Penrose’s singularity theorem
Nicolas Ginoux

Seminar on general relativity theory - University of Regensburg

November 5, 2013

Abstract: We discuss Penrose’s singularity theorem as stated and
proved in [I, Sec. 2.9], which itself closely follows [4, Ch. 14].

1 Main statement

Theorem 1.1 (Penrose’s singularity theorem [4, Thm. 14.61])
Let (M™, g) be a spacetime with

e noncompact Cauchy hypersurface,
o 1ic, (X, X) >0 for all X € TM lightlike,

e a nonempty compact achronal spacelike (embedded) submanifold N™>
with past-oriented timelike mean curvature vector field[l]

Then (M™, g) is not future lightlike geodesically complete, i.e., there exists a
noncomplete future-directed lightlike geodesic in (M™,g).

Proof: We argue by contradiction and assume that (M", g) were future light-
like geodesically complete. Up to restricting ourselves to a connected com-
ponent of M"™ containing a connected component of N, we may assume that
M itself is connected.

Claim 1: The subset 01, (N) is a nonempty compact achronal topological
hypersurface of (M™,g).

Proof of Claim 1: Since M™ has a Cauchy hypersurface, it is globally hyper-
bolic, see e.g. [2, Sec. 3.1]. As a consequence, all subsets of the form Ji(x),
x € M, are closed in M and so is J;(NN) since N is compact (see also [2

1Such a submanifold is called strictly trapped by M. Kriele, see [3, Def. 9.2.1].
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Sec. 3.1]). Therefore, because of I (N) C J4(N) C I.(N) (true in general)
we obtain J(N) = I, (N) and thus 01, (N) = J.(N) \ I(N) by the fact
that the chronological future I, (N) is open in M. Proposition [1.2| applied to
the (nonempty) future set I, (N) implies that 07 (N) is a closed (as a sub-
set) achronal topological hypersurface of M; note that I, (N) = M cannot
occur since otherwise it would contradict the achronality of N. By Proposi-
tion below, we also deduce that 01, (V) is compact. It remains to show
that 01 (N) # @: but if 01, (N) = @, then I, (N) = J,(N) would hold, in
particular the nonempty open and closed subset I, (/N) must coincide with
M since M is connected; again, this would contradict the achronality of N. 1/
Claim 2: The hypersurface 01 (N) is homeomorphic to a (hence any) Cauchy
hypersurface of (M™, g).

Proof of Claim 2: Let S be any topological Cauchy hypersurface of (M", g).
Note that, M being assumed to be connected, so is S. Let X be a complete
smooth (future-oriented) timelike vector field whose integral curves are inex-

tendibleﬂ for instance, pick any complete Riemannian metric h on M (there is

X
VXD
We show that the flow of X provides the desired homeomorphism. Namely
denote by ¢X : R x M — M the flow of X and consider the map

always one), any smooth timelike vector field X on M and set X :=

p: 0l (N) — S
xr +— ywhere ¢~ (R,z) NS = {y}.

Note that the map p is well-defined since the timelike curve t — ¢~ (¢, x) is
inextendible and S is a Cauchy hypersurface, hence is met exactly once by
that curve. By definition, p can be written as the composition pyot)~!, where
Py : Rx S — S is the projection onto the second factor and ¢ : R x §' — M,
(t,z) — ¢X(t,z) is a homeomorphism, see e.g. [I, Satz 2.5.13]; in partic-
ular, p is continuous. Since 01 (N) is achronal by Claim 1, p is injective.
By compactness of 01, (N), p: 01, (N) — p(0l.(N)) is a homeomorphism,
hence p(0I+(N)) is an n — 1-dimensional topological manifold. Brouwer’s
theorem about the invariance of the domain (see e.g. [5, Thm 1.31]) im-
plies that p(91,(N)) must be open in S} It follows that p(91,(N)), being
closed, open in S and nonempty (Claim 1), must coincide with S. Therefore,
p: 0l (N)— S is a homeomorphism. vV
We obtain a contradiction since 91, (N) is compact whereas no Cauchy hy-
persurface of (M", g) is by assumption. Therefore, (M™, g) is not future light-
like geodesically complete. O

2as curves, which is not guaranteed by the fact that X is complete!
3This is a nontrivial statement!



