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Abstract. Short overview of Thurston’s geometrisation conjecture, mainly based on [2, Sec. 1 & 2] and
[12, Sec. 1 & 2] (details about the topological part - Sections 1 and 2 - can be found in [7, Ch. 1]).

In the whole talk and unless otherwise stated the symbol M will denote a compact connected orientable
3-dimensional manifold (shortly: 3-manifold). The (possibly empty) boundary of M will be denoted by
∂M and M \ ∂M will be called the interior of M . We can (and shall) assume that M is smooth since
every 3-manifold has a unique smooth structure up to diffeomorphism, see e.g. [11, Sec. 3] for a short
survey on that question.

1 Canonical decomposition of compact 3-manifolds

In this section we describe how every 3-manifold can be split into finitely many topologically beautiful
pieces, where “beautiful” means “prime”:

Definition 1.1 A 3-manifold M is called

• prime if and only if (M = P ]Q =⇒ P = S3 or Q = S3), i.e., if M cannot be written as a
connected sum in a non-trivial way.

• irreducible if and only if every embedding S2 ↪→M extends to an embedding B
3
↪→M , i.e., if every

embedded 2-sphere in M bounds an embedded 3-ball.

Notes 1.2

1. Every irreducible 3-manifold M is prime. Let namely P , Q be 3-manifolds with M = P ]Q. Then
the embedded S2 along which both P and Q are glued together bounds a ball. This implies that
P \B3

or Q \B3
must coincide with that ball: the image B of B

3
under the embedding must lie in

exactly one of the two pieces since otherwise the embedded S2 would be two-sided; as a compact
set B has to be closed and since it has the same boundary as its containing piece, it is open in that
piece. Therefore P = S3 or Q = S3.

2. As a consequence of the (already involved) sphere theorem (see e.g. [7, Sec. 3.1]), every irreducible
3-manifold has trivial second homotopy group π2(M).

The 3-sphere S3 is irreducible in virtue of

Alexander’s theorem: Every embedded 2-sphere in R3 [hence in S3] bounds an embedded 3-ball.

For a proof based on Morse theory and the 2-dimensional Schönflies’ theorem (if γ is a simple closed
curve in R2, then there exists an homeomorphism φ : R2 → R2 such that φ(γ) = S1), see [7, Sec. 1.1].

All but one prime manifolds are irreducible:
∗Of course none of the results is from me; all the mistakes are. Thanks to Bernd Ammann for very helpful and enlightening

discussions around the subject.
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Lemma 1.3 Let M be a prime non-irreducible 3-manifold, then M is diffeomorphic to S1 × S2.

Proof: First we prove that S1 × S2 is prime. We have to show that, if S ⊂ S1 × S2 is an embedded
2-sphere such that (S1 × S2) \ S has 2 connected components (shortly: a separating 2-sphere), then
one of those components must be an embedded 3-ball. Let S be such a 2-sphere and denote by T and
U the closures of the two connected components of (S1 × S2) \ S. By van Kampen’s theorem one has
Z = π1(S1 × S2) = π1(T ) ∗ π1(U), in particular π1(T ) = 1 or π1(U) = 1, say π1(T ) = 1. Identify the
universal cover of S1 × S2 with R3 \ {0} and consider a lift of the inclusion map T ⊂ S1 × S2 to R3 \ {0}.
Denote by T̃ the (diffeomorphic) image of T under that map. Then Alexander’s theorem implies that
the embedded 2-sphere ∂T̃ bounds an embedded 3-ball in R3. But since ∂T̃ already bounds the compact
manifold T̃ , we deduce with the same argument as in Note 1.2 that T̃ is an embedded 3-ball. In particular,
T is an embedded 3-ball in S1×S2. This proves that S1×S2 is prime. Note that S1×S2 is not irreducible,
since e.g. {1} × S2 ⊂ S1 × S2 is an embedded 2-sphere whose complement is connected.
Conversely let M be a prime non-irreducible 3-manifold. Then there exists an embedded 2-sphere S such
that M \ S is connected (shortly: a non-separating 2-sphere). If S were a connected component of the
boundary, then the prime manifold M would be diffeomorphic to a closed 3-ball B

3
(take a neighbourhood

N of that connected component of the boundary with N diffeomorphic to S2 × [0, 1[ and consider the
separating 2-sphere S2×{1}), which is already irreducible by Alexander’s theorem, contradiction. There-
fore S * ∂M . Up to deforming S by an isotopy1, we may assume that S∩ ∂M = ∅ and hence S ⊂M\∂M .

