# Penrose's singularity theorem 

Nicolas Ginoux

Seminar on general relativity theory - University of Regensburg
November 5, 2013


#### Abstract

We discuss Penrose's singularity theorem as stated and proved in [1, Sec. 2.9], which itself closely follows [4, Ch. 14].


## 1 Main statement

Theorem 1.1 (Penrose's singularity theorem [4, Thm. 14.61]) Let $\left(M^{n}, g\right)$ be a spacetime with

- noncompact Cauchy hypersurface,
- $\operatorname{ric}_{g}(X, X) \geq 0$ for all $X \in T M$ lightlike,
- a nonempty compact achronal spacelike (embedded) submanifold $N^{n-2}$ with past-oriented timelike mean curvature vector field $\|^{\text {D }}$

Then $\left(M^{n}, g\right)$ is not future lightlike geodesically complete, i.e., there exists a noncomplete future-directed lightlike geodesic in $\left(M^{n}, g\right)$.

Proof: We argue by contradiction and assume that $\left(M^{n}, g\right)$ were future lightlike geodesically complete. Up to restricting ourselves to a connected component of $M^{n}$ containing a connected component of $N$, we may assume that $M$ itself is connected.
Claim 1: The subset $\partial I_{+}(N)$ is a nonempty compact achronal topological hypersurface of $\left(M^{n}, g\right)$.
Proof of Claim 1: Since $M^{n}$ has a Cauchy hypersurface, it is globally hyperbolic, see e.g. [2], Sec. 3.1]. As a consequence, all subsets of the form $J_{ \pm}(x)$, $x \in M$, are closed in $M$ and so is $J_{+}(N)$ since $N$ is compact (see also [2,

[^0]Sec. 3.1]). Therefore, because of $I_{+}(N) \subset J_{+}(N) \subset \overline{I_{+}(N)}$ (true in general) we obtain $J_{+}(N)=\overline{I_{+}(N)}$ and thus $\partial I_{+}(N)=J_{+}(N) \backslash I_{+}(N)$ by the fact that the chronological future $I_{+}(N)$ is open in $M$. Proposition 1.2 applied to the (nonempty) future set $I_{+}(N)$ implies that $\partial I_{+}(N)$ is a closed (as a subset) achronal topological hypersurface of $M$; note that $I_{+}(N)=M$ cannot occur since otherwise it would contradict the achronality of $N$. By Proposition 1.3 below, we also deduce that $\partial I_{+}(N)$ is compact. It remains to show that $\partial I_{+}(N) \neq \varnothing$ : but if $\partial I_{+}(N)=\varnothing$, then $I_{+}(N)=J_{+}(N)$ would hold, in particular the nonempty open and closed subset $I_{+}(N)$ must coincide with $M$ since $M$ is connected; again, this would contradict the achronality of $N . \sqrt{ }$
Claim 2: The hypersurface $\partial I_{+}(N)$ is homeomorphic to a (hence any) Cauchy hypersurface of $\left(M^{n}, g\right)$.
Proof of Claim 2: Let $S$ be any topological Cauchy hypersurface of $\left(M^{n}, g\right)$. Note that, $M$ being assumed to be connected, so is $S$. Let $X$ be a complete smooth (future-oriented) timelike vector field whose integral curves are inextendible ${ }^{2}$, for instance, pick any complete Riemannian metric $h$ on $M$ (there is always one), any smooth timelike vector field $\widetilde{X}$ on $M$ and set $X:=\frac{\tilde{X}}{\sqrt{h(\tilde{X}, \tilde{X})}}$. We show that the flow of $X$ provides the desired homeomorphism. Namely denote by $\phi^{X}: \mathbb{R} \times M \rightarrow M$ the flow of $X$ and consider the map

$$
\begin{aligned}
\rho: \partial I_{+}(N) & \longrightarrow S \\
x & \longmapsto y \text { where } \phi^{X}(\mathbb{R}, x) \cap S=\{y\} .
\end{aligned}
$$

