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Abstract: We discuss Penrose’s singularity theorem as stated and

proved in [1, Sec. 2.9], which itself closely follows [4, Ch. 14].

1 Main statement

Theorem 1.1 (Penrose’s singularity theorem [4, Thm. 14.61])
Let (Mn, g) be a spacetime with

• noncompact Cauchy hypersurface,

• ricg(X,X) ≥ 0 for all X ∈ TM lightlike,

• a nonempty compact achronal spacelike (embedded) submanifold Nn−2

with past-oriented timelike mean curvature vector field.1

Then (Mn, g) is not future lightlike geodesically complete, i.e., there exists a
noncomplete future-directed lightlike geodesic in (Mn, g).

Proof: We argue by contradiction and assume that (Mn, g) were future light-
like geodesically complete. Up to restricting ourselves to a connected com-
ponent of Mn containing a connected component of N , we may assume that
M itself is connected.
Claim 1: The subset ∂I+(N) is a nonempty compact achronal topological
hypersurface of (Mn, g).
Proof of Claim 1: Since Mn has a Cauchy hypersurface, it is globally hyper-
bolic, see e.g. [2, Sec. 3.1]. As a consequence, all subsets of the form J±(x),
x ∈ M , are closed in M and so is J+(N) since N is compact (see also [2,

1Such a submanifold is called strictly trapped by M. Kriele, see [3, Def. 9.2.1].
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Sec. 3.1]). Therefore, because of I+(N) ⊂ J+(N) ⊂ I+(N) (true in general)
we obtain J+(N) = I+(N) and thus ∂I+(N) = J+(N) \ I+(N) by the fact
that the chronological future I+(N) is open in M . Proposition 1.2 applied to
the (nonempty) future set I+(N) implies that ∂I+(N) is a closed (as a sub-
set) achronal topological hypersurface of M ; note that I+(N) = M cannot
occur since otherwise it would contradict the achronality of N . By Proposi-
tion 1.3 below, we also deduce that ∂I+(N) is compact. It remains to show
that ∂I+(N) 6= ∅: but if ∂I+(N) = ∅, then I+(N) = J+(N) would hold, in
particular the nonempty open and closed subset I+(N) must coincide with
M since M is connected; again, this would contradict the achronality of N .

√

Claim 2: The hypersurface ∂I+(N) is homeomorphic to a (hence any) Cauchy
hypersurface of (Mn, g).
Proof of Claim 2: Let S be any topological Cauchy hypersurface of (Mn, g).
Note that, M being assumed to be connected, so is S. Let X be a complete
smooth (future-oriented) timelike vector field whose integral curves are inex-
tendible2; for instance, pick any complete Riemannian metric h on M (there is

always one), any smooth timelike vector field X̃ on M and set X := X̃√
h(X̃,X̃)

.

We show that the flow of X provides the desired homeomorphism. Namely
denote by φX : R×M →M the flow of X and consider the map

ρ : ∂I+(N) −→ S

x 7−→ y where φX(R, x) ∩ S = {y}.

Note that the map ρ is well-defined since the timelike curve t 7→ φX(t, x) is
inextendible and S is a Cauchy hypersurface, hence is met exactly once by
that curve. By definition, ρ can be written as the composition p2◦ψ−1, where
p2 : R× S → S is the projection onto the second factor and ψ : R× S →M ,
(t, x) 7→ φX(t, x) is a homeomorphism, see e.g. [1, Satz 2.5.13]; in partic-
ular, ρ is continuous. Since ∂I+(N) is achronal by Claim 1, ρ is injective.
By compactness of ∂I+(N), ρ : ∂I+(N) → ρ(∂I+(N)) is a homeomorphism,
hence ρ(∂I+(N)) is an n − 1-dimensional topological manifold. Brouwer’s
theorem about the invariance of the domain (see e.g. [5, Thm 1.31]) im-
plies that ρ(∂I+(N)) must be open in S3. It follows that ρ(∂I+(N)), being
closed, open in S and nonempty (Claim 1), must coincide with S. Therefore,
ρ : ∂I+(N)→ S is a homeomorphism.

