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1 Introduction14

In this article, which follows [8], we continue investigating those Riemannian mani-15

folds (Mn, g) supporting a non-identically-vanishing function f satisfying what we16

call the generalised Ricci-Hessian equation [8, Eq. (1)]17

∇2f = −f · Ric (1)

on M , where ∇2f := ∇∇f denotes the Hessian of f and Ric the Ricci-tensor of18

(Mn, g), both seen as (1, 1)-tensor fields. Recall that this equation was first con-19

sidered when studying the so-called skew-Killing-spinor-equation [9], where f is a20

particular function built out of a so-called skew-Killing spinor, see [8] for more de-21

tails. Recall also that, although equation (1) looks like those considered by other22

∗nicolas.ginoux@univ-lorraine.fr
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authors in the search of warped product Einstein metrics [12, 13], Lorentzian Ein-1

stein metrics [6], quasi-Einstein metrics [4, 10] or gradient Ricci solitons [7], it is2

not connected to any of those frameworks and therefore needs very different kinds3

of techniques, hence leading to very different results. Again, we refer to the intro-4

duction of [8] for more references and details.5

6

In [8], we proved that, provided sufficiently many symmetries preserving a solution7

f are available on the underlying manifold (Mn, g), only one of the following can8

occur: unless f is constant and then (Mn, g) is Ricci-flat, either (Mn, g) is isometric9

to the Riemannian product of a real interval with a Ricci-flat manifold and f is10

an affine-linear function on the interval; or (Mn, g) is isometric to the Riemannian11

product of a Ricci-flat manifold with either the 2-sphere or the hyperbolic plane and12

f is the trivial extension of a solution to the Obata resp. Tashiro equation on the13

second factor.14

15

In this article, we show that, in many further situations, some of which are more16

general than those from [8], mostly only those two possibilities can occur: namely17

when M has harmonic curvature tensor (Theorem 2.3), is a warped product (Theo-18

rem 3.4), when the space of solutions is of dimension at least 2 (Theorem 4.1), when19

M is homogeneous (Theorem 5.1) and when M is Kähler (Theorem 6.1).20

21

The article is structured as follows. After preliminary remarks in Section 2, we de-22

scribe and partially classify those warped products carrying solutions to (1). In Sec-23

tion 4, we turn to the case where the space of solutions to (1) is at least 2-dimensional.24

Section 5 is dedicated to the homogeneous case, which remains partially open. We25

dedicate Section 6 to the case where the manifold is Kähler. We conclude by an26

outlook (Section 7) about further work related to the above equation.27

28

In order for the article to remain as self-contained as possible, we included parts of29

[8] in Section 2.30

31

We underline that no full classification is available yet. This is the object of future32

work.33
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2 Preliminary remarks1

We start with preliminary results, some of which are already contained in [8] but,2

for the sake of self-containedness, we give and reprove them here. From now on,3

we shall denote by S the scalar curvature of M and, for any function h on M , by4

∇h the gradient vector field of h w.r.t. g on M . First observe that the equation5

∇2f = −f · Ric is of course linear in f but is also invariant under metric rescaling:6

if g = λ2g for some nonzero real number λ, then ∇2
f = λ−2∇2

f (this comes from7

the rescaling of the gradient) and Ric = λ−2Ric. Let us denote by8

W (Mn, g) :=
{
f ∈ C∞(M,R) | ∇2f = −f · Ric

}
the real vector space of all smooth functions satisfying (1) on (Mn, g).9

10

Lemma 2.1 below corresponds to [8, Lemma 2.1] expanded with claims 3., 7. and 8.11

Lemma 2.1 Let (Mn, g) be any connected Riemannian manifold carrying a smooth12

real-valued function f satisfying (1) on M .13

1. The gradient vector field ∇f of f w.r.t. g satisfies14

Ric(∇f) =
S

2
∇f +

f

4
∇S. (2)

2. There exists a real constant µ such that15

f∆f + 2|∇f |2 = µ. (3)

3. The identity16

f |Ric|2 = fS2

2
− 1

4
⟨∇f,∇S⟩+ f

4
∆S (4)

holds on M .17

4. If n > 2 and f is everywhere positive or negative, then f solves (1) if and only18

if, setting u := 1
2−n

ln |f |, the metric g := e2ug satisfies ric = (∆u)g − (n −19

2)(n− 3)du⊗ du on M and in that case ∆u = − µ
n−2

e2(n−3)u. In particular, if20

n = 3, the existence of a positive solution f to (1) is equivalent to (M, f−2g)21

being Einstein with scalar curvature −3∆ ln |f |.22

5. If M is closed and f is everywhere positive or negative, then f is constant on23

M .24

6. If nonempty, the vanishing set N0 := f−1({0}) of f is a scalar-flat totally25

geodesic hypersurface of M .26
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7. For any x ∈ M and all X, Y ∈ TxM , the identity1