Note that the map $\rho$ is well-defined since the timelike curve $t \mapsto \phi^{X}(t, x)$ is inextendible and $S$ is a Cauchy hypersurface, hence is met exactly once by that curve. By definition, $\rho$ can be written as the composition $p_{2} \circ \psi^{-1}$, where $p_{2}: \mathbb{R} \times S \rightarrow S$ is the projection onto the second factor and $\psi: \mathbb{R} \times S \rightarrow M$, $(t, x) \mapsto \phi^{X}(t, x)$ is a homeomorphism, see e.g. [1, Satz 2.5.13]; in particular, $\rho$ is continuous. Since $\partial I_{+}(N)$ is achronal by Claim 1, $\rho$ is injective. By compactness of $\partial I_{+}(N), \rho: \partial I_{+}(N) \rightarrow \rho\left(\partial I_{+}(N)\right)$ is a homeomorphism, hence $\rho\left(\partial I_{+}(N)\right)$ is an $n$-1-dimensional topological manifold. Brouwer's theorem about the invariance of the domain (see e.g. [5, Thm 1.31]) implies that $\rho\left(\partial I_{+}(N)\right)$ must be open in $S^{3}$. It follows that $\rho\left(\partial I_{+}(N)\right)$, being closed, open in $S$ and nonempty (Claim 1), must coincide with $S$. Therefore, $\rho: \partial I_{+}(N) \rightarrow S$ is a homeomorphism. We obtain a contradiction since $\partial I_{+}(N)$ is compact whereas no Cauchy hypersurface of $\left(M^{n}, g\right)$ is by assumption. Therefore, $\left(M^{n}, g\right)$ is not future lightlike geodesically complete.

[^1]Proposition 1.2 Let $\left(M^{n}, g\right)$ be a connected spacetime and $\varnothing \neq A \subsetneq M$ be any future set (i.e., $I_{+}(A) \subset A$ ). Then $\partial A$ is an achronal closed (as a subset) topological hypersurface of $M^{n}$.

Proof: See e.g. [1, Kor. 2.5.8].
As emphasized in [4, Ch. 14], the main idea in the proof of Theorem 1.1 consists in turning the differential geometric condition for $N$ to be (strictly) trapped into a causal condition:

Proposition 1.3 Let $\left(M^{n}, g\right)$ be a future lightlike geodesically complete spacetime satisfying $\operatorname{ric}_{g}(X, X) \geq 0$ for all $X \in T M$ lightlike. Let $N^{n-2}$ be a compact achronal spacelike submanifold with past-oriented timelike mean curvature vector field. Then $N$ is future-trapped, i.e., $J_{+}(N) \backslash I_{+}(N)$ is compact.

Proof: Fix an arbitrary Riemannian metric $h$ on $M$ and consider the submanifold

$$
\widehat{N}:=\left\{X \in T^{\perp} N, X \text { future-oriented lightlike with } h(X, X)=1\right\}
$$

of $T^{\perp} N$. Since $N$ has codimension 2 in $M$, there are at each point $x \in N$ exactly two future-oriented lightlike vectors with unit $h$-length in $T_{x}^{\perp} N$, hence the restriction of the projection map $\pi: T^{\perp} N \rightarrow N$ to $\widehat{N}$ is a two-fold covering map $\widehat{N} \rightarrow N$. In particular, $\widehat{N}$ is compact since $N$ is. Now the map $T^{\perp} N \rightarrow \mathbb{R}, X \mapsto g(H(\pi(X)), X)$, is continuous and positive on $\widehat{N}$ (for any $v \in \mathbb{R}^{m}$ past-oriented timelike and $w \in J_{+}(0)$, one has $\left.\langle\langle v, w\rangle\rangle>0\right)$, therefore there exists a $b>0$ with

$$
g(H(\pi(X)), X) \geq \frac{1}{b} \quad \forall X \in \widehat{N} .
$$

Because $M$ is assumed to be future lightlike geodesically complete, the geodesic $t \mapsto \exp (t X)$ is defined on $[0, \infty[$ for any $X \in T M$ future-oriented lightlike; in particular, for any $X \in \widehat{N}$, the geodesic $c_{X}: t \mapsto \exp (t X)$ is defined on $[0, b]$. By Lemma 1.4 below, $c_{X}$ must have a focal point in $\left.] 0, b\right]$. Pick any point $q \in J_{+}(N) \backslash I_{+}(N)$. By Theorem 1.5 below, there exists a (future-oriented) lightlike geodesic $c$ in $M$ with $c(0) \in N, \dot{c}(0) \in T_{c(0)}^{\perp} N$, (w.l.o.g.) $h(\dot{c}(0), \dot{c}(0))=1$ and without any focal point between $c(0)$ and $q$. By uniqueness of geodesics, we have $c=c_{X}$ for $X=\dot{c}(0) \in \widehat{N}$; by the preceding argument, if $t_{0} \in\left[0, \infty\left[\right.\right.$ is such that $c\left(t_{0}\right)=q$, then $t_{0} \leq b$. It follows that