√

We obtain a contradiction since ∂I+(N) is compact whereas no Cauchy hy-
persurface of (Mn, g) is by assumption. Therefore, (Mn, g) is not future light-
like geodesically complete. �

2as curves, which is not guaranteed by the fact that X is complete!
3This is a nontrivial statement!
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Proposition 1.2 Let (Mn, g) be a connected spacetime and ∅ 6= A (M be
any future set (i.e., I+(A) ⊂ A). Then ∂A is an achronal closed (as a subset)
topological hypersurface of Mn.

Proof: See e.g. [1, Kor. 2.5.8]. �

As emphasized in [4, Ch. 14], the main idea in the proof of Theorem 1.1
consists in turning the differential geometric condition for N to be (strictly)
trapped into a causal condition:

Proposition 1.3 Let (Mn, g) be a future lightlike geodesically complete spa-
cetime satisfying ricg(X,X) ≥ 0 for all X ∈ TM lightlike. Let Nn−2 be a
compact achronal spacelike submanifold with past-oriented timelike mean cur-
vature vector field. Then N is future-trapped, i.e., J+(N)\I+(N) is compact.

Proof: Fix an arbitrary Riemannian metric h on M and consider the sub-
manifold

N̂ :=
{
X ∈ T⊥N, X future-oriented lightlike with h(X,X) = 1

}
of T⊥N . Since N has codimension 2 in M , there are at each point x ∈ N
exactly two future-oriented lightlike vectors with unit h-length in T⊥x N , hence

the restriction of the projection map π : T⊥N → N to N̂ is a two-fold co-
vering map N̂ → N . In particular, N̂ is compact since N is. Now the map
T⊥N → R, X 7→ g(H(π(X)), X), is continuous and positive on N̂ (for any
v ∈ Rm past-oriented timelike and w ∈ J+(0), one has 〈〈v, w〉〉 > 0), therefore
there exists a b > 0 with

g(H(π(X)), X) ≥ 1

b
∀X ∈ N̂ .

Because M is assumed to be future lightlike geodesically complete, the geo-
desic t 7→ exp(tX) is defined on [0,∞[ for any X ∈ TM future-oriented

lightlike; in particular, for any X ∈ N̂ , the geodesic cX : t 7→ exp(tX) is
defined on [0, b]. By Lemma 1.4 below, cX must have a focal point in ]0, b].
Pick any point q ∈ J+(N) \ I+(N). By Theorem 1.5 below, there exists a
(future-oriented) lightlike geodesic c in M with c(0) ∈ N , ċ(0) ∈ T⊥c(0)N ,

(w.l.o.g.) h(ċ(0), ċ(0)) = 1 and without any focal point between c(0) and q.

By uniqueness of geodesics, we have c = cX for X = ċ(0) ∈ N̂ ; by the
preceding argument, if t0 ∈ [0,∞[ is such that c(t0) = q, then t0 ≤ b. It
follows that

J+(N) \ I+(N) ⊂ exp(K),
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where K :=
{
tX, X ∈ N̂ and t ∈ [0, b]

}
⊂ T⊥N . Since K is compact, so is

exp(K). It remains to prove that J+(N) \ I+(N) is closed in exp(K). But
this follows from exp(K) ⊂ J+(N) by definition of K: if (qm)m is any se-
quence of J+(N) \ I+(N) converging to some q ∈ exp(K), then q ∈ J+(N)
by exp(K) ⊂ J+(N), and on the other hand q /∈ I+(N) since I+(N) is open.
On the whole, J+(N) \ I+(N) is compact, QED. �

The central argument in the proof of Theorem 1.1 is hence reduced to the
following lemma.