RX,Y∇f = −X(f)Ric(Y ) + Y (f)Ric(X)− f ((∇XRic)Y − (∇YRic)X) (5)

holds on M . As a consequence, at any critical point of f , the Ricci-tensor must2

be Codazzi.3

8. The dimension of W (Mn, g) is always at most n+ 1.4

9. If furthermore M is Einstein or 2-dimensional, then M is Ricci-flat or n = 25

and in that case M has constant curvature. In particular, when (M2, g) is6

complete, there exists a nonconstant function f satisfying (1) if and only if, up7

to rescaling the metric, the manifold (M2, g) is isometric to either the round8

sphere S2 and f is a nonzero eigenfunction associated to the first positive9

Laplace eigenvalue; or to flat R2 or cylinder S1 × R and f is an affine-linear10

function; or to the hyperbolic plane H2 and f is a solution to the Tashiro11

equation ∇2f = f · Id.12

10. If S is constant, then outside the set of critical points of f , the vector field13

ν := ∇f
|∇f | is geodesic. Moreover, assuming (Mn, g) to be also complete,14

(a) if S > 0, then up to rescaling the metric as well as f , we may assume15

that S = 2 and that µ = f∆f + 2|∇f |2 = 2 on M , in which case the16

function f has 1 as maximum and −1 as minimum value and those are17

the only critical values of f ;18

(b) if S = 0 and f is nonconstant, then (Mn, g) is Ricci-flat, in particular it19

is isometric to (R×Σ, dt2⊕gΣ) for some complete Ricci-flat Riemannian20

manifold (Σ, gΣ) and, up to reparametrization, the function f is given by21

f(t, x) = t for all (t, x) ∈ R× Σ;22

(c) if S < 0, then up to rescaling the metric, we may assume that S = −223

on M , in which case one of the following holds:24

i. if µ > 0, then up to rescaling f we may assume that µ = 2, in25

which case f has no critical value and f(M) = R, in particular M is26

noncompact;27

ii. if µ = 0, then f has no critical value and empty vanishing set and,28

up to changing f into −f , we have f(M) = (0,∞), in particular M29

is noncompact;30

iii. if µ < 0, then up to rescaling f we may assume that µ = −2, in31

which case f has a unique critical value, which, up to changing f into32

−f , can be assumed to be a minimum; moreover, f(M) = [1,∞), in33

particular M is noncompact.34
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Proof: The proof of statement 1. follows that of [18, Lemma 4]. On the one hand,1

we take the codifferential of ∇2f and obtain, choosing a local orthonormal basis2

(ej)1≤j≤n of TM and using the Weitzenböck formula for 1-forms:3

δ∇2f = −
n∑

j=1

(
∇ej∇2f

)
(ej)

= −
n∑

j=1

(
∇ej∇ej∇f −∇∇ej ej

∇f
)

= ∇∗∇(∇f)

= ∆(∇f)− Ric(∇f). (6)

On the other hand, by (1) and the formula δRic = −1
2
∇S,4

δ∇2f = δ (−f · Ric)
= Ric(∇f)− f · δRic

= Ric(∇f) +
f

2
∇S.

Comparing both identities, we deduce that ∆(∇f) = 2Ric(∇f)+ f
2
∇S. But identity5

(1) also gives6

∆f = −tr
(
∇2f

)
= fS, (7)

so that ∆(∇f) = ∇(∆f) = ∇(fS) = S∇f + f∇S and therefore Ric(∇f) = S
2
∇f +7

f
4
∇S, which is (2).8

By (1) and (2), we have9

2∇(|∇f |2) = 4∇2
∇ff

= −4f · Ric(∇f)

= −4f ·
(
S

2
∇f +

f

4
∇S

)
= −2Sf∇f − f 2∇S

= −∇(Sf 2)
(7)
= −∇(f∆f),

from which (3) follows.10

11

Taking the codifferential of (2), we obtain on the one hand, using δRic = −1
2
∇S:12

δ(Ric∇f) = ⟨δRic,∇f⟩ − ⟨Ric,∇2f⟩
(1)
= −1

2
⟨∇S,∇f⟩+ f |Ric|2.
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On the other hand, the codifferential of the r.h.s. of (2) is given by1

δ(
S

2
∇f +

f

4
∇S) = −1

2
⟨∇S,∇f⟩+ S

2
∆f − 1

4
⟨∇f,∇S⟩+ f

4
∆S

= −3

4
⟨∇f,∇S⟩+ S2f

2
+

f

4
∆S.

Comparing both identities yields (4).2

3

If f vanishes nowhere, then up to changing f into −f , we may assume that f > 04

on M . Writing f as e(2−n)u for some real-valued function u (that is, u = 1
2−n

ln f),5

the Ricci-curvatures (as (0, 2)-tensor fields) ric and ric of (M, g) and (M, g = e2ug)6

respectively are related as follows:7

ric = ric + (2− n)(∇du− du⊗ du) + (∆u− (n− 2)|du|2g)g. (8)

But ∇df = (n − 2)2f · du ⊗ du + (2 − n)f · ∇du and the Laplace operators ∆ of8

(M, g) and ∆ of (M, g) are related via ∆v = e−2u · (∆v − (n− 2)g(du, dv)) for any9

function v, so that10

ric = ric +
1

f
∇df − (n− 2)2du⊗ du+ (n− 2)du⊗ du+ (∆u)g

= ric +
1

f
∇df − (n− 2)(n− 3)du⊗ du+ (∆u)g.