$$
J_{+}(N) \backslash I_{+}(N) \subset \exp (K),
$$

where $K:=\{t X, X \in \widehat{N}$ and $t \in[0, b]\} \subset T^{\perp} N$. Since $K$ is compact, so is $\exp (K)$. It remains to prove that $J_{+}(N) \backslash I_{+}(N)$ is closed in $\exp (K)$. But this follows from $\exp (K) \subset J_{+}(N)$ by definition of $K$ : if $\left(q_{m}\right)_{m}$ is any sequence of $J_{+}(N) \backslash I_{+}(N)$ converging to some $q \in \exp (K)$, then $q \in J_{+}(N)$ by $\exp (K) \subset J_{+}(N)$, and on the other hand $q \notin I_{+}(N)$ since $I_{+}(N)$ is open. On the whole, $J_{+}(N) \backslash I_{+}(N)$ is compact, QED.

The central argument in the proof of Theorem 1.1 is hence reduced to the following lemma.

Lemma 1.4 Let $\left(M^{n}, g\right)$ be any $n(\geq 3)$-dimensional Lorentzian manifold, $N^{n-2} \subset M$ be any spacelike submanifold and $c:[0, b] \rightarrow M$ be any lightlike geodesic with $c(0)=x \in N$ and $\dot{c}(0) \in T_{x}^{\perp} N$, for some $b>0$. Assume furthermore that
i) $\operatorname{ric}_{g}(\dot{c}(t), \dot{c}(t)) \geq 0$ for all $t \in[0, b]$ and
ii) $g(H(x), \dot{c}(0)) \geq \frac{1}{b}$, where $H:=\frac{1}{n-2} \operatorname{tr}_{g}(\mathbb{I})$ is the mean curvature vector of $N$ in $M$.

Then $c$ has a focal point in $] 0, b]$.
Proof: First recall that a focal point is a point along the geodesic $c$ for which nontrivial infinitesima $\sqrt{4}$ geodesic deformations of $c$ exist fixing that point while keeping the deformed geodesic normal to the submanifold $N$. In other words, call $\left.\left.c\left(t_{0}\right)\left(t_{0} \in\right] 0, b\right]\right)$ a focal point iff the space
$\left\{J\right.$ Jacobi v.f. along $c, J(0) \in T_{c(0)} N,\left(\frac{\nabla^{M} J}{d t}(0)\right)^{T}=-\mathbb{I}^{*}(J(0), \dot{c}(0))$ and $\left.J\left(t_{0}\right)=0\right\}$
is nonzero, where $\mathbb{I}^{*}(X, \nu) \in T N$ is defined by $g\left(\mathbb{I}^{*}(X, \nu), Y\right)=g(\mathbb{I}(X, Y), \nu)$ for all $X, Y \in T_{x} N$ and $\nu \in T_{x}^{\perp} N$.

We argue by contradiction and assume $c$ had no focal point in $] 0, b]$. Fix an orthonormal basis $\left\{e_{1}, \ldots, e_{n-2}\right\}$ of $T_{x} N$ and consider the Jacobi vector fields $J_{1}, \ldots, J_{n-2}$ along $c$ with $J_{j}(0)=e_{j}$ as well as $\frac{\nabla J_{j}}{d t}(0)^{T}=-\mathbb{I}^{*}\left(e_{j}, \dot{c}(0)\right)$. Let $J_{0}(t):=t \dot{c}(t)$ be the Jacobi vector field along $c$ with $J_{0}(0)=0$ and $\frac{\nabla J_{0}}{d t}(0)=\dot{c}(0)$.
Claim A: For all $t \in] 0, b]$, the vectors $J_{0}(t), J_{1}(t), \ldots, J_{n-2}(t)$ form a basis of $\dot{c}(t)^{\perp} \subset T_{c(t)} M$.
Proof of Claim A: Since $c$ is lightlike, we have $g\left(J_{0}(t), \dot{c}(t)\right)=0$ for all $t \in$