Lemma 1.4 Let (Mn, g) be any n(≥ 3)-dimensional Lorentzian manifold,
Nn−2 ⊂ M be any spacelike submanifold and c : [0, b] → M be any lightlike
geodesic with c(0) = x ∈ N and ċ(0) ∈ T⊥x N , for some b > 0. Assume
furthermore that

i) ricg(ċ(t), ċ(t)) ≥ 0 for all t ∈ [0, b] and

ii) g(H(x), ċ(0)) ≥ 1
b
, where H := 1

n−2trg(II) is the mean curvature vector
of N in M .

Then c has a focal point in ]0, b].

Proof: First recall that a focal point is a point along the geodesic c for which
nontrivial infinitesimal4 geodesic deformations of c exist fixing that point
while keeping the deformed geodesic normal to the submanifold N . In other
words, call c(t0) (t0 ∈]0, b]) a focal point iff the space{

J Jacobi v.f. along c, J(0) ∈ Tc(0)N, (
∇MJ

dt
(0))T = −II∗(J(0), ċ(0)) and J(t0) = 0

}
is nonzero, where II∗(X, ν) ∈ TN is defined by g(II∗(X, ν), Y ) = g(II(X, Y ), ν)
for all X, Y ∈ TxN and ν ∈ T⊥x N .

We argue by contradiction and assume c had no focal point in ]0, b]. Fix
an orthonormal basis {e1, . . . , en−2} of TxN and consider the Jacobi vector

fields J1, . . . , Jn−2 along c with Jj(0) = ej as well as
∇Jj
dt

(0)T = −II∗(ej, ċ(0)).
Let J0(t) := tċ(t) be the Jacobi vector field along c with J0(0) = 0 and
∇J0
dt

(0) = ċ(0).
Claim A: For all t ∈]0, b], the vectors J0(t), J1(t), . . . , Jn−2(t) form a basis
of ċ(t)⊥ ⊂ Tc(t)M .
Proof of Claim A: Since c is lightlike, we have g(J0(t), ċ(t)) = 0 for all t ∈

4Thank you Bernd.
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[0, b]. Moreover, because J1, . . . , Jn−2 are Jacobi vector fields along c, we have
d2

dt2
g(Jj, ċ) = −g(RJj ,ċċ, ċ) = 0 on [0, b]; but by g(Jj(0), ċ(0)) = g(ej, ċ(0)) = 0

and d
dt

(g(Jj, ċ))(0) = −g(II∗(ej, ċ(0)), ċ(0)) = 0 (since ċ(0) ∈ T⊥c(0)N), we

deduce that g(Jj, ċ) = 0 on [0, b], for all 1 ≤ j ≤ n − 2. This shows that
Jj(t) ∈ ċ(t)⊥ for all 0 ≤ j ≤ n− 2.
If J0(t), J1(t), . . . , Jn−2(t) were linearly dependent for some t ∈]0, b], then
there would exist (λ0, λ1, . . . , λn−2) ∈ R

n−1 \ {0} with
∑n−2

j=0 λjJj(t) = 0.

The Jacobi vector field J :=
∑n−2

j=0 λjJj would satisfy J(t) = 0, J(0) =∑n−2
j=1 λjej ∈ Tc(0)N \ {0} as well as

∇J
dt

(0)T = λ0 ċ(0)T︸ ︷︷ ︸
0

+
n−2∑
j=1

λj
∇Jj
dt

(0)T = −II∗(
n−2∑
j=1

λjej, ċ(0)) = −II∗(J(0), ċ(0)).

This would imply that t is a focal point for c in ]0, b], contradiction to the
assumption. Therefore, {J0(t), J1(t), . . . , Jn−2(t)} is a basis of ċ(t)⊥.