As a consequence, f satisfies (1) if and only if ric = (∆u)g − (n− 2)(n− 3)du⊗ du11

holds on M . Moreover,12

f∆f + 2|df |2g = f ·
(
−(n− 2)2f |du|2g − (n− 2)f∆u

)
+ 2(n− 2)2f 2|du|2g

= −(n− 2)f 2 ·
(
∆u− (n− 2)|du|2g

)
= −(n− 2)f 2 · e2u ·∆u

= −(n− 2)e2(2−n)u · e2u ·∆u

= −(n− 2)e2(3−n)u ·∆u,

in particular (3) yields ∆u = − µ
n−2

e2(n−3)u. In dimension 3, we notice that ∆u = S
3
.13

This shows statement 4.14

If f vanishes nowhere, then again we may assume that f > 0 on M . Since M15

is closed, f has a minimum and a maximum. At a point x where f attains its16

maximum, we have µ = f(x)(∆f)(x) + 2|∇xf |2 = f(x)(∆f)(x) ≥ 0. In the same17

way, µ = f(y)(∆f)(y) ≤ 0 at any point y where f attains its minimum. We deduce18

that µ = 0 which, by integrating the identity f∆f+2|∇f |2 = µ on M , yields df = 0.19

This shows statement 5.20
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The first part of statement 6. is the consequence of the following very general fact1

[12, Prop. 1.2], that we state and reprove here for the sake of completeness: if some2

smooth real-valued function f satisfies ∇2f = fq for some quadratic form q on3

M , then the subset N0 = f−1 ({0}) is – if nonempty – a totally geodesic smooth4

hypersurface of M . First, it is a smooth hypersurface because of dxf ̸= 0 for all5

x ∈ N0: namely if c:R → M is any geodesic with c(0) = x, then the function6

y := f ◦ c satisfies the second order linear ODE y′′ = ⟨∇2
ċf, ċ⟩ = q(ċ, ċ) · y on R with7

the initial condition y(0) = 0; if dxf = 0, then y′(0) = 0 and hence y = 0 on R,8

which would imply that f = 0 on M by geodesic connectedness, contradiction. To9

compute the shape operator W of N0 in M , we define ν := ∇f
|∇f | to be a unit normal10

to N0. Then for all x ∈ N0 and X ∈ TxM ,11

∇M
X ν = X

(
1

|∇f |

)
· ∇f +

1

|∇f |
· ∇M

X ∇f

= −X (|∇f |2)
2|∇f |3

· ∇f +
1

|∇f |
· ∇M

X ∇f

=
1

|∇f |
·
(
∇2

Xf − ⟨∇2
Xf, ν⟩ · ν

)
, (9)

in particular Wx = −(∇ν)x = 0 because of (∇2f)x = f(x)qx = 0. This shows that
N0 lies totally geodesically in M .
Now recall Gauß equations for Ricci curvature: for every X ∈ TN0,

RicN0(X) = Ric(X)T −RM
X,νν + trg(W ) ·WX −W 2X,

where Ric(X)T = Ric(X)−ric(X, ν)ν is the component of the Ricci curvature that is
tangential to the hypersurface N0. As a straightforward consequence, if SN0 denotes
the scalar curvature of N0,

SN0 = S − 2ric(ν, ν) + (trg(W ))2 − |W |2.

Here, W = 0 and Ric(ν) = S
2
ν along N0 because N0 lies totally geodesically in M ,

so that
SN0 = S − 2ric(ν, ν) = S − S = 0.

This proves N0 to be scalar-flat and statement 6.12

As for claim 7., a straightforward consequence of (1) is that, at every x ∈ M and13

for all X, Y ∈ TxM , we have14

RX,Y∇f = [∇X ,∇Y ]∇f −∇2
[X,Y ]f

= −X(f)Ric(Y ) + Y (f)Ric(X)− f ((∇XRic)Y − (∇YRic)X) ,

which is identity (5). In particular, because 0 cannot be a critical value of f by15

statement 6., the Ricci-tensor of (Mn, g) must be Codazzi at every critical point of16

7



f . This proves claim 7.1

Statement 8., which can be found in [12, Prop. 1.1], is a further consequence of the2

general fact mentioned above that any f ∈ W (Mn, g) is uniquely determined by its3

value as well as the value of its gradient at a given point. This implies that, given4

any x ∈ M , the linear map5

W (Mn, g) −→ R× TxM

f 7−→ (f(x), (∇f)(x))

is injective, which proves claim 8. Note that the upper bound n+1 for dim(W (Mn, g))
is obviously attained when (Mn, g) = (Rn, can) is the flat Euclidean space.
Statement 9. can be considered as standard. In dimension 2, Ric = S

2
Id = KId,

where K is the Gauß curvature of (M2, g). But we also know that Ric(∇f) =
S
2
∇f + f

4
∇S = K∇f + f

2
∇K. Comparing both identities and using the fact that

{f ̸= 0} is dense in M leads to ∇K = 0, that is, M has constant Gauß curvature.
Up to rescaling the metric as well as f , we may assume that S, µ ∈ {−2, 0, 2}. If M2

is complete with constant S > 0 (hence K = 1) and f is nonconstant, then µ > 0 so
that, by Obata’s solution to the equation ∇2f + f · IdTM = 0, the manifold M must
be isometric to the round sphere of radius 1 and the function f must be a nonzero
eigenfunction associated to the first positive eigenvalue of the Laplace operator on
S2, see [20, Theorem A]. If M2 is complete and has vanishing curvature, then its
universal cover is the flat R2 and the lift f̃ of f to R2 must be an affine-linear func-
tion of the form f̃(x) = ⟨a, x⟩ + b for some nonzero a ∈ R2 and some b ∈ R; since
the only possible nontrivial quotients of R2 on which f̃ may descend are of the form
R/Z · ǎ × R for some nonzero ǎ ∈ a⊥, the manifold M itself must be either flat R2

or such a flat cylinder. If M2 is complete with constant S < 0, then f satisfies the
Tashiro equation ∇2f = f · IdTM . But then Y. Tashiro proved that (M2, g) must
be isometric to the hyperbolic plane of constant sectional curvature −1, see e.g. [23,
Theorem 2 p.252], see also [15, Theorem G]. Note that the functions f listed above
on S2, R2, S1 × R or H2 obviously satisfy (1).
If (Mn, g) is Einstein with n ≥ 3, then it has constant scalar curvature S and
Ric = S

n
· Id. But again the identity Ric(∇f) = S

2
∇f + f

4
∇S = S

2
∇f yields n = 2

unless S = 0 and thus M is Ricci-flat. Therefore, n = 2 is the only possibility for
non-Ricci-flat Einstein M . This shows statement 9.
If S is constant, then Ric(∇f) = S

