $0 \leq i, j \leq n-2$ and $t \in [0, b]$, we have $g(\frac{\nabla J_i}{dt}, J_j) = g(J_i, \frac{\nabla J_j}{dt})$.

Proof of Claim B: We already know that, since J_i and J_j are Jacobi vector fields, there exists a constant $\lambda_{ij} \in \mathbb{R}$ with $g(\frac{\nabla J_i}{dt}, J_j) - g(J_i, \frac{\nabla J_j}{dt}) = \lambda_{ij}$ on [0, b](the derivative of the l.h.s. vanishes because of $g(R_{X,Y}Z, T) = g(R_{Z,T}X, Y)$). For $1 \leq i, j \leq n-2$, we have

$$g(\frac{\nabla J_i}{dt}(0), J_j(0)) - g(J_i(0), \frac{\nabla J_j}{dt}(0)) = -g(\mathbf{II}^*(e_i, \dot{c}(0)), e_j) + g(\mathbf{II}^*(e_j, \dot{c}(0)), e_i)$$

$$= -g(\mathbf{II}(e_i, e_j), \dot{c}(0)) + g(\mathbf{II}(e_j, e_i), \dot{c}(0))$$

$$= 0$$

and for $i = 0, 1 \leq j \leq n - 2$, we have

$$g(\frac{\nabla J_0}{dt}(0), J_j(0)) - g(J_0(0), \frac{\nabla J_j}{dt}(0)) = g(\dot{c}(0), e_j) - 0 = 0.$$

On the whole, the constant λ_{ij} vanishes, QED. $\sqrt{}$ **Claim C**: Let $V \in \Gamma(c^*TM)$ be any vector field along c with $V(0) \in T_{c(0)}N$, V(b) = 0 as well as $V(t) \in \dot{c}(t)^{\perp}$ for all $t \in [0, b]$. Then

$$\int_0^b \left\{ g(\frac{\nabla V}{dt}, \frac{\nabla V}{dt}) - g(R_{\dot{c}, V}V, \dot{c}) \right\} dt \ge g(\mathbb{I}(V(0), V(0)), \dot{c}(0)),$$

with equality iff V(t) is proportional to $\dot{c}(t)$ for all $t \in [0, b]$. Proof of Claim C: By Claim A, there exist smooth functions f_0, \ldots, f_{n-2} on]0,b] with $V = \sum_{j=0}^{n-2} f_j J_j$ on]0,b]. The functions $tf_0, f_1, \ldots, f_{n-2}$ can be even smoothly extended onto [0,b] with $\lim_{t\to 0^+} tf_0(t) = 0$ since $V(0) \in$ $T_{c(0)}N = \operatorname{Span}(e_1, \ldots, e_{n-2})$. Let $X := \sum_{j=0}^{n-2} f'_j J_j$ and $Y := \sum_{j=0}^{n-2} f_j \frac{\nabla J_j}{dt}$ on]0,b]. Then $\frac{\nabla V}{dt} = X + Y$ with $g(X,X) \ge 0$ on]0,b] (for $X \perp \dot{c}$ and \dot{c} is lightlike). Now $g(\frac{\nabla V}{dt}, \frac{\nabla V}{dt}) - g(R_{\dot{c},V}V, \dot{c}) = \frac{d}{dt} \left(g(V, \frac{\nabla V}{dt})\right) - g(\frac{\nabla^2 V}{dt^2} - R_{\dot{c},V}\dot{c}, V)$, with

$$\frac{\nabla^2 V}{dt^2} - R_{\dot{c},V} \dot{c} = \sum_{j=0}^{n-2} f_j'' J_j + 2f_j' \frac{\nabla J_j}{dt} + f_j \frac{\nabla^2 J_j}{dt^2} - f_j R_{\dot{c},J_j} \dot{c}$$
$$= \sum_{j=0}^{n-2} f_j'' J_j + 2f_j' \frac{\nabla J_j}{dt} \qquad (J_j = \text{Jacobi vector field}),$$