Claim: If the interior of a 3-manifold M contains a non-separating 2-sphere, then M can be written as
M = P ] (S1 × S2) for some 3-manifold P .

Proof of claim: Let S be a non-separating 2-sphere in M \ ∂M and consider an open neighbourhood
N of S in M . Since both S and M are orientable, the normal bundle of S in M is trivial and, up to
making N smaller, one can assume that N is diffeomorphic to S×]− 1, 1[ and that N is diffeomorphic to
S × [−1, 1] (here we use the fact that S ⊂M \ ∂M). In particular M \N is a deformation retract of the
path-connected space M \S, therefore M \N (and hence M \N = M \N) is path-connected as well. Take
a path joining in M \N a point of S×{−1} to a point of S×{1} and denote by N ′ an open (sufficiently
small) tubular neighbourhood of that path in M . Then N ∪N ′ is a 3-manifold which is diffeomorphic to
(S1 × S2) \ ((S2 \D) × I) for an open disk D ⊂ S2 and an open interval I. Since (S2 \D) × I is diffeo-
morphic to D × I ∼= B3, the manifold N ∪N ′ is diffeomorphic to the complement of an open embedded
3-ball in S1 × S2. Define P to be the 3-manifold obtained by gluing a 3-ball along the boundary S of
(N ∪N ′)c (note that S is an embedded 2-sphere from the preceding argument), then M = P ] (S1×S2).

√

Since by assumption M is prime, the manifold P in the connected sum M = P ] (S1 × S2) must be S3,
therefore M is diffeomorphic to S1 × S2. �

The main theorem of this section, which is due to H. Kneser [10], is the following:

Theorem 1.4 (canonical decomposition of 3-manifolds) Every 3-manifold M can be written as a
connected sum of the form

M = P1 ] . . . ] Pp ] S1 × S2 ] . . . ]S1 × S2︸ ︷︷ ︸
q

for finitely many irreducible 3-manifolds P1, . . . , Pp and q ∈ N. This decomposition is unique up to
permutation of the Pi’s and insertion or deletion of S3’s.

Idea of proof: Existence and uniqueness are proved separately. For the existence, assume M to contain an
embedded non-separating 2-sphere S. As in the proof of Lemma 1.3, one may assume that S ⊂M \ ∂M .
The claim in the proof of Lemma 1.3 implies the existence of a 3-manifold P with M = P ] (S1×S2). If P
also contains an embedded non-separating 2-sphere, then another S1×S2 can be split off M . The process
can be inductively repeated, splitting off S1 × S2’s as along as embedded non-separating 2-spheres exist.

1The complement of a point in S2 is contractible, so we can assume S ∩ ∂M = ∅ or S ∩ ∂M = {pt}; in the latter case,
pushing S away from ∂M in a small neighbourhood of the point of S ∩ ∂M does not change the number of connected
components of M \ S.
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Since each S1×S2 produces an H1(S1×S2) ∼= Z-component in the first homology group H1(M) of M and
H1(M) is finitely generated (remember that M is compact), this process must stop after finitely many
steps. Thus it remains to cover the case where every embedded 2-sphere in M separates. To proceed,
one shows the existence of an integer n with the following property: for any family of disjoint embedded
(separating) 2-spheres in M such that the complement of their union does not contain any punctured
3-sphere (the complement of finitely many points in S3), the cardinality of the family is at most n. If
such an n exists, then the existence of the decomposition is achieved. If namely M is not irreducible, then
there exists a separating embedded 2-sphere in M which does not bound an embedded 3-ball, hence M
can be written as a non-trivial connected sum. The same argument may be carried out on both factors in
the connected sum, and this can be repeated inductively on each factor. But the existence of n precisely
implies that this algorithm must stop after finitely many steps; this in turn implies that each factor we
obtain at the end is irreducible (choosing a further S2 only splits off an S3 - in any factor). The hard
and technical proof of the existence of n, which essentially reduces to the case where the 2-sphere is
“transversal” in some sense to a fixed triangulation of M , can be found in [7, pp. 5-7].
As for the uniqueness of the decomposition, one first has to show that - after deleting all S3’s in the
connected sum - the irreducible factors coincide up to permutation (see [7, pp. 7-8]). The number of
S1 × S2’s is then fixed by the rank of the “second factor” in H1(M). �

For non-orientable manifolds, the following criterion is available for testing irreducibility (see [7, Prop.
1.6 p.8]):

Lemma 1.5 If the total space of a covering is irreducible, then so is its base.