2
∇f . As a consequence, ∇2

∇ff = −fRic(∇f) =

−Sf
2
∇f . But, as already observed in e.g. [22, Prop. 1], away from its vanishing set,

the gradient of f is a pointwise eigenvector of its Hessian if and only if the vector
field ν = ∇f

|∇f | is geodesic, see (9) above. Assuming furthermore (Mn, g) to be com-

plete, we can rescale as before f and g such that S, µ ∈ {−2, 0, 2}. In case S > 0
and hence S = 2, necessarily µ > 0 holds and thus µ = 2. But then f 2 + |∇f |2 = 1,
so that the only critical points of f are those where f 2 = 1, which by f 2 ≤ 1 shows

8



that the only critical points of f are those where f = ±1 and hence where f takes
a maximum or minimum value. Outside critical points of f , we may consider the
function y := f ◦ γ:R → R, where γ:R → M is a maximal integral curve of the
geodesic vector field ν. Then y satisfies y′ = |∇f | ◦ γ > 0 and y(t)2 + y′(t)2 = 1, so
that y′ =

√
1− y2 and therefore there exists some ϕ ∈ R such that

y(t) = cos(t+ ϕ) ∀ t ∈ R.

Since that function obviously changes sign and 0 is not a critical value of f , we1

can already deduce that f changes sign, in particular N0 = f−1({0}) is nonempty.2

Moreover, the explicit formula for y shows that f must have critical points, which3

are precisely those where cos reaches its minimum or maximum value. This shows4

statement 10a.5

6

In case S = 0, we have Ric = 0 by (4) since f is assumed to be nonconstant. This7

proves statement 10b.8

9

In case S < 0 and thus S = −2, there are still three possibilities for µ:10

• If µ > 0, then µ = 2 and (3) becomes −f 2 + |∇f |2 = 1, hence f has no critical11

point. If γ is any integral curve of the normalised gradient vector field ν = ∇f
|∇f | ,12

then the function y := f ◦ γ satisfies the ODEs y′ =
√

1 + y2, therefore y(t) =13

sinh(t + ϕ) for some real constant ϕ. In particular, f(M) = R and M cannot be14

compact.15

• If µ = 0, then (3) becomes f 2 = |∇f |2. But since no point where f vanishes can16

be a critical point by the fifth statement, f has no critical point and therefore17

must be of constant sign. Up to turning f into −f , we may assume that f > 018

and thus f = |∇f |. Along any integral curve γ of ν = ∇f
|∇f | , the function y := f ◦γ19

satisfies y′ = y and hence y(t) = C · et for some positive constant C. This shows20

f(M) = (0,∞), in particular M cannot be compact.21

• If µ < 0, then µ = −2 and (3) becomes −f 2 + |∇f |2 = −1. As a consequence,22

because of f 2 = 1 + |∇f |2 ≥ 1, the function f has constant sign and hence we23

may assume that f ≥ 1 up to changing f into −f . In particular, the only possible24

critical value of f is 1, which is an absolute minimum of f . If γ is any integral25

curve of the normalised gradient vector field ν = ∇f
|∇f | , which is defined at least26

on the set of regular points of f , then the function y := f ◦ γ satisfies the ODEs27

y′ =
√
y2 − 1, therefore y(t) = cosh(t + ϕ) for some real constant ϕ. Since that28

function has an absolute minimum, it must have a critical point. It remains to29

notice that f(M) = [1,∞) and thus that M cannot be compact.30

9



This shows statement 10c. □1

2

Next we give a closer look at the case where the scalar curvature of (Mn, g) is3

constant.4

Theorem 2.2 Let (Mn, g) be any connected Riemannian manifold carrying a non-5

zero smooth real-valued function f satisfying (1) on M . Assume the scalar curvature6

S of (Mn, g) to be constant and nonvanishing. Up to rescaling the metric g on M it7

may be assumed that S = 2ε for some ε ∈ {±1}.8

Then the following holds.9

1. Every regular level hypersurface Nc := f−1({c}) of f must have vanishing10

scalar curvature and its Ricci-tensor be given by RicNc = − f
|∇f |2 (∇∇fRic).11

2. If either n = 3 or both n ≥ 4 and Ric is assumed to be nonnegative when12

ε = 1 resp. nonpositive when ε = −1, then the Ricci-tensor has pointwise 213

eigenvalues, ε with multiplicity 2 and 0 with multiplicity n− 2.14

3. If n = 3, the manifold (M3, g) must be isometric to either S2(ε)×R or S2(ε)×15

S1 with product Riemannian metric, where S2(ε) is the simply-connected com-16

plete surface of constant curvature ε ∈ {±1}; and f must be the trivial exten-17

sion to M of a solution of the Obata resp. Tashiro equation on S2(1) = S2 (if18

ε = 1) resp. S2(−1) = H2 (if ε = −1).19

Proof: We look at the Gauß equations for Ricci and scalar curvature along each20

Nc := f−1({c}) for any regular value c of f . Denoting W = −∇ν = f
|∇f |Ric

T =21

f
|∇f |Ric the Weingarten-endomorphism-field of Nc in M , where RicT is the pointwise22

orthogonal projection of Ric onto TNc, we have tr(W ) = f
|∇f | ·

S
2
by Ric(ν) = S

2
ν.23

As a consequence, we have, for all X ∈ TNc:24

Ric(X) = Ric(X)T

= RicNc(X) +W 2X − tr(W )WX +RX,νν

= RicNc(X) +
f 2

|∇f |2

(
Ric2(X)− S

2
Ric(X)

)
+RX,νν.