√

Claim B: For all 0 ≤ i, j ≤ n − 2 and t ∈ [0, b], we have g(∇Ji
dt
, Jj) =

g(Ji,
∇Jj
dt

).
Proof of Claim B: We already know that, since Ji and Jj are Jacobi vector

fields, there exists a constant λij ∈ R with g(∇Ji
dt
, Jj)−g(Ji,

∇Jj
dt

) = λij on [0, b]
(the derivative of the l.h.s. vanishes because of g(RX,YZ, T ) = g(RZ,TX, Y )).
For 1 ≤ i, j ≤ n− 2, we have

g(
∇Ji
dt

(0), Jj(0))− g(Ji(0),
∇Jj
dt

(0)) = −g(II∗(ei, ċ(0)), ej) + g(II∗(ej, ċ(0)), ei)

= −g(II(ei, ej), ċ(0)) + g(II(ej, ei), ċ(0))

= 0

and for i = 0, 1 ≤ j ≤ n− 2, we have

g(
∇J0
dt

(0), Jj(0))− g(J0(0),
∇Jj
dt

(0)) = g(ċ(0), ej)− 0 = 0.

On the whole, the constant λij vanishes, QED.
√

Claim C: Let V ∈ Γ(c∗TM) be any vector field along c with V (0) ∈ Tc(0)N ,
V (b) = 0 as well as V (t) ∈ ċ(t)⊥ for all t ∈ [0, b]. Then∫ b

0

{
g(
∇V
dt

,
∇V
dt

)− g(Rċ,V V, ċ)

}
dt ≥ g(II(V (0), V (0)), ċ(0)),

with equality iff V (t) is proportional to ċ(t) for all t ∈ [0, b].
Proof of Claim C: By Claim A, there exist smooth functions f0, . . . , fn−2
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on ]0, b] with V =
∑n−2

j=0 fjJj on ]0, b]. The functions tf0, f1, . . . , fn−2 can
be even smoothly extended onto [0, b] with lim

t→0+
tf0(t) = 0 since V (0) ∈

Tc(0)N = Span(e1, . . . , en−2). Let X :=
∑n−2

j=0 f
′
jJj and Y :=

∑n−2
j=0 fj

∇Jj
dt

on

]0, b]. Then ∇V
dt

= X + Y with g(X,X) ≥ 0 on ]0, b] (for X ⊥ ċ and ċ is

lightlike). Now g(∇V
dt
, ∇V

dt
)− g(Rċ,V V, ċ) = d

dt

(
g(V, ∇V

dt
)
)
− g(∇

2V
dt2
−Rċ,V ċ, V ),

with

∇2V

dt2
−Rċ,V ċ =

n−2∑
j=0

f ′′j Jj + 2f ′j
∇Jj
dt

+ fj
∇2Jj
dt2

− fjRċ,Jj ċ

=
n−2∑
j=0

f ′′j Jj + 2f ′j
∇Jj
dt

(Jj = Jacobi vector field),

so that

g(
∇2V

dt2
−Rċ,V ċ, V ) =

n−2∑
i,j=0

f ′′i fjg(Ji, Jj) + 2f ′ifjg(
∇Ji
dt

, Jj)

(ClaimB)
=

n−2∑
i,j=0

(f ′ifjg(Ji, Jj))
′ − f ′if ′jg(Ji, Jj)− 2f ′ifjg(

∇Ji
dt

, Jj)

+ 2f ′ifjg(
∇Ji
dt

, Jj)

=
n−2∑
i,j=0

(f ′ifjg(Ji, Jj))
′ − g(X,X).