[^2]$[0, b]$. Moreover, because $J_{1}, \ldots, J_{n-2}$ are Jacobi vector fields along $c$, we have $\frac{d^{2}}{d t^{2}} g\left(J_{j}, \dot{c}\right)=-g\left(R_{J_{j}, \dot{c}} \dot{c}, \dot{c}\right)=0$ on $[0, b]$; but by $g\left(J_{j}(0), \dot{c}(0)\right)=g\left(e_{j}, \dot{c}(0)\right)=0$ and $\frac{d}{d t}\left(g\left(J_{j}, \dot{c}\right)\right)(0)=-g\left(\mathbb{I}^{*}\left(e_{j}, \dot{c}(0)\right), \dot{c}(0)\right)=0\left(\right.$ since $\left.\dot{c}(0) \in T_{c(0)}^{\perp} N\right)$, we deduce that $g\left(J_{j}, \dot{c}\right)=0$ on $[0, b]$, for all $1 \leq j \leq n-2$. This shows that $J_{j}(t) \in \dot{c}(t)^{\perp}$ for all $0 \leq j \leq n-2$.
If $J_{0}(t), J_{1}(t), \ldots, J_{n-2}(t)$ were linearly dependent for some $\left.\left.t \in\right] 0, b\right]$, then there would exist $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-2}\right) \in \mathbb{R}^{n-1} \backslash\{0\}$ with $\sum_{j=0}^{n-2} \lambda_{j} J_{j}(t)=0$. The Jacobi vector field $J:=\sum_{j=0}^{n-2} \lambda_{j} J_{j}$ would satisfy $J(t)=0, J(0)=$ $\sum_{j=1}^{n-2} \lambda_{j} e_{j} \in T_{c(0)} N \backslash\{0\}$ as well as
$\frac{\nabla J}{d t}(0)^{T}=\lambda_{0} \underbrace{\dot{c}(0)^{T}}_{0}+\sum_{j=1}^{n-2} \lambda_{j} \frac{\nabla J_{j}}{d t}(0)^{T}=-\mathbb{I}^{*}\left(\sum_{j=1}^{n-2} \lambda_{j} e_{j}, \dot{c}(0)\right)=-\mathbb{I}^{*}(J(0), \dot{c}(0))$.
This would imply that $t$ is a focal point for $c$ in $] 0, b]$, contradiction to the assumption. Therefore, $\left\{J_{0}(t), J_{1}(t), \ldots, J_{n-2}(t)\right\}$ is a basis of $\dot{c}(t)^{\perp}$.
Claim B: For all $0 \leq i, j \leq n-2$ and $t \in[0, b]$, we have $g\left(\frac{\nabla J_{i}}{d t}, J_{j}\right)=$ $g\left(J_{i}, \frac{\nabla J_{j}}{d t}\right)$.
Proof of Claim B: We already know that, since $J_{i}$ and $J_{j}$ are Jacobi vector fields, there exists a constant $\lambda_{i j} \in \mathbb{R}$ with $g\left(\frac{\nabla J_{i}}{d t}, J_{j}\right)-g\left(J_{i}, \frac{\nabla J_{j}}{d t}\right)=\lambda_{i j}$ on $[0, b]$ (the derivative of the l.h.s. vanishes because of $g\left(R_{X, Y} Z, T\right)=g\left(R_{Z, T} X, Y\right)$ ).
For $1 \leq i, j \leq n-2$, we have
\[

$$
\begin{aligned}
g\left(\frac{\nabla J_{i}}{d t}(0), J_{j}(0)\right)-g\left(J_{i}(0), \frac{\nabla J_{j}}{d t}(0)\right) & =-g\left(\mathbb{I}^{*}\left(e_{i}, \dot{c}(0)\right), e_{j}\right)+g\left(\mathbb{I}^{*}\left(e_{j}, \dot{c}(0)\right), e_{i}\right) \\
& =-g\left(\mathbb{I}\left(e_{i}, e_{j}\right), \dot{c}(0)\right)+g\left(\mathbb{I}\left(e_{j}, e_{i}\right), \dot{c}(0)\right) \\
& =0
\end{aligned}
$$
\]

and for $i=0,1 \leq j \leq n-2$, we have

$$
g\left(\frac{\nabla J_{0}}{d t}(0), J_{j}(0)\right)-g\left(J_{0}(0), \frac{\nabla J_{j}}{d t}(0)\right)=g\left(\dot{c}(0), e_{j}\right)-0=0
$$