Proposition 1.2 Let (M™, g) be a connected spacetime and & # A C M be
any future set (i.e., I (A) C A). Then OA is an achronal closed (as a subset)
topological hypersurface of M™.

Proof: See e.g. [1l, Kor. 2.5.8]. O

As emphasized in [4, Ch. 14], the main idea in the proof of Theorem
consists in turning the differential geometric condition for N to be (strictly)
trapped into a causal condition:

Proposition 1.3 Let (M", g) be a future lightlike geodesically complete spa-
cetime satisfying ric,(X, X) > 0 for all X € TM lightlike. Let N"~2 be a
compact achronal spacelike submanifold with past-oriented timelike mean cur-
vature vector field. Then N is future-trapped, i.e., J.(N)\ 1+ (N) is compact.

Proof. Fix an arbitrary Riemannian metric h on M and consider the sub-
manifold

N :={X € T*N, X future-oriented lightlike with 2(X, X) =1}

of T+N. Since N has codimension 2 in M, there are at each point x € N
exactly two future-oriented lightlike vectors with unit h-length in TX N, hence
the restriction of the projection map 7 : T LN — N to N is a two-fold co-
vering map N — N. In particular, N is compact since N is. Now the map
TN — R, X — g(H(m(X)), X), is continuous and positive on N (for any
v € R™ past-oriented timelike and w € J;(0), one has (v, w)) > 0), therefore
there exists a b > 0 with

1 ~
7 VX eN.

Because M is assumed to be future lightlike geodesically complete, the geo-
desic t — exp(tX) is defined on [0,00[ for any X € T'M future-oriented
lightlike; in particular, for any X € ]\Af7 the geodesic cx : t — exp(tX) is
defined on [0,b]. By Lemma below, cx must have a focal point in ]0, b].
Pick any point ¢ € J.(N) \ I.(N). By Theorem below, there exists a
(future-oriented) lightlike geodesic ¢ in M with ¢(0) € N, ¢(0) € Tio)N ,
(w.lo.g.) h(¢(0),¢(0)) = 1 and without any focal point between ¢(0) and g.
By uniqueness of geodesics, we have ¢ = cx for X = ¢(0) € N : by the
preceding argument, if ¢, € [0, 00| is such that c(ty) = ¢, then t, < b. It
follows that

J+(N)\ I.(N) C exp(K),



where K = {tX, XeNandte [O,b]} C T+N. Since K is compact, so is

exp(K). It remains to prove that J.(N) \ I.(N) is closed in exp(K). But
this follows from exp(K) C J(N) by definition of K: if (¢,,). is any se-
quence of J;(N) \ I;(N) converging to some ¢ € exp(K), then ¢ € J(N)
by exp(K) C J(N), and on the other hand ¢ ¢ I (N) since I, (V) is open.
On the whole, J,(N) \ I.(N) is compact, QED. O

The central argument in the proof of Theorem [I.1] is hence reduced to the
following lemma.

Lemma 1.4 Let (M™,g) be any n(> 3)-dimensional Lorentzian manifold,
N""2.C M be any spacelike submanifold and c : [0,b] — M be any lightlike
geodesic with c(0) = x € N and ¢(0) € T;*N, for some b > 0. Assume
furthermore that

i) ricy(¢é(t),¢(t)) > 0 for allt € [0,b] and

it) g(H(x),é(0)) > 3, where H := —5try (1) is the mean curvature vector
of N in M.

Then ¢ has a focal point in |0, b].