Fixing ε ∈]0, b[ and integrating, we obtain

∫ b

ε

{
g(
∇V
dt

,
∇V
dt

)− g(Rċ,V V, ċ)

}
dt =

[
g(V,

∇V
dt

)−
n−2∑
i,j=0

f ′ifjg(Ji, Jj)

]b
ε

+

∫ b

ε

g(X,X)dt,

with

g(V,
∇V
dt

)−
n−2∑
i,j=0

f ′ifjg(Ji, Jj) =
n−2∑
i,j=0

fif
′
jg(Ji, Jj) + fifjg(Ji,

∇Jj
dt

)− f ′ifjg(Ji, Jj)

= g(V, Y ),
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so that∫ b

ε

{
g(
∇V
dt

,
∇V
dt

)− g(Rċ,V V, ċ)

}
dt = [g(V, Y )]bε +

∫ b

ε

g(X,X)dt

= −g(V (ε), Y (ε)) +

∫ b

ε

g(X,X)dt.

Note that, since g(X,X) ≥ 0 on ]0, b], the integral
∫ b

0
g(X,X)dt is well-

defined, nonnegative and
∫ b

0
g(X,X)dt =lim

ε→0

∫ b

ε
g(X,X)dt. Moreover, since

g(J0(t),
∇J0
dt

(t)) = 1
2

d
dt

(g(J0, J0)) (t) = 0 for all t ∈ [0, b], we have by Claim A

g(V, Y ) =
n−2∑
j=1

f0fjg(J0,
∇Jj
dt

) +
n−2∑
i,j=1

fifjg(Ji,
∇Jj
dt

))

on ]0, b], so that, using f0J0 = (tf0)ċ and lim
t→0+

tf0(t) = 0, we obtain

lim
t→0+

g(V (t), Y (t)) =
n−2∑
j=1

lim
t→0+

(tf0(t))fj(t)g(ċ,
∇Jj
dt

)(t)

+
n−2∑
i,j=1

fi(0)fj(0)g(Ji(0),
∇Jj
dt

)(0))

= −
n−2∑
i,j=1

fi(0)fj(0)g(ei, II
∗(ej, ċ(0)))

= −g(II(V (0), V (0)), ċ(0)).

We deduce that∫ b

0

{
g(
∇V
dt

,
∇V
dt

)− g(Rċ,V V, ċ)

}
dt = lim

ε→0+
−g(V (ε), Y (ε)) +

∫ b

ε

g(X,X)dt

= g(II(V (0), V (0)), ċ(0)) +

∫ b

0

g(X,X)dt.

The desired inequality follows from
∫ b

0
g(X,X)dt ≥ 0. Moreover, the inequal-

ity is an equality iff g(X,X) = 0 on ]0, b], which is equivalent to X being
proportional to ċ. But the latter implies f ′j = 0 for all j ≥ 1 and, because
fj(b) = 0, also fj = 0 for all j ≥ 1; that is, that V is proportional to ċ (in
particular V (0) = 0). Conversely, if V is proportional to ċ, then so is X and
the equality holds.

√

Let E be any parallel vector field along c with E(0) ∈ Tc(0)N and let
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V (t) := (1 − t
b
)E(t) for all t ∈ [0, b]. Then V is a vector field along c,

nonproportional to ċ and with g(V, ċ) = 0. Claim C implies

0 <

∫ b

0

{
g(
∇V
dt

,
∇V
dt

)− g(Rċ,V V, ċ)

}
dt− g(II(V (0), V (0)), ċ(0))

=

∫ b

0

1

b2
g(E(0), E(0))− (1− t

b
)2g(Rċ,EE, ċ)dt− g(II(E(0), E(0)), ċ(0)).

At this point we need another remark.
Claim D: Let X ∈ TxM be any lightlike vector on a Lorentzian manifold
(Mn, g). Let {e1, . . . , en−2} be a spacelike orthonormal family of X⊥. Then

ricg(X,X) =
n−2∑
j=1

g(RX,ejej, X).