On the whole, the constant $\lambda_{i j}$ vanishes, QED.
Claim C: Let $V \in \Gamma\left(c^{*} T M\right)$ be any vector field along $c$ with $V(0) \in T_{c(0)} N$, $V(b)=0$ as well as $V(t) \in \dot{c}(t)^{\perp}$ for all $t \in[0, b]$. Then

$$
\int_{0}^{b}\left\{g\left(\frac{\nabla V}{d t}, \frac{\nabla V}{d t}\right)-g\left(R_{\dot{c}, V} V, \dot{c}\right)\right\} d t \geq g(\mathbb{I}(V(0), V(0)), \dot{c}(0))
$$

with equality iff $V(t)$ is proportional to $\dot{c}(t)$ for all $t \in[0, b]$.
Proof of Claim C: By Claim A, there exist smooth functions $f_{0}, \ldots, f_{n-2}$
on $] 0, b]$ with $V=\sum_{j=0}^{n-2} f_{j} J_{j}$ on $\left.] 0, b\right]$. The functions $t f_{0}, f_{1}, \ldots, f_{n-2}$ can be even smoothly extended onto $[0, b]$ with $\lim _{t \rightarrow 0^{+}} t f_{0}(t)=0$ since $V(0) \in$ $T_{c(0)} N=\operatorname{Span}\left(e_{1}, \ldots, e_{n-2}\right)$. Let $X:=\sum_{j=0}^{n-2} f_{j}^{\prime} J_{j}$ and $Y:=\sum_{j=0}^{n-2} f_{j} \frac{\nabla J_{j}}{d t}$ on $] 0, b]$. Then $\frac{\nabla V}{d t}=X+Y$ with $g(X, X) \geq 0$ on $\left.] 0, b\right]$ (for $X \perp \dot{c}$ and $\dot{c}$ is lightlike). Now $g\left(\frac{\nabla V}{d t}, \frac{\nabla V}{d t}\right)-g\left(R_{\dot{c}, V} V, \dot{c}\right)=\frac{d}{d t}\left(g\left(V, \frac{\nabla V}{d t}\right)\right)-g\left(\frac{\nabla^{2} V}{d t^{2}}-R_{\dot{c}, V} \dot{c}, V\right)$, with

$$
\begin{aligned}
\frac{\nabla^{2} V}{d t^{2}}-R_{\dot{c}, V} \dot{c} & =\sum_{j=0}^{n-2} f_{j}^{\prime \prime} J_{j}+2 f_{j}^{\prime} \frac{\nabla J_{j}}{d t}+f_{j} \frac{\nabla^{2} J_{j}}{d t^{2}}-f_{j} R_{\dot{c}, J_{j}} \dot{c} \\
& =\sum_{j=0}^{n-2} f_{j}^{\prime \prime} J_{j}+2 f_{j}^{\prime} \frac{\nabla J_{j}}{d t} \quad\left(J_{j}=\text { Jacobi vector field }\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
& g\left(\frac{\nabla^{2} V}{d t^{2}}-R_{\dot{c}, V} \dot{c}, V\right)= \sum_{i, j=0}^{n-2} f_{i}^{\prime \prime} f_{j} g\left(J_{i}, J_{j}\right)+2 f_{i}^{\prime} f_{j} g\left(\frac{\nabla J_{i}}{d t}, J_{j}\right) \\
& \stackrel{\text { (ClaimB) }}{=} \sum_{i, j=0}^{n-2}\left(f_{i}^{\prime} f_{j} g\left(J_{i}, J_{j}\right)\right)^{\prime}-f_{i}^{\prime} f_{j}^{\prime} g\left(J_{i}, J_{j}\right)-2 f_{i}^{\prime} f_{j} g\left(\frac{\nabla J_{i}}{d t}, J_{j}\right) \\
& \quad+2 f_{i}^{\prime} f_{j} g\left(\frac{\nabla J_{i}}{d t}, J_{j}\right) \\
&= \sum_{i, j=0}^{n-2}\left(f_{i}^{\prime} f_{j} g\left(J_{i}, J_{j}\right)\right)^{\prime}-g(X, X) .
\end{aligned}
$$