so that

$$g(\frac{\nabla^2 V}{dt^2} - R_{\dot{c},V}\dot{c},V) = \sum_{i,j=0}^{n-2} f_i'' f_j g(J_i, J_j) + 2f_i' f_j g(\frac{\nabla J_i}{dt}, J_j)$$

$$\stackrel{(\text{ClaimB})}{=} \sum_{i,j=0}^{n-2} (f_i' f_j g(J_i, J_j))' - f_i' f_j' g(J_i, J_j) - 2f_i' f_j g(\frac{\nabla J_i}{dt}, J_j)$$

$$+ 2f_i' f_j g(\frac{\nabla J_i}{dt}, J_j)$$

$$= \sum_{i,j=0}^{n-2} (f_i' f_j g(J_i, J_j))' - g(X, X).$$

Fixing $\varepsilon \in]0, b[$ and integrating, we obtain

$$\int_{\varepsilon}^{b} \left\{ g(\frac{\nabla V}{dt}, \frac{\nabla V}{dt}) - g(R_{\dot{c}, V}V, \dot{c}) \right\} dt = \left[g(V, \frac{\nabla V}{dt}) - \sum_{i, j=0}^{n-2} f'_{i} f_{j} g(J_{i}, J_{j}) \right]_{\varepsilon}^{b} + \int_{\varepsilon}^{b} g(X, X) dt,$$

with

$$g(V, \frac{\nabla V}{dt}) - \sum_{i,j=0}^{n-2} f'_i f_j g(J_i, J_j) = \sum_{i,j=0}^{n-2} f_i f'_j g(J_i, J_j) + f_i f_j g(J_i, \frac{\nabla J_j}{dt}) - f'_i f_j g(J_i, J_j)$$

= $g(V, Y),$

so that

$$\begin{split} \int_{\varepsilon}^{b} \left\{ g(\frac{\nabla V}{dt}, \frac{\nabla V}{dt}) - g(R_{\dot{\varepsilon}, V}V, \dot{c}) \right\} dt &= \left[g(V, Y) \right]_{\varepsilon}^{b} + \int_{\varepsilon}^{b} g(X, X) dt \\ &= -g(V(\varepsilon), Y(\varepsilon)) + \int_{\varepsilon}^{b} g(X, X) dt. \end{split}$$

Note that, since $g(X, X) \geq 0$ on [0, b], the integral $\int_0^b g(X, X)dt$ is welldefined, nonnegative and $\int_0^b g(X, X)dt = \lim_{\varepsilon \to 0} \int_{\varepsilon}^b g(X, X)dt$. Moreover, since $g(J_0(t), \frac{\nabla J_0}{dt}(t)) = \frac{1}{2} \frac{d}{dt} (g(J_0, J_0)) (t) = 0$ for all $t \in [0, b]$, we have by Claim A

$$g(V,Y) = \sum_{j=1}^{n-2} f_0 f_j g(J_0, \frac{\nabla J_j}{dt}) + \sum_{i,j=1}^{n-2} f_i f_j g(J_i, \frac{\nabla J_j}{dt}))$$

on]0, b], so that, using $f_0 J_0 = (tf_0)\dot{c}$ and $\lim_{t\to 0^+} tf_0(t) = 0$, we obtain

$$\lim_{t \to 0^+} g(V(t), Y(t)) = \sum_{j=1}^{n-2} \lim_{t \to 0^+} (tf_0(t))f_j(t)g(\dot{c}, \frac{\nabla J_j}{dt})(t) + \sum_{i,j=1}^{n-2} f_i(0)f_j(0)g(J_i(0), \frac{\nabla J_j}{dt})(0)) = -\sum_{i,j=1}^{n-2} f_i(0)f_j(0)g(e_i, \mathbf{II}^*(e_j, \dot{c}(0))) = -g(\mathbf{II}(V(0), V(0)), \dot{c}(0)).$$

We deduce that

$$\begin{split} \int_0^b \left\{ g(\frac{\nabla V}{dt}, \frac{\nabla V}{dt}) - g(R_{\dot{c}, V}V, \dot{c}) \right\} dt &= \lim_{\varepsilon \to 0^+} -g(V(\varepsilon), Y(\varepsilon)) + \int_{\varepsilon}^b g(X, X) dt \\ &= g(\mathbb{I}(V(0), V(0)), \dot{c}(0)) + \int_0^b g(X, X) dt \end{split}$$