But we can compute the curvature term RX,νν explicitly from (5): for any X ∈ TNc,25

RX,νν = −X(f)

|∇f |
Ric(ν) +

ν(f)

|∇f |
Ric(X)− f

|∇f |
((∇XRic)ν − (∇νRic)X)

= Ric(X)− f

|∇f |

∇X(Ricν︸︷︷︸
S
2
ν

)− Ric(∇Xν)

+
f

|∇f |
(∇νRic)X

10



= Ric(X) +
f

|∇f |

(
S

2
Id− Ric

)
(WX) +

f

|∇f |
(∇νRic)X

= Ric(X) +
f 2

|∇f |2

(
S

2
Ric(X)− Ric2(X)

)
+

f

|∇f |
(∇νRic)X, (10)

so that, with (∇νRic)(ν) = ∇ν(Ric(ν))−Ric(∇νν) = ∇ν(
S
2
ν) = 0 on M , we obtain1

RicNc = − f

|∇f |
· ∇νRic,

as claimed in statement 1. That identity has important consequences. First, choosing2

a local o.n.b. (ej)1≤j≤n−1 of TNc,3

SNc =
n−1∑
j=1

⟨RicNc(ej), ej⟩

= − f

|∇f |
·
n−1∑
j=1

⟨(∇νRic)(ej), ej⟩

= − f

|∇f |
· tr (∇νRic) ,

because of (∇νRic)(ν) = 0, so that

SNc = − f

|∇f |
· tr(∇νRic) = − f

|∇f |
· ν(tr(Ric)) = − f

|∇f |
· ν(S) = 0.

Therefore, each level hypersurface Nc is scalar-flat. This concludes the proof of4

statement 1. We turn to 2. Because of S being constant, we already know by (2) that,5

outside its vanishing set, the gradient vector field ∇f of f is a pointwise eigenvector6

for the Ricci tensor associated to the eigenvalue S
2
= ε. Writing the Ricci tensor7

as Ric = εν♭ ⊗ ν + RicT , where RicT is a pointwise symmetric endomorphism of8

ν⊥ ⊂ TM , we deduce from (4) and the fact that {f ̸= 0} is dense in M that9

|RicT |2 = S2

4
= 1 (11)

on {∇f ̸= 0}. Since tr(RicT ) = S
2
= ε, identity (11) implies that, at every point10

outside the critical set, the set of possible eigenvalues of RicT stands in one-to-one11

correspondence with the sphere Sn−3 of dimension n− 3, seen as the unit sphere in12

the (n− 2)-dimensional space ν⊥. If n = 3, then this means that RicT has pointwise13

the eigenvalues ε and 0, each of multiplicity one, on the regular set of f . If n ≥ 4,14

we assume furthermore that Ric ≥ 0 when ε = 1 and Ric ≤ 0 when ε = −1. In15

11



that case, (11) implies that RicT has exactly one eigenvalue that is equal to ε and1

that all other eigenvalues vanish, at least on {∇f ̸= 0}. To sum up, the Ricci tensor2

of (Mn, g) has at each point of {∇f ̸= 0} ⊂ M the eigenvalues ε of multiplicity3

2 and 0 of multiplicity n − 2 respectively. Note that both eigendistributions of the4

Ricci-tensor are smooth since they have constant rank. Furthermore, the critical set5

{∇f = 0} of f must have empty interior, otherwise the Ricci tensor would vanish6

identically on that interior by (1) and the fact that 0 is not a critical value of f . But7

this would contradict the fact that the scalar curvature S of (Mn, g) is assumed to8

be constant and nonvanishing. Therefore, Ric has actually ε and 0 as eigenvalues9

with multiplicities 2 and n− 2 respectively on all of M . This proves 2.10

It remains to show that, when n = 3, both eigendistributions of the Ricci tensor of11

(M3, g) are actually parallel. Let η be a unit eigenvector of Ric associated to the12

eigenvalue ε and e3 be a unit eigenvector of Ric associated to the eigenvalue 0; since13

both Ric-eigenvalues are constant and distinct and Ric is smooth, η and e3 exist14

globally along Nc, no need of analyticity. In dimension 3 again, because SNc = 015

yields RicNc = 0 and thus ∇νRic = 0, the vector fields η and e3 can actually be16

defined everywhere on the regular set of f using parallel transport along ν-geodesics.17

Moreover, because the eigenvalue 0 of the Ricci-tensor has multiplicity 1 on all of18

M as we showed above, the vector field e3 can be defined globally on M .19

We show that ∇e3 = 0, i.e. e3 is parallel on the dense open subset {∇f ̸= 0} and20

hence on M . First, because of ∇νRic = 0, ker(Ric) = Re3 and |e3| = 1, we have21

∇νe3 ∈ ker(Ric) ∩ e⊥3 = {0} i.e., ∇νe3 = 0. Next, following from the identity22

0 =
1

2
∇S = −δRic = (∇ηRic)η + (∇e3Ric)e3 + (∇νRic)︸ ︷︷ ︸

0

ν,

we have (∇ηRic)η = −(∇e3Ric)e3. Here we notice that23

(∇ηRic)η = ε∇ηη − Ric(∇ηη) = ε(∇ηη − ⟨∇ηη, ν⟩ν)

and, with ∇e3ν = −We3 =
f

|∇f |Ric(e3) = 0, that24

(∇e3Ric)e3 = −Ric(∇e3e3) = −ε⟨∇e3e3, η⟩η.