Fixing $\varepsilon \in] 0, b[$ and integrating, we obtain

$$
\begin{aligned}
\int_{\varepsilon}^{b}\left\{g\left(\frac{\nabla V}{d t}, \frac{\nabla V}{d t}\right)-g\left(R_{\dot{c}, V} V, \dot{c}\right)\right\} d t= & {\left[g\left(V, \frac{\nabla V}{d t}\right)-\sum_{i, j=0}^{n-2} f_{i}^{\prime} f_{j} g\left(J_{i}, J_{j}\right)\right]_{\varepsilon}^{b} } \\
& +\int_{\varepsilon}^{b} g(X, X) d t
\end{aligned}
$$

with

$$
\begin{aligned}
g\left(V, \frac{\nabla V}{d t}\right)-\sum_{i, j=0}^{n-2} f_{i}^{\prime} f_{j} g\left(J_{i}, J_{j}\right) & =\sum_{i, j=0}^{n-2} f_{i} f_{j}^{\prime} g\left(J_{i}, J_{j}\right)+f_{i} f_{j} g\left(J_{i}, \frac{\nabla J_{j}}{d t}\right)-f_{i}^{\prime} f_{j} g\left(J_{i}, J_{j}\right) \\
& =g(V, Y),
\end{aligned}
$$

so that

$$
\begin{aligned}
\int_{\varepsilon}^{b}\left\{g\left(\frac{\nabla V}{d t}, \frac{\nabla V}{d t}\right)-g\left(R_{\dot{c}, V} V, \dot{c}\right)\right\} d t & =[g(V, Y)]_{\varepsilon}^{b}+\int_{\varepsilon}^{b} g(X, X) d t \\
& =-g(V(\varepsilon), Y(\varepsilon))+\int_{\varepsilon}^{b} g(X, X) d t
\end{aligned}
$$

Note that, since $g(X, X) \geq 0$ on $] 0, b]$, the integral $\int_{0}^{b} g(X, X) d t$ is welldefined, nonnegative and $\int_{0}^{b} g(X, X) d t=\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{b} g(X, X) d t$. Moreover, since $g\left(J_{0}(t), \frac{\nabla J_{0}}{d t}(t)\right)=\frac{1}{2} \frac{d}{d t}\left(g\left(J_{0}, J_{0}\right)\right)(t)=0$ for all $t \in[0, b]$, we have by Claim A

$$
\left.g(V, Y)=\sum_{j=1}^{n-2} f_{0} f_{j} g\left(J_{0}, \frac{\nabla J_{j}}{d t}\right)+\sum_{i, j=1}^{n-2} f_{i} f_{j} g\left(J_{i}, \frac{\nabla J_{j}}{d t}\right)\right)
$$

on $] 0, b]$, so that, using $f_{0} J_{0}=\left(t f_{0}\right) \dot{c}$ and $\lim _{t \rightarrow 0^{+}} t f_{0}(t)=0$, we obtain

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} g(V(t), Y(t))= & \sum_{j=1}^{n-2} \lim _{t \rightarrow 0^{+}}\left(t f_{0}(t)\right) f_{j}(t) g\left(\dot{c}, \frac{\nabla J_{j}}{d t}\right)(t) \\
& \left.+\sum_{i, j=1}^{n-2} f_{i}(0) f_{j}(0) g\left(J_{i}(0), \frac{\nabla J_{j}}{d t}\right)(0)\right) \\
= & -\sum_{i, j=1}^{n-2} f_{i}(0) f_{j}(0) g\left(e_{i}, \mathbb{I}^{*}\left(e_{j}, \dot{c}(0)\right)\right) \\
= & -g(\mathbb{I}(V(0), V(0)), \dot{c}(0)) .
\end{aligned}
$$

We deduce that

$$
\begin{aligned}
\int_{0}^{b}\left\{g\left(\frac{\nabla V}{d t}, \frac{\nabla V}{d t}\right)-g\left(R_{\dot{c}, V} V, \dot{c}\right)\right\} d t & =\lim _{\varepsilon \rightarrow 0^{+}}-g(V(\varepsilon), Y(\varepsilon))+\int_{\varepsilon}^{b} g(X, X) d t \\
& =g(\mathbb{I}(V(0), V(0)), \dot{c}(0))+\int_{0}^{b} g(X, X) d t
\end{aligned}
$$