2 Splitting irreducible compact 3-manifolds along incompres-
sible 2-tori

In this section we decompose irreducible 3-manifolds further on. Before stating the result, we need to
introduce new notions.

Definition 2.1 An embedded surface S in a 3-manifold M is called

• 2-sided (resp. 1-sided) in M if and only if its normal bundle in M is trivial (resp. non-trivial).

• properly embedded in M if and only if ∂S ⊂ ∂M and S t ∂M (the surface S intersects ∂M
transversally).

• ∂-parallel in M if and only if it is isotopic with fixed boundary to a surface embedded in ∂M .

Definition 2.2 A properly embedded surface S in a 3-manifold M is called incompressible in M if and
only if it has no S2-component, no ∂-parallel D2-component and, for every embedded disk D in M with
D ∩ S = ∂D, there exists an embedded disk D′ in S such that ∂D′ = ∂D.

By definition a properly embedded surface S in M is incompressible if and only if every embedded disk
in M having its boundary on S bounds an embedded disk in S.

Lemma 2.3 Let S be an embedded surface in a 3-manifold M .

1. The surface S is incompressible if and only if every of its connected components is.

2. If S is not an S2 or a D2, then it is incompressible as soon as the induced group homomorphism
π1(S)→ π1(M) is injective (in this case the embedded S is called π1-injective in M). The converse
is true if S is 2-sided in M .

3. Neither S3 nor R3 contains any incompressible surface.

4. In case S is a 2-sided torus in an irreducible M , it is compressible if and only if either it bounds
an embedded solid torus S1 ×D2 or it lies in an embedded 3-ball (in M).

5. If S is incompressible in M , then M is irreducible if and only if M \ S is.
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In particular, a properly embedded orientable 2-torus T in M is incompressible if and only if it is π1-
injective.

Definition 2.4 An irreducible 3-manifold M is called atoroidal if and only if every incompressible 2-
torus in M is ∂-parallel.

Any irreducible 3-manifold can be decomposed along incompressible 2-tori such that eventually all in-
compressible tori in the remaining pieces lie on the boundary of those (up to isotopy):

Proposition 2.5 For any irreducible 3-manifold M , there exists a finite family of disjoint incompressible
2-tori in M such that each connected component of the complement of their union in M is atoroidal.

Note that each connected component of the complement is again irreducible by Lemma 2.3. However,
one should beware that - in contrast to the prime decomposition - the decomposition in Proposition 2.5
is in general not unique, see [7, Ex. p.13] for an example.

Next we introduce the concept of Seifert fibered 3-manifold (Definition 2.6 below), which itself requires
a good understanding of the “baby” Seifert fibering. The latter is defined as follows: for relatively prime
integers p, q let Xp,q be the (topological) quotient [0, 1]×D2

/∼ with (0, x) ∼ (1, r 2πp
q

(x)) and where rθ
denotes the rotation of angle θ around the origin in R2. The second projection [0, 1]×D2 −→ D2 induces
a continuous and surjective map Xp,q

π−→ D2
p,q, where D2

p,q := D2
/x ∼ r 2πp

q
(x) (note that D2

p,q is a 2-

dimensional orbifold in a natural way, with singularity group Z/qZ at [0]). The preimage of each point in
D2
p,q (which is called “fibre”) is diffeomorphic to a circle which is made out of q different segments glued

together “one after the other”2 except when the base point is [0], where the circle consists of only one
such segment with both endpoints identified. Each sufficiently small disk which is transversal to the fibre
intersects each other fibre exactly once in the former case and q times in the latter one.

Definition 2.6 Let M be a 3-manifold.

• A Seifert fibering of M is a decomposition of M into disjoint circles such that each of those circles
has an open neighbourhood which is diffeomorphic (preserving fibres) to an open neighbourhood of
some fibre in Xp,q

π−→ D2
p,q for some relatively prime integers p, q.

• The 3-manifold M is called Seifert fibered if and only if it admits a Seifert fibering.