Therefore,25

0 = ε⟨∇ηη, η⟩
= ⟨(∇ηRic)η, η⟩
= −⟨(∇e3Ric)e3, η⟩
= ε⟨∇e3e3, η⟩.

12



Since ⟨∇e3e3, ν⟩ = −⟨e3,∇e3ν⟩ = 0 and ⟨∇e3e3, e3⟩ = 0, it can be deduced that1

∇e3e3 = 0.2

Analogously,3

0 = −ε⟨∇e3e3, η⟩⟨η, e3⟩
= ⟨(∇e3Ric)e3, e3⟩
= −⟨(∇ηRic)η, e3⟩
= −ε⟨∇ηη, e3⟩,

so that ⟨∇ηe3, η⟩ = 0. Again, because ⟨∇ηe3, e3⟩ = 0 = ⟨∇ηe3, ν⟩, it can be deduced4

that ∇ηe3 = 0. To sum up, we obtain ∇e3 = 0 i.e., the vector field e3 is parallel on5

M \ {∇f = 0} and hence on M . As a consequence, the holonomy group of M splits6

locally, therefore the universal cover of M is isometric to the Riemannian product7

Σ× R of some complete surface Σ with R. Moreover, using formula (10) for X = η8

and taking into account that ∇νRic = 0, we obtain9

Rη,νν =

(
1 +

Sf 2

2|∇f |2

)
· Ric(η)− f 2

|∇f |2
· Ric2(η) = Ric(η) = εη,

so thatK(η, ν) = ⟨Rη,νν, η⟩ = ε|η|2 = ε. Therefore, the distribution Span(η, ν) → M10

integrates to a surface of constant curvature ε ∈ {±1}. Thus Σ = S2(ε), which is11

the simply-connected complete surface with curvature ε ∈ {±1}. In case ε = 1,12

the lift f̃ of f to S2 × R is constant along the R-factor and satisfies the equation13

(∇S2)2f = −f · Id, which is exactly the equation characterizing the eigenfunctions14

associated to the first positive Laplace eigenvalue [20, Theorem A]. Furthermore, the15

isometry group of S2 × R embeds into the product group of both isometry groups16

of S2 and R and the first factor must be trivial since f̃ , as the restriction of a linear17

form from R3 onto S2, is not invariant under {±Id}. Therefore, M is isometric to18

either S2 × R or to S2 × S1 and in both cases f is the trivial extension of an eigen-19

function associated to the first positive Laplace eigenvalue on S2. In case ε = −1,20

the lift f̃ of f to H2 × R is constant along the R-factor and satisfies the equation21

(∇H2
)2f = f · Id, which is exactly the Tashiro equation. Since the isometry group22

of H2 ×R embeds into the product group of both isometry groups of H2 and R and23

the first factor must be trivial since f̃ has no nontrivial symmetry [23, Theorem 224

p.252], we can deduce as above that M is isometric to either H2 ×R or H2 × S1 and25

f is the trivial extension of a solution to the Tashiro equation on H2. This proves26

statement 3 and concludes the proof of Theorem 2.2. □27

28

Next we look at manifolds with harmonic curvature tensor. Recall that, by definition,29

the Riemann curvature tensor R of (Mn, g) is harmonic if and only if δR = 0 holds30

on M . By the first and second Bianchi identities, we have, for all X, Y, Z ∈ TxM at31

13



some x ∈ M :1

(δR)(X, Y, Z) = (∇YRic)(Z,X)− (∇ZRic)(Y,X).

As a consequence, δR = 0 at some x ∈ M is equivalent to2

(∇XRic)(Y )− (∇YRic)(X) = 0

for all X, Y ∈ TxM i.e., to Ric being a Codazzi-tensor at x. A 3-dimensional Rieman-3

nian manifold has harmonic curvature if and only if it is conformally flat and has4

constant scalar curvature. In dimension n ≥ 4, a Riemannian manifold has harmonic5

curvature if and only if it has harmonic Weyl tensor W , that is, δW = 0 holds on6

M , and constant scalar curvature. For instance, any conformally flat manifold with7

constant scalar curvature has harmonic curvature tensor. We refer to [2, Sec. 16.4]8

for more details about harmonic curvature.9

Theorem 2.3 Let (Mn, g) be any connected complete Riemannian manifold carry-10

ing a nonzero smooth real-valued function f satisfying (1) on M . If the Riemann11

curvature tensor of (Mn, g) is harmonic, then either (Mn, g) is Ricci-flat or, up to12

rescaling the metric g, the manifold (Mn, g) is isometric to the Riemannian prod-13

uct S2(ε)× Σn−2, where S2(ε) is the simply-connected complete surface of constant14

curvature ε ∈ {±1} and Σn−2 is a Ricci-flat manifold. Moreover, f is the trivial15

extension to M of a solution of the Obata resp. Tashiro equation on S2 (if ε = 1)16

resp. H2 (if ε = −1).17

Proof: First recall that, if δR = 0 holds on M – or, equivalently, if Ric is a Codazzi-18

tensor – then the scalar curvature S of (Mn, g) must be constant: given any pointwise19

o.n.b. (ej)1≤j≤n of TM and X ∈ TM , we have20

X(S) = X (tr(Ric))