Proof of Claim D: Since {e1, . . . , en−2}⊥ is 2-dimensional and has signature
(1, 1), there exists a Lorentzian orthonormal basis {en−1, en} of {e1, . . . , en−2}⊥
such that g(en−1, en−1) = 1, g(en, en) = −1 and en−1 + en = λX for some
λ ∈ R×. By definition of Ricci curvature,

ricg(X,X) =
n−1∑
j=1

g(RX,ejej, X)− g(RX,enen, X),

where g(RX,en−1+enen−1, X) = λg(RX,Xen−1, X) = 0 = g(RX,en−1+enen, X).
As a consequence,

g(RX,en−1en−1, X)−g(RX,enen, X) = −g(RX,enen−1, X)+g(RX,en−1en, X) = 0,

which gives the claim.
√

If one lets E := ej, 1 ≤ j ≤ n − 2, and sums the last inequality over j, one
obtains by Claim D:

0 <
n− 2

b
−
∫ b

0

(1− t

b
)2 ricg(ċ, ċ)︸ ︷︷ ︸

≥0

dt− (n− 2)g(H(c(0)), ċ(0)) ≤ 0,

contradiction. Therefore, c must have a focal point in ]0, b]. �

Theorem 1.5 Let (Mn, g) be a spacetime with spacelike (embedded) sub-
manifold N . Let c : [0, b] → M be any future-oriented causal curve with
c(0) ∈ N . Then, unless c is up to reparametrization a lightlike geodesic with
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ċ(0) ∈ T⊥N and without any focal point in ]0, b[, there exists arbitrarily closed
to c a future-oriented timelike curve from N to c(b).5

Proof: See [1, Satz 2.2.12]. �

2 Example

We consider the Schwarzschild spacetime: for some m ∈ R
×
+ and h : R×+ →

]−∞, 1[, r 7→ 1− 2m
r

, let

(M4, g) := (R× (]0, 2m[∪]2m,∞[)× S2,−h(r)dt2 ⊕ 1

h(r)
dr2 ⊕ r2〈· , ·〉),

where (S2, 〈· , ·〉) denotes the standard 2-dimensional sphere of Gauß-curvature
1. Then (M4, g) is Ricci-flat, globally hyperbolic with (R × {m} × S

2) ∪
({0}×]2m,∞[×S2) as spacelike Cauchy hypersurface and the mean curva-
ture vector field of the 2-dimensional compact achronal spacelike submani-
fold N2 := {0}×{r0}×S2 (where r0 ∈]0, 2m[∪]2m,∞[) of (M4, g) is given by

H = −h(r0)
r0

∂
∂r

, see [1, Sec. 2.9] for details. Moreover, the lightlike geodesics

of the Schwarzschild half-plane (R × (]0, 2m[∪]2m,∞[),−h(r)dt2 ⊕ 1
h(r)

dr2)
are the parametrized curves of the form

s 7→ (ε(as+ 2m ln(|as+ b− 2m|)), as+ b)

for some ε ∈ {±1} and (a, b) ∈ R× × R.

1. Case r0 > 2m: Then the vector field ∂
∂r

(and so H) is spacelike, so
that Theorem 1.1 cannot be applied. And indeed all future-oriented
lightlike geodesics in (R×]2m,∞[×S2,−h(r)dt2⊕ 1

h(r)
dr2⊕ r2〈· , ·〉) are

future-complete.

2. Case 0 < r0 < 2m: Then H is future-oriented timelike. If the standard
time-orientation of (R×]0, 2m[×S2,−h(r)dt2 ⊕ 1

h(r)
dr2 ⊕ r2〈· , ·〉) is re-

versed (i.e., defined by − ∂
∂r

), then Theorem 1.1 applies. And indeed
there exist past-oriented lightlike geodesics that are not complete: fix-
ing x0 ∈ S2, the curve s 7→ (−s + 2m ln(s + 2m),−s, x0) is a lightlike
geodesic which is both past- and future-incomplete6.

5This also applies to the case when N = ∅: in that case, there is no condition on c(0)
and the conclusion obviously holds true!

6That curve is defined on ]− 2m, 0[ and cannot be extended beyond s = 0, because it
runs into the black-hole singularity of the Schwarzschild spacetime.
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