If M is Seifert fibered, then the quotient space M/S1 is a 2-dimensional orbifold with finitely many
singularities as soon as M (hence M/S1) is compact. The statement which should be considered as
analogous to Theorem 1.4 for irreducible manifolds is the following one, which is due to W. Jaco and P.
Shalen [8] and independently to K. Johannson [9]:

Theorem 2.7 (Jaco-Shalen-Johannson decomposition of irreducible 3-manifolds) For any ir-
reducible 3-manifold M , there exists a finite family of disjoint incompressible 2-tori in M such that
each connected component of the complement of their union in M is either atoroidal or a Seifert fibered
manifold. Such a family with the least number of such 2-tori is unique up to isotopy.

3 Locally homogeneous metrics in dimension 3

Here we aim at briefly describing the 8 “model geometries” in dimension 3. From now on the symbol g
will denote a Riemannian metric on a smooth manifold M .

Definition 3.1 A Riemannian manifold (M, g) is called

• homogeneous if and only if its isometry group acts transitively on M .

• modelled on a Riemannian manifold (M, g) if and only if it is locally isometric to (M, g).

2The preimage π−1({[x]}) is the union of {[(t, r 2πkp
q

(x))], t ∈ [0, 1]} over k ∈ {0, . . . , q − 1}.
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• locally homogeneous if and only if it is complete and modelled on a homogeneous Riemannian
manifold.

In the following we are only interested in those locally homogeneous 3-dimensional Riemannian manifolds
of finite volume.

Theorem 3.2 (W.P. Thurston, see [19]) Let (M, g) be a locally homogeneous 3-dimensional orienta-
ble Riemannian manifold of finite volume. Denote by (M, g) the simply-connected complete homogeneous
Riemannian manifold on which (M, g) is modelled. Then there are only the following possibilities:

• The manifold (M, g) has constant sectional curvature, in which case, up to rescaling the metric:

1. The manifold (M, g) is isometric to (S3, can) and (M, g) is isometric to (S3
/Γ, can) for a finite

subgroup Γ ⊂ SO4 acting freely on S3; in particular, M is compact.

2. The manifold (M, g) is isometric to (R3, can) and (M, g) is isometric to some compact quotient
(R3

/Γ, can) for a subgroup Γ ⊂ SO3 o R3 acting freely on R3.

3. The manifold (M, g) is isometric to (H3, can) and (M3, g) is isometric to some quotient of
finite volume (H3

/Γ, can) for a subgroup Γ ⊂ SO↑(3, 1) acting freely on H3.

• The manifold (M, g) is isometric to a (non-trivial) Riemannian product, in which case, up to
rescaling the metric:

4. The manifold (M, g) is isometric to (S2 × R, can ⊕ dt2) and (M, g) is isometric to either
(S2 × S1, can⊕ dt2) or to a connected sum RP3]RP3; in particular, M is compact.

5. The manifold (M, g) is isometric to (H2 ×R, can⊕ dt2) and (M, g) is isometric to a quotient
(Σ× S1

/Γ, can⊕ dt2), where Γ is a finite subgroup of the isometry group and Σ is a hyperbolic
surface of finite area.

• The manifold (M, g) is isometric to a simply-connected Lie group with left invariant metric, in
which case:

6. The manifold (M, g) is isometric to the Heisenberg group
{ 1 a c

0 1 b
0 0 1

 , a, b, c ∈ R
}

with

some left invariant metric and (M, g) is isometric to a finite quotient of an S1-bundle over the
2-torus, in particular it is compact (then (M, g) is called a nilmanifold).

7. The manifold (M, g) is isometric to the solvable group R2 oR with some left invariant metric,

where R acts on R2 via t 7→
(
et 0
0 e−t

)
and (M, g) is isometric to a finite quotient of a

T2-bundle over S1, in particular it is compact (then (M, g) is called a solvmanifold).

8. The manifold (M, g) is isometric to the universal cover S̃L2(R) of the special linear group
SL2(R) with some left-invariant metric and (M, g) is isometric to a Seifert fibred manifold
whose orbit space is a hyperbolic 2-dimensional orbifold of finite area.

Each non-compact hyperbolic 3-manifold with finite volume consists of a compact part to which finitely
many warped products of the form (T2×]0,∞[, e−2tgflat ⊕ dt2) (for some flat metric gflat on the 2-torus)
are attached. In particular, such a manifold is diffeomorphic to the interior of a compact 3-manifold with
π1-injective tori as boundary components. A closer look to 5. and 8. also shows that, if in those cases
M is non-compact, then it is also diffeomorphic to the interior of a compact 3-manifold with π1-injective
tori as boundary components. Therefore one obtains the following

Corollary 3.3 Let (M, g) be a locally homogeneous 3-dimensional orientable Riemannian manifold of
finite volume. Then either M is closed or M is non-compact and in that case it is diffeomorphic to the
interior of a compact 3-manifold with π1-injective tori as boundary components.