= tr (∇XRic)

=
n∑

j=1

(∇XRic)(ej, ej)

=
n∑

j=1

(∇ejRic)(X, ej)

= −(δRic)(X)

=
X(S)

2
,

so that necessarily dS = 0 holds on M . Since the scalar curvature S is assumed to
be non-identically vanishing, we may assume up to rescaling g that S = 2ε with

14



ε ∈ {±1}.
For any s ∈ N, we denote by (as) the assertion tr(Rics) = 2εs and by (bs) the
assertion δ(Rics) = 0. We show that, since the Ricci-tensor is assumed to be Codazzi,
both (as) and (bs) are true.
First, we have that, for every s, (bs) implies (as+1): namely, as a consequence of
Ric(∇f) = ε∇f (see (2)),

(∇XRic
s)(∇f) = −f(εsRicX − Rics+1X)

for every X ∈ TM . This yields, in a pointwise o.n.b. (ej)1≤j≤n of TM ,1

δ(Rics)(∇f) = −
n∑

j=1

(∇ejRic
s)(ej,∇f)

= f(εsS − tr(Rics+1))

= f(2εs+1 − tr(Rics+1)).

Therefore, if δ(Rics) = 0, then tr(Rics+1) = 2εs+1. This shows the claim. Note that2

here we have not used the property that Ric is a Codazzi-tensor.3

Second, we have, under the condition that Ric is Codazzi, that (bs) ⇒ (bs+1). Namely4

assuming (bs), assertion (as+1) must hold true from the previous claim. Therefore,5

for every X ∈ TM ,6

n∑
j=1

(∇XRic)(ej,Ric
sej) = tr(∇XRic ◦ Rics) =

1

s+ 1
X

((
tr
(
Rics+1

)))
= 0.

Now using the fact that the Ricci-tensor is Codazzi, we compute7

0 =
n∑

j=1

(∇XRic)(ej,Ric
sej)

=
n∑

j=1

(∇ejRic)(Ric
sej, X)

=
n∑

j=1

((∇ejRic
s+1)(ei), X)− Ric(((∇ejRic

s)(ej), X)

= −(δRics+1)(X)

using again (bs). We deduce that (bs+1) is true.8

Since (as) and (bs) are satisfied for s = 1, we deduce that they are satisfied for all9

s ∈ N. From the Newton identities, it can be deduced that the Ricci tensor must10

have pointwise the eigenvalues ε and 0, the former of multiplicity 2 and the lat-11

ter of multiplicity n− 2. Therefore, we get the pointwise orthogonal decomposition12

15



TM = ker(Ric− εId)⊕ ker(Ric).1

2

It remains to show that both eigendistributions of the Ricci-tensor are parallel. Let
X, Y ∈ ker(Ric − εId) and Z ∈ ker(Ric). Then the scalar product with Y in the
formula (∇XRic)Z = (∇ZRic)X allows to get on the one hand

g((∇XRic)Z, Y ) = −g(Ric(∇XZ), Y ) = −εg(∇XZ, Y ),

and on the other hand3

g((∇ZRic)X, Y ) = εg(∇ZX, Y )− g(Ric(∇ZX), Y )

= εg(∇ZX, Y )− g(∇ZX,RicY )

= 0.

Thus, we deduce that 0 = g(∇XZ, Y ) = −g(∇XY, Z). Hence ∇XY ∈ ker(Ric− εId)4

and therefore the distribution ker(Ric − εId) is parallel. The same computations5

can be done for the distribution ker(Ric). This straightforwardly implies that both6

eigendistributions ker(Ric − εId) and ker(Ric) are parallel and therefore integrable7

and totally geodesic. By the de Rham theorem, M splits locally as the Riemannian8

product of a surface and an n − 2-dimensional submanifold. Moreover, the Ricci-9

curvature – which is the Gauß-curvature – of the surface that is pointwise tangent10

to the distribution ker(Ric− εId) is ε and the submanifold that is pointwise tangent11

to ker(Ric) is Ricci-flat, see e.g. [2, Thm. 1.100]. Therefore the universal cover of M12

is isometric to the Riemannian product S2(ε)× Σ̃ of the simply-connected complete13

surface with curvature ε ∈ {−1, 0, 1} with some simply-connected Ricci-flat mani-14

fold Σ̃. The rest of the proof is analogous to that of Theorem 2.2.3. This concludes15

the proof of Theorem 2.3. □16

17

3 Examples in warped product form18

We look for examples of warped products (M, g) := (M1 × M2, g1 ⊕ φ2g2) for19

some smooth positive function φ on M1, where (M1, g1) and (M2, g2) are con-20

nected Riemannian manifolds. We make the ansatz f(x1, x2) := f1(x1)f2(x2) for21

all (x1, x2) ∈ M where f1 and f2 are smooth real-valued functions on M1 and M222

respectively. We look for necessary and sufficient conditions for f to satisfy (1) on23