Proof: First recall that a focal point is a point along the geodesic ¢ for which
nontrivial inﬁmtesz’maﬁ geodesic deformations of ¢ exist fixing that point
while keeping the deformed geodesic normal to the submanifold N. In other
words, call ¢(to) (to €]0,0]) a focal point iff the space

M
{J Jacobi v.f. along ¢, J(0) € Ty N, (%(O)F = —II"(J(0),¢(0)) and J(ty) =

is nonzero, where I (X, v) € T'N is defined by ¢(I" (X, v),Y) = g(I(X,Y), v)
for all X,Y € T,N and v € T;*N.

We argue by contradiction and assume ¢ had no focal point in |0, b]. Fix
an orthonormal basis {eq,...,e, 2} of T, N and consider the Jacobi vector

fields Ji,. .., J,—2 along ¢ with J;(0) = e; as well as %(O)T = —1II"(e;, ¢(0)).

Let Jo(t) := té(t) be the Jacobi vector field along ¢ with Jy(0) = 0 and
S (0) = ¢(0).

Claim A: For all t €]0,b], the vectors Jy(t), Ji(t), ..., Ju—2(t) form a basis
of C.(t)J‘ C Tc(t)M.

Proof of Claim A: Since c is lightlike, we have g(Jy(t),¢(t)) = 0 for all ¢ €

4Thank you Bernd.



[0, b]. Moreover, because Ji, ..., J,_o are Jacobi vector fields along ¢, we have
4:9(J;,¢) = —g(Ry, 4¢,¢) = 0 on [0,b]; but by g(J;(0), ¢(0)) = g(ej, ¢(0)) = 0
and £ (g(J;,¢))(0) = —g(I*(e;,¢(0)),¢(0)) = 0 (since ¢(0) € Ty N), we
deduce that g(J;,¢) = 0 on [0,b], for all 1 < j < n — 2. This shows that
Ji(t) € ¢(t)t forall 0 < j <n—2.

If Jo(t), Ji(t),..., Ju—a(t) were linearly dependent for some ¢ €]0,b], then
there would exist (Ag, Ai,..., A\y2) € R* 1\ {0} with Z;:g A Ji(t) = 0.
The Jacobi vector field J := Z?:_g A;J; would satisfy J(t) = 0, J(0) =
Z;L:_f Aej € ToyN \ {0} as well as

vJ

— =A
di (0) 0 C +

SO = T3 e 0) = ~T*(T(0), €(0),

0

This would imply that ¢ is a focal point for ¢ in ]0,b], contradiction to the

assumption. Therefore, {Jo(t), Ji(t), ..., Jo_2(t)} is a basis of ¢(¢)*. V
Claim B: For all 0 < i,57 < n—2 and t € [0,b], we have g(vd‘tjl,(]])
9(Jis 5):

Proof of Claim B: We already know that, since J; and J; are Jacobi vector
fields, there exists a constant \;; € R with g(vdi L Jj)— g(J;, = - VY = Aij on [0, 0]
(the derivative of the Lh.s. vanishes because of g(Rxy Z,T) = g(Rz7rX,Y)).

For 1 <1i,7 <n — 2, we have

g(%(o), J5(0)) = g(Ji(0), %(0)) = —g(I"(es,¢(0)), ) + g(I* (e, ¢(0)), €4)

= —g(I(ei, €5),¢(0)) + g(L(ey, €:), ¢(0))
=0
and for i =0,1 < j <n— 2, we have

922 (0), J;(0)) — 9(Jo(0), “2(0)) = g(¢(0), ) ~ 0 = 0.