The pros in topology also know that the families appearing in 1., 2., 4., 5., 6. and 8. of Theorem 3.2 can
all be described as Seifert fibred manifolds, sometimes in different ways.

5



4 Thurston’s geometrisation and the Poincaré conjecture

Roughly speaking, Thurston’s geometrisation conjecture states that any closed 3-manifold can be decom-
posed into finitely many pieces, each of those carrying a “nice” metric:

Theorem 4.1 (Thurston’s geometrisation conjecture [18]) Given any closed orientable prime 3-
manifold M , there exist finitely many disjoint embedded 2-tori in M such that each connected component
in the complement of their union admits a locally homogeneous Riemannian metric of finite volume.

Thurston’s geometrisation conjecture is no more a conjecture but a theorem, as a consequence G. Perel-
man’s work on the Ricci-flow with surgery [13, 14, 15], which itself builds on R. Hamilton’s earlier
achievements (e.g. [3, 4, 5, 6]) and on Thurston’s proof in particular cases, see Section 5 below for a very
short account and e.g. [1] or [17] for a very long one.

The solution to the geometrisation conjecture provides one to the Poincaré conjecture:

Corollary 4.2 (Poincaré conjecture [16]) Any simply-connected closed (connected) 3-manifold is dif-
feomorphic to S3.

Proof: Let M be any such 3-manifold. Note that M is automatically orientable as soon as it is simply-
connected. Decompose M into prime factors (Theorem 1.4). Since M is simply-connected, so is each
prime factor in the decomposition, in particular each of those is actually irreducible (Lemma 1.3) and
therefore we may assume that M is irreducible (if this case is covered, then we are done because of

S3]S3] . . . ] S3
diff.∼= S3). Now decompose M as in Theorem 4.1. Then Corollary 3.3 (combined with

Lemma 2.3.2) implies that this decomposition must be trivial since each 2-torus along which the manifold
is decomposed in Theorem 4.1 must be incompressible, not only in the pieces it bounds but also in M
by van Kampen’s theorem.3 Hence M has a locally homogeneous Riemannian metric of finite volume.
Because of π1(M) = 1, the simply-connected homogeneous manifold on which M is modelled is M itself,
in particular this model manifold must be compact. Looking back at the classification of homogeneous
models (Theorem 3.2), we observe that the only remaining possibility for M is S3. �

5 Ricci-flow and geometrisation

In this section (mainly based on [12, Sec. 3-4]) we briefly describe how Ricci flows provides the decom-
position in Theorem 4.1.

The basic idea - originally due to R. Hamilton - is that, for any given metric g0 on the closed 3-manifold
M , if one lets g0 evolve under the Ricci-flow (∂g∂t = −2ricg with g(0) = g0), then the metric g(t) obtained
should converge to a locally homogeneous metric as t grows, at least on some “large part” of the manifold;
in particular, this part carries such a metric.

Stated this way the idea is naive, as Hamilton himself noticed, since in general the Ricci-flow develops
singularities: as we have already seen in former talks, elementary computations show that the scalar
curvature of g(t) explodes in finite time as soon as g0 has positive scalar curvature.

Nevertheless, on any closed manifold, the Ricci-flow always exists on a small interval and is unique, as
Hamilton showed in his earliest papers on the topic. Moreover, he characterized the first time where sin-
gularities appear: if g(t) exists for all t ∈ [0, T [ but not after T <∞, then there is at least one point in the
manifold where the Riemann curvature tensor must explode as t approaches T . Specializing to dimension
3, Hamilton [3] proved that, if one starts with a metric with non-negative Ricci curvature on some closed
M , then the Ricci-flow produces either a flat metric for all times, or a metric g(t) for which (M, g(t)) is
covered by R×S2(r(t)) where r(t) goes to 0 in finite time, or a metric which, after rescaling it such as to
keep the diameter constant, converges to a round metric (i.e., with positive sectional curvature) in finite
time. In all three cases the geometrisation conjecture is obviously fulfilled, where only geometries of type

3Actually, using π1(M) = 1, Lemma 2.3.2 forbides the existence of incompressible tori in M , so that the decomposition
of M into atoroidal pieces (Theorem 2.7) just consists of M itself.
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1, 2 and 4 appear.