The desired inequality follows from $\int_0^b g(X, X)dt \ge 0$. Moreover, the inequality is an equality iff g(X, X) = 0 on]0, b], which is equivalent to X being proportional to \dot{c} . But the latter implies $f'_j = 0$ for all $j \ge 1$ and, because $f_j(b) = 0$, also $f_j = 0$ for all $j \ge 1$; that is, that V is proportional to \dot{c} (in particular V(0) = 0). Conversely, if V is proportional to \dot{c} , then so is X and the equality holds.

Let E be any parallel vector field along c with $E(0) \in T_{c(0)}N$ and let

 $V(t) := (1 - \frac{t}{b})E(t)$ for all $t \in [0, b]$. Then V is a vector field along c, nonproportional to \dot{c} and with $g(V, \dot{c}) = 0$. Claim C implies

$$0 < \int_{0}^{b} \left\{ g(\frac{\nabla V}{dt}, \frac{\nabla V}{dt}) - g(R_{\dot{c}, V}V, \dot{c}) \right\} dt - g(\mathbb{I}(V(0), V(0)), \dot{c}(0)) \\ = \int_{0}^{b} \frac{1}{b^{2}} g(E(0), E(0)) - (1 - \frac{t}{b})^{2} g(R_{\dot{c}, E}E, \dot{c}) dt - g(\mathbb{I}(E(0), E(0)), \dot{c}(0)).$$

At this point we need another remark.

Claim D: Let $X \in T_x M$ be any lightlike vector on a Lorentzian manifold (M^n, g) . Let $\{e_1, \ldots, e_{n-2}\}$ be a spacelike orthonormal family of X^{\perp} . Then

$$\operatorname{ric}_{g}(X, X) = \sum_{j=1}^{n-2} g(R_{X, e_{j}}e_{j}, X).$$

Proof of Claim D: Since $\{e_1, \ldots, e_{n-2}\}^{\perp}$ is 2-dimensional and has signature (1, 1), there exists a Lorentzian orthonormal basis $\{e_{n-1}, e_n\}$ of $\{e_1, \ldots, e_{n-2}\}^{\perp}$ such that $g(e_{n-1}, e_{n-1}) = 1$, $g(e_n, e_n) = -1$ and $e_{n-1} + e_n = \lambda X$ for some $\lambda \in \mathbb{R}^{\times}$. By definition of Ricci curvature,

$$\operatorname{ric}_{g}(X, X) = \sum_{j=1}^{n-1} g(R_{X, e_{j}}e_{j}, X) - g(R_{X, e_{n}}e_{n}, X),$$

where $g(R_{X,e_{n-1}+e_n}e_{n-1},X) = \lambda g(R_{X,X}e_{n-1},X) = 0 = g(R_{X,e_{n-1}+e_n}e_n,X).$ As a consequence,

$$g(R_{X,e_{n-1}}e_{n-1},X) - g(R_{X,e_n}e_n,X) = -g(R_{X,e_n}e_{n-1},X) + g(R_{X,e_{n-1}}e_n,X) = 0,$$

which gives the claim.

If one lets $E := e_j$, $1 \le j \le n-2$, and sums the last inequality over j, one obtains by Claim D:

$$0 < \frac{n-2}{b} - \int_0^b (1 - \frac{t}{b})^2 \underbrace{\operatorname{ric}_g(\dot{c}, \dot{c})}_{\ge 0} dt - (n-2)g(H(c(0)), \dot{c}(0)) \le 0,$$

contradiction. Therefore, c must have a focal point in [0, b].

Theorem 1.5 Let (M^n, g) be a spacetime with spacelike (embedded) submanifold N. Let $c : [0,b] \to M$ be any future-oriented causal curve with $c(0) \in N$. Then, unless c is up to reparametrization a lightlike geodesic with $\dot{c}(0) \in T^{\perp}N$ and without any focal point in]0, b[, there exists arbitrarily closed to c a future-oriented timelike curve from N to c(b).⁵

Proof: See [1, Satz 2.2.12].