On the whole, the constant \;; vanishes, QED. Vv
Claim C: Let V € I'(¢*T'M) be any vector field along ¢ with V (0) € Ty,
V(b) =0 as well as V(t) € ¢(t)* for all t € [0,b]. Then

oS T = atmavio b iz gm0, vo), )

with equality iff V (t) is proportional to ¢(t) for all t € [0, b].
Proof of Claim C: By Claim A, there exist smooth functions fy,..., f,_o



n ]0,b] with V = Z;:g f;J; on ]0,b]. The functions tfo, fi,..., fa—2 can
be even smoothly extended onto [0,b] with lim tfo(t) = 0 since V(0) €

LoV = Span(er, .., en—). Let X - = D jm f'J and ¥ = 37570 [ on

]0,8]. Then ¥¥ = X +Y with g(X, X) > 0 on ]0,b] (for X L ¢ and ¢ is
lighﬁhke) Now g(5-, ) — g(Re vV, ¢) = 4 (g(V, 7)) —g(vdi;/ —Rivé, V),
wit
V2V L= v o, V2 .
dt2 — R@{/C = jzofﬂj + 2fj dt + fj dt2 ijéﬂ]J.C
n—2 VJ
= Zf”J +2f; - (J; = Jacobi vector field),
=0
so that
V2V , = vJ;
9 g — Reve,V) = > gD Jp) + 2139~ Ji)
i,j=0
n—2
ClaimB) ij
o > (90 T)) = ff9(i J;) — Qf{fjg(%, Jj)
i,j=0

VJ;
+ Zf{fjg(ﬁ, J;)

n—2

= YUl ) = 9(X, X).

1,7=0

Fixing ¢ €]0, b and integrating, we obtain

b
bWV YV _ VA TSN,

/5 {g(ﬁ, W) — 9(Rev'V, C)} d = |g(V, W) - ”Z:o fifig(Ji, J5)

b 13

+/ 9(X, X)dt,
with
vv n—2 n—2 VJ
g(V, W) - Z fitig(Ji, J;) = Z fifi9(Jis J3) + fifig(Ji, d_t]) — fifi9(Ji, Jj)
i,j=0 i,j=0
= g(VY),



so that
[ oS T - atmaviaa = vt [ oo
= —g(V(e),Y(e))—i—/ g9(X, X)dt.

Note that, since g(X,X) > 0 on ]0,b], the integral fobg(X7 X)dt is well-
defined, nonnegative and fob X, X)dt =lim f:g(X , X)dt. Moreover, since
e—

g(Jo(t), 2 (1)) = 24 (g(Jo, Jo)) (t) = 0 for all t € [0,b], we have by Claim A

Zfofgg JO; + Zfzf]g m_ )

i,7=1
on ]0,b], so that, using foJy = (tfo)¢ and lim+ tfo(t) = 0, we obtain
t—0

fim g(V(.Y() = 3 lim (o) (0a(e, )0

t—0t - t—0t
7j=1

i Z 1O (0)a((0), ~)(0)

t
_ Z £:(0)£5(0)gles, T (e, 6(0))

= —g(I(V(0),V(0)),¢(0)).
We deduce that

A{g(%,%)—g(}%&y‘/,é)}dt = lim —g(V(e ),Y(g))—l—/ g9(X, X)dt

b
= Q(H(V(O),V(O)),é(O))Jr/O g(X, X)dt.

The desired inequality follows from fob g9(X, X)dt > 0. Moreover, the inequal-
ity is an equality iff g(X, X) = 0 on ]0,b], which is equivalent to X being
proportional to ¢. But the latter implies f; = 0 for all j > 1 and, because
fi(b) =0, also f; = 0 for all j > 1; that is, that V' is proportional to ¢ (in
particular V' (0) = 0). Conversely, if V' is proportional to ¢, then so is X and
the equality holds. V
Let E be any parallel vector field along ¢ with E(0) € T,oN and let
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V(t) == (1 — {)E(t) for all t € [0,0]. Then V is a vector field along c,
nonproportional to ¢ and with g(V,¢) = 0. Claim C implies

b
0 < [T - strevi L o(xv0).v(0).c0)

= | PO BO) = (1= gl e, )t = g((E(0). E(0)), (0).