The desired inequality follows from $\int_{0}^{b} g(X, X) d t \geq 0$. Moreover, the inequality is an equality iff $g(X, X)=0$ on $] 0, b]$, which is equivalent to $X$ being proportional to $\dot{c}$. But the latter implies $f_{j}^{\prime}=0$ for all $j \geq 1$ and, because $f_{j}(b)=0$, also $f_{j}=0$ for all $j \geq 1$; that is, that $V$ is proportional to $\dot{c}$ (in particular $V(0)=0)$. Conversely, if $V$ is proportional to $\dot{c}$, then so is $X$ and the equality holds.
Let $E$ be any parallel vector field along $c$ with $E(0) \in T_{c(0)} N$ and let
$V(t):=\left(1-\frac{t}{b}\right) E(t)$ for all $t \in[0, b]$. Then $V$ is a vector field along $c$, nonproportional to $\dot{c}$ and with $g(V, \dot{c})=0$. Claim C implies

$$
\begin{aligned}
0 & <\int_{0}^{b}\left\{g\left(\frac{\nabla V}{d t}, \frac{\nabla V}{d t}\right)-g\left(R_{\dot{c}, V} V, \dot{c}\right)\right\} d t-g(\mathbb{I}(V(0), V(0)), \dot{c}(0)) \\
& =\int_{0}^{b} \frac{1}{b^{2}} g(E(0), E(0))-\left(1-\frac{t}{b}\right)^{2} g\left(R_{\dot{c}, E} E, \dot{c}\right) d t-g(\mathbb{I}(E(0), E(0)), \dot{c}(0)) .
\end{aligned}
$$

At this point we need another remark.
Claim D: Let $X \in T_{x} M$ be any lightlike vector on a Lorentzian manifold $\left(M^{n}, g\right)$. Let $\left\{e_{1}, \ldots, e_{n-2}\right\}$ be a spacelike orthonormal family of $X^{\perp}$. Then

$$
\operatorname{ric}_{g}(X, X)=\sum_{j=1}^{n-2} g\left(R_{X, e_{j}} e_{j}, X\right)
$$

Proof of Claim D: Since $\left\{e_{1}, \ldots, e_{n-2}\right\}^{\perp}$ is 2-dimensional and has signature $(1,1)$, there exists a Lorentzian orthonormal basis $\left\{e_{n-1}, e_{n}\right\}$ of $\left\{e_{1}, \ldots, e_{n-2}\right\}^{\perp}$ such that $g\left(e_{n-1}, e_{n-1}\right)=1, g\left(e_{n}, e_{n}\right)=-1$ and $e_{n-1}+e_{n}=\lambda X$ for some $\lambda \in \mathbb{R}^{\times}$. By definition of Ricci curvature,

$$
\operatorname{ric}_{g}(X, X)=\sum_{j=1}^{n-1} g\left(R_{X, e_{j}} e_{j}, X\right)-g\left(R_{X, e_{n}} e_{n}, X\right)
$$

where $g\left(R_{X, e_{n-1}+e_{n}} e_{n-1}, X\right)=\lambda g\left(R_{X, X} e_{n-1}, X\right)=0=g\left(R_{X, e_{n-1}+e_{n}} e_{n}, X\right)$. As a consequence,
$g\left(R_{X, e_{n-1}} e_{n-1}, X\right)-g\left(R_{X, e_{n}} e_{n}, X\right)=-g\left(R_{X, e_{n}} e_{n-1}, X\right)+g\left(R_{X, e_{n-1}} e_{n}, X\right)=0$,
which gives the claim.
If one lets $E:=e_{j}, 1 \leq j \leq n-2$, and sums the last inequality over $j$, one obtains by Claim D:

$$
0<\frac{n-2}{b}-\int_{0}^{b}\left(1-\frac{t}{b}\right)^{2} \underbrace{\operatorname{ric}_{g}(\dot{c}, \dot{c})}_{\geq 0} d t-(n-2) g(H(c(0)), \dot{c}(0)) \leq 0,
$$

contradiction. Therefore, $c$ must have a focal point in $] 0, b]$.

Theorem 1.5 Let $\left(M^{n}, g\right)$ be a spacetime with spacelike (embedded) submanifold $N$. Let $c:[0, b] \rightarrow M$ be any future-oriented causal curve with $c(0) \in N$. Then, unless $c$ is up to reparametrization a lightlike geodesic with
$\dot{c}(0) \in T^{\perp} N$ and without any focal point in $] 0, b[$, there exists arbitrarily closed to $c$ a future-oriented timelike curve from $N$ to $c(b) .5$

Proof: See [1, Satz 2.2.12].