2 Example

We consider the Schwarzschild spacetime: for some $m \in \mathbb{R}^{\times}_+$ and $h : \mathbb{R}^{\times}_+ \to] - \infty, 1[, r \mapsto 1 - \frac{2m}{r}, \text{ let}$

$$(M^4,g) := (\mathbb{R} \times (]0, 2m[\cup]2m, \infty[) \times \mathbb{S}^2, -h(r)dt^2 \oplus \frac{1}{h(r)}dr^2 \oplus r^2 \langle \cdot, \cdot \rangle),$$

where $(\mathbb{S}^2, \langle \cdot, \cdot \rangle)$ denotes the standard 2-dimensional sphere of Gauß-curvature 1. Then (M^4, g) is Ricci-flat, globally hyperbolic with $(\mathbb{R} \times \{m\} \times \mathbb{S}^2) \cup (\{0\} \times]2m, \infty[\times \mathbb{S}^2)$ as spacelike Cauchy hypersurface and the mean curvature vector field of the 2-dimensional compact achronal spacelike submanifold $N^2 := \{0\} \times \{r_0\} \times \mathbb{S}^2$ (where $r_0 \in]0, 2m[\cup]2m, \infty[$) of (M^4, g) is given by $H = -\frac{h(r_0)}{r_0} \frac{\partial}{\partial r}$, see [1, Sec. 2.9] for details. Moreover, the lightlike geodesics of the Schwarzschild half-plane ($\mathbb{R} \times (]0, 2m[\cup]2m, \infty[), -h(r)dt^2 \oplus \frac{1}{h(r)}dr^2$) are the parametrized curves of the form

$$s \mapsto (\varepsilon(as + 2m\ln(|as + b - 2m|)), as + b)$$

for some $\varepsilon \in \{\pm 1\}$ and $(a, b) \in \mathbb{R}^{\times} \times \mathbb{R}$.

- 1. Case $r_0 > 2m$: Then the vector field $\frac{\partial}{\partial r}$ (and so H) is spacelike, so that Theorem 1.1 cannot be applied. And indeed all future-oriented lightlike geodesics in $(\mathbb{R}\times]2m, \infty[\times\mathbb{S}^2, -h(r)dt^2 \oplus \frac{1}{h(r)}dr^2 \oplus r^2\langle\cdot,\cdot\rangle)$ are future-complete.
- 2. Case $0 < r_0 < 2m$: Then H is future-oriented timelike. If the standard time-orientation of $(\mathbb{R}\times]0, 2m[\times\mathbb{S}^2, -h(r)dt^2 \oplus \frac{1}{h(r)}dr^2 \oplus r^2\langle\cdot,\cdot\rangle)$ is reversed (i.e., defined by $-\frac{\partial}{\partial r}$), then Theorem 1.1 applies. And indeed there exist past-oriented lightlike geodesics that are not complete: fixing $x_0 \in \mathbb{S}^2$, the curve $s \mapsto (-s + 2m\ln(s + 2m), -s, x_0)$ is a lightlike geodesic which is both past- and future-incomplete⁶.

⁵This also applies to the case when $N = \emptyset$: in that case, there is no condition on c(0) and the conclusion obviously holds true!

⁶That curve is defined on] - 2m, 0[and cannot be extended beyond s = 0, because it runs into the black-hole singularity of the Schwarzschild spacetime.

References

- [1] C. Bär, *Lorentzgeometrie*, lecture notes, 2006.
- [2] N. Ginoux, *Teilskript zur Vorlesung Lorentzgeometrie*, lecture notes, 2010.
- [3] M. Kriele, Spacetime. Foundations of general relativity and differential geometry, Lecture Notes in Physics **59**, Springer, 1999.
- [4] B. O'Neill, *Semi-Riemannian geometry. With applications to relativity*, Pure and Applied Mathematics **103**, Academic Press, 1983.
- [5] J.W. Vick, *Homology theory. An introduction to algebraic topology*, Pure and Applied Mathematics **53**, Academic Press, 1973.