As a next step, Hamilton [6] looked at the situation where the Ricci-flow exists for all time and the Rie-
mann curvature tensor behaves like O( 1

t ) as t goes to ∞. Then only two possibilities can occur: either M
has a flat metric or M can be written as the union of finitely many manifolds carrying a hyperbolic metric
with finite volume, connected sums of Seifert fibred manifolds and of manifolds admitting a solv-metric.
The hyperbolic metrics appear as limits of g(t)t as t goes to∞, where g(t) is the Ricci-flow on the original
manifold. On the complement of the hyperbolic part, the metric g(t)

t collapses4 with bounded curvature
and Cheeger-Gromov’s compactness results combined with 3-dimensional topological techniques imply
that only connected sums of Seifert fibred manifolds and solvmanifolds can appear. Furthermore, all 2-tori
T in the cusps T ×R+ of the hyperbolic pieces are incompressible tori and so are all boundary tori of the
Seifert fibred summands. Though not as straightforward as before, the geometrisation conjecture can be
deduced in that case, see [12, Cor. 3.3.3].

Still the Ricci-flow generally develops singularities and therefore a new idea has to be sown for Hamilton’s
Ricci-flow ansatz to be extended. The breakthrough came with the concept of Ricci-flow with surgery.
The intuition behind it is that, after removing the possible singularities occurring during the Ricci-flow,
one obtains new pieces on which the Ricci-flow evolves to the local homogeneous metric we want. Of
course, there are numerous difficulties to implement this process, for instance: which parts exactly should
be removed? After removing those parts, should other manifolds be glued in, in that case which ones and
how? Assuming this process to work, do singularities appear only finitely many times? Or, if not, can
they accumulate in time?

The first question when wanting to perform Ricci-flow beyond singularities is: how do those look like?
The good news is that only two kinds of singularities can occur. In the first type, the metric shrinks, i.e.,
it goes down to 0 but still in a way where the underlying geometry can be controlled: rescaling the metric
so as to keep the diameter fixed provides a locally homogeneous metric as limit when getting near to the
singular time. In the second type (characterized by G. Perelman), the metric develops either a long thin
tube diffeomorphic to S2× I for some interval I or the union of such a thin tube with a positively-curved
“cap” at one end. As a matter of fact, regions where those singularities occur also satisfy the geometri-
sation conjecture.
It is in the proof of the characterization of the singularity-type that the W-entropy enters, both to show
that the “limit” in some sense is a smooth manifold (this works because of the control of the injectivity
radius provided by the entropy) and to determine the behaviour of the metric itself: the monotonicity
formula for theW-entropy implies that, if the entropy does not increase on some interval, then the Ricci-
flow has to be a Ricci-soliton on that interval.

Now Ricci-flow with surgery consists of the following algorithm: let the Ricci-flow start on the manifold
M , go to the next singular time, throw away those regions of the manifolds where singularities of the
first type occur, cut singular regions of the second type off and insert by surgery an “almost-flat” 3-ball
at the ends of the thin tubes; then flow the new metrics again and proceed as above. Since all interme-
diate operations consist of surgeries along 2-spheres, the geometrisation conjecture holds on the original
manifold as soon as it holds on the pieces after finitely many steps: the decomposition in Theorem 4.1
is given by the connected sum of the pieces which have been split apart in the process. Note that the
surgery process generated by the Ricci-flow may - actually will after finitely many surgeries - produce
trivial pieces, corresponding to splitting off S3’s.

The last and decisive step, an authentic tour de force due to G. Perelman [13, 14, 15], consists in gene-
ralizing Hamilton’s latter result on long-time-limits of Ricci-flow to Ricci-flow with surgery, even without
the assumption on the behaviour of the curvature tensor on long time. Combined to the impossibility for
the “singular times” to accumulate (a fact which is also due to Perelman), this provides the existence
of a finite time where the decomposition of the original manifold fits with that of the geometrisation
conjecture; every further surgery will split off an S3.

4in which sense? To be cleared.
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[10] H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber. DMV 38
(1929), 248–260.

[11] C. Lescop, Quelques présentations des variétés de dimension 3, notes from a talk (1997), available
at http://www-fourier.ujf-grenoble.fr/∼lescop.
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