## 2 Example

We consider the Schwarzschild spacetime: for some $m \in \mathbb{R}_{+}^{\times}$and $h: \mathbb{R}_{+}^{\times} \rightarrow$ $]-\infty, 1\left[, r \mapsto 1-\frac{2 m}{r}\right.$, let

$$
\left(M^{4}, g\right):=\left(\mathbb{R} \times(] 0,2 m[\cup] 2 m, \infty[) \times \mathbb{S}^{2},-h(r) d t^{2} \oplus \frac{1}{h(r)} d r^{2} \oplus r^{2}\langle\cdot, \cdot\rangle\right)
$$

where $\left(\mathbb{S}^{2},\langle\cdot, \cdot\rangle\right)$ denotes the standard 2-dimensional sphere of Gauß-curvature 1. Then $\left(M^{4}, g\right)$ is Ricci-flat, globally hyperbolic with $\left(\mathbb{R} \times\{m\} \times \mathbb{S}^{2}\right) \cup$ $(\{0\} \times] 2 m, \infty\left[\times \mathbb{S}^{2}\right)$ as spacelike Cauchy hypersurface and the mean curvature vector field of the 2-dimensional compact achronal spacelike submanifold $N^{2}:=\{0\} \times\left\{r_{0}\right\} \times \mathbb{S}^{2}$ (where $\left.r_{0} \in\right] 0,2 m[\cup] 2 m, \infty[)$ of $\left(M^{4}, g\right)$ is given by $H=-\frac{h\left(r_{0}\right)}{r_{0}} \frac{\partial}{\partial r}$, see [1, Sec. 2.9] for details. Moreover, the lightlike geodesics of the Schwarzschild half-plane $\left(\mathbb{R} \times(] 0,2 m[\cup] 2 m, \infty[),-h(r) d t^{2} \oplus \frac{1}{h(r)} d r^{2}\right)$ are the parametrized curves of the form

$$
s \mapsto(\varepsilon(a s+2 m \ln (|a s+b-2 m|)), a s+b)
$$

for some $\varepsilon \in\{ \pm 1\}$ and $(a, b) \in \mathbb{R}^{\times} \times \mathbb{R}$.

1. Case $r_{0}>2 m$ : Then the vector field $\frac{\partial}{\partial r}$ (and so $H$ ) is spacelike, so that Theorem 1.1 cannot be applied. And indeed all future-oriented lightlike geodesics in $(\mathbb{R} \times] 2 m, \infty\left[\times \mathbb{S}^{2},-h(r) d t^{2} \oplus \frac{1}{h(r)} d r^{2} \oplus r^{2}\langle\cdot, \cdot\rangle\right)$ are future-complete.
2. Case $0<r_{0}<2 m$ : Then $H$ is future-oriented timelike. If the standard time-orientation of $(\mathbb{R} \times] 0,2 m\left[\times \mathbb{S}^{2},-h(r) d t^{2} \oplus \frac{1}{h(r)} d r^{2} \oplus r^{2}\langle\cdot, \cdot\rangle\right)$ is reversed (i.e., defined by $-\frac{\partial}{\partial r}$ ), then Theorem 1.1 applies. And indeed there exist past-oriented lightlike geodesics that are not complete: fixing $x_{0} \in \mathbb{S}^{2}$, the curve $s \mapsto\left(-s+2 m \ln (s+2 m),-s, x_{0}\right)$ is a lightlike geodesic which is both past- and future-incomplete $\underbrace{6}$
[^3]
## References

[1] C. Bär, Lorentzgeometrie, lecture notes, 2006.
[2] N. Ginoux, Teilskript zur Vorlesung Lorentzgeometrie, lecture notes, 2010.
[3] M. Kriele, Spacetime. Foundations of general relativity and differential geometry, Lecture Notes in Physics 59, Springer, 1999.
[4] B. O'Neill, Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics 103, Academic Press, 1983.
[5] J.W. Vick, Homology theory. An introduction to algebraic topology, Pure and Applied Mathematics 53, Academic Press, 1973.


[^0]:    ${ }^{1}$ Such a submanifold is called strictly trapped by M. Kriele, see [3, Def. 9.2.1].

[^1]:    ${ }^{2}$ as curves, which is not guaranteed by the fact that $X$ is complete!
    ${ }^{3}$ This is a nontrivial statement!

[^2]:    ${ }^{4}$ Thank you Bernd.

[^3]:    ${ }^{5}$ This also applies to the case when $N=\varnothing$ : in that case, there is no condition on $c(0)$ and the conclusion obviously holds true!
    ${ }^{6}$ That curve is defined on $]-2 m, 0[$ and cannot be extended beyond $s=0$, because it runs into the black-hole singularity of the Schwarzschild spacetime.