At this point we need another remark.
Claim D: Let X € T, M be any lightlike vector on a Lorentzian manifold
(M™,g). Let {e1,...,e,_o} be a spacelike orthonormal family of X*. Then

n—2
ric, (X, X) = Zg(RX,ejej,X).
j=1
Proof of Claim D: Since {ey, ..., e, o} is 2-dimensional and has signature
(1,1), there exists a Lorentzian orthonormal basis {e,_1, e,} of {e1, ..., e, o}*

such that g(e,_1,e,-1) = 1, g(e,,e,) = —1 and e,,_1 + €, = AX for some
A € R*. By definition of Ricci curvature,

ricy (X, X) Zg Rxejej, — g(Rxe,€n, X),

Where g(RX,€n71+enen—17X> - Ag(nyXen—:LJX) - 0 = g(RXﬁn,l—‘—enen,X)-
As a consequence,

g(RX,en_len—laX)_g(RX,enenyX) = _g(RX,enen—bX)+9<RX,€n—1en7X) = 07

which gives the claim. V
If one lets E :=¢;, 1 < j <n — 2, and sums the last inequality over j, one
obtains by Claim D:

-2 [t
0< "2 [ sieye. ) d - (n - 2)g(H(E(),60) <0,
b 0 b N——
>0
contradiction. Therefore, ¢ must have a focal point in |0, b]. O

Theorem 1.5 Let (M™,g) be a spacetime with spacelike (embedded) sub-
manifold N. Let ¢ : [0,b] — M be any future-oriented causal curve with
c(0) € N. Then, unless c is up to reparametrization a lightlike geodesic with
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¢(0) € T+ N and without any focal point in ]0,b|, there exists arbitrarily closed
to ¢ a future-oriented timelike curve from N to c(b)[]

Proof: See [1], Satz 2.2.12]. O

2 Example

We consider the Schwarzschild spacetime: for some m € R} and h : R} —
]—oo,l[,rr—>1—27m,let

1

(M*, g) == (R x (]0,2m[U]2m, oo[) x S2, —h(r)dt* ® e

dr? D 7"2<- ) >)7
where (52, (-, -)) denotes the standard 2-dimensional sphere of Gauf3-curvature
1. Then (M* g) is Ricci-flat, globally hyperbolic with (R x {m} x $?) U
({0} x]2m, 0o[xG?) as spacelike Cauchy hypersurface and the mean curva-
ture vector field of the 2-dimensional compact achronal spacelike submani-
fold N? := {0} x {ro} x S? (where rq €]0, 2m[U]2m, oo[) of (M*, g) is given by
H = —hgn?)%, see [I, Sec. 2.9] for details. Moreover, the lightlike geodesics
of the Schwarzschild half-plane (R x (]0, 2m[U]2m, co[), —h(r)dt* & h(lr) dr?)
are the parametrized curves of the form

s — (e(as +2mIn(|las + b —2m|)), as + b)
for some ¢ € {£1} and (a,b) € R* x R.

1. Case g > 2m: Then the vector field % (and so H) is spacelike, so
that Theorem cannot be applied. And indeed all future-oriented
lightlike geodesics in (Rx]2m, oo[xS?%, —h(r)dt*> ® ﬁer @r(-,-)) are
future-complete.

2. Case 0 < rg < 2m: Then H is future-oriented timelike. If the standard
time-orientation of (Rx]0,2m[xS?, —h(r)dt* ® hlr) dr? @ r?(-,-)) is re-
versed (i.e., defined by —%), then Theorem applies. And indeed
there exist past-oriented lightlike geodesics that are not complete: fix-
ing g € §2, the curve s — (—s + 2mIn(s + 2m), —s, o) is a lightlike
geodesic which is both past- and future—incompleteﬂ

>This also applies to the case when N = @: in that case, there is no condition on ¢(0)
and the conclusion obviously holds true!

5That curve is defined on | — 2m, 0] and cannot be extended beyond s = 0, because it
runs into the black-hole singularity of the Schwarzschild spacetime.
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