(M, g).24

Proposition 3.1 Let (Mn, g) := (Mn1
1 ×Mn2

2 , g1⊕φ2g2) be a connected Riemannian25

warped product, where φ ∈ C∞(M1,R×
+). For any two functions fi ∈ C∞(Mi,R),26

i = 1, 2, let f := π∗
1f1 · π∗

2f2 i.e., f(x1, x2) = f1(x1)f2(x2) for all (x1, x2) ∈ M . Then27

f solves ∇2f = −f · Ric on (M, g) if and only if one of the following occurs:28

16



(a) The function f1
φ
is constant on M1, in which case it can be assumed up to resca-1

ling f that f1 = φ. Then µ1(f1) := (n2 − 2)|∇M1f1|21 − f1∆
M1f1 is constant on2

M1 and f1, f2 solve3

(n2 − 1)(∇M1)2f1 = f1 · RicM1 (12)

(∇M2)2f2 = f2 · (µ1(f1)IdTM2 − RicM2) (13)

respectively.4

(b) The function f2 is constant on M2, in which case f1 solves5

(∇M1)2f1 = −f1 ·
(
RicM1 −

n2

φ
(∇M1)2φ

)
(14)

on M1, the function − φ
f1
g1(∇M1f1,∇M1φ)+(n2−1)|∇M1φ|21−φ∆M1φ is constant6

on each connected component of M1 \ f−1
1 ({0}) and the manifold (M2, g2) is7

Einstein with scalar curvature equal to8

n2

(
− φ

f1
g1(∇M1f1,∇M1φ) + (n2 − 1)|∇M1φ|21 − φ∆M1φ

)
.

Proof: First, we have ∇f = f2∇f1+ f1∇f2 = f2∇M1f1+
f1
φ2∇M2f2, where ∇Mifi de-9

notes the gi-gradient of fi on (Mi, gi). Recall Koszul’s formula, valid for any tangent10

vector fields X, Y, Z on some Riemannian manifold (M, g):11

g(∇XY, Z) =
1

2

{
X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

+ g([X, Y ], Z)− g([Y, Z], X) + g([Z,X], Y )
}
. (15)

It can be deduced from (15) that, for any Xi, Yi, Zi ∈ Γ(π∗
i TMi), we have12

∇X1Y1 = ∇M1
X1

Y1 (16)

∇X1Y2 = ∂X1Y2 +
X1(φ)

φ
Y2 (17)

∇X2Y1 = ∂X2Y1 +
Y1(φ)

φ
X2 (18)

∇X2Y2 = ∇M2
X2

Y2 −
1

φ
g(X2, Y2)∇M1φ. (19)

As a first consequence,13

∇2
X1
f = f2∇X1∇M1f1 +

X1(f1)φ
2 − 2f1X1(φ)φ

φ4
∇M2f2 +

f1
φ2

∇X1∇M2f2

17



= f2(∇M1)2X1
f1 +

X1(f1)φ− 2f1X1(φ)

φ3
∇M2f2

+
f1
φ2

∂X1∇M2f2︸ ︷︷ ︸
0

+
X1(φ)

φ
∇M2f2


= f2(∇M1)2X1

f1 +
X1(f1)φ− f1X1(φ)

φ3
∇M2f2

= f2(∇M1)2X1
f1 +

1

φ
X1(

f1
φ
)∇M2f2. (20)

Similarly,1

∇2
X2
f = X2(f2)∇M1f1 + f2∇X2∇M1f1 +

f1
φ2

∇X2∇M2f2

= X2(f2)∇M1f1 + f2

∂X2∇M1f1︸ ︷︷ ︸
0

+
g1(∇M1f1,∇M1φ)

φ
X2


+
f1
φ2

(
(∇M2)2X2

f2 −
1

φ
g(X2,∇M2f2)∇M1φ

)
=

f1
φ2

(∇M2)2X2
f2 +X2(f2)

(
∇M1f1 −

f1
φ
∇M1φ

)
+
f2
φ
g1(∇M1f1,∇M1φ)X2

=
f1
φ2

(∇M2)2X2
f2 +X2(f2)φ∇M1

(
f1
φ

)
+

f2
φ
g1(∇M1f1,∇M1φ)X2. (21)

Independently, by [2, Prop. 9.106], we have2

Ric(X1) = RicM1(X1)−
n2

φ
(∇M1)2X1

φ (22)

Ric(X2) =
1

φ2
RicM2(X2) +

(
∆M1φ

φ
− (n2 − 1)

|∇M1φ|21
φ2

)
X2 (23)

Therefore, f satisfies (1) on (M, g) if and only if the following system of equations3

holds, for all (X1, X2) ∈ TM :4 {
l1(X1) = r1(X1)
l2(X2) = r2(X2)

,

where5

l1(X1) = f2(∇M1)2X1
f1 +

1

φ
X1(

f1
φ
)∇M2f2

18



r1(X1) = −f1f2 ·
(
RicM1(X1)−

n2

φ
(∇M1)2X1

φ

)
l2(X2) =

f1
φ2

(∇M2)2X2
f2 +X2(f2)φ∇M1

(
f1
φ

)
+

f2
φ
g1(∇M1f1,∇M1φ)X2

r2(X2) = −f1f2 ·
(

1

φ2
RicM2(X2) +

(
∆M1φ

φ
− (n2 − 1)

|∇M1φ|21
φ2

)
X2

)
.

Both equations imply that d
(

f1
φ

)
⊗ df2 = 0, that is, that f1

φ
is constant on M1 or f21

is constant on M2.2

Case f1
φ

is constant on M1: We may assume, up to rescaling f2 and hence f ,3

that f1 = φ holds on M1. The above system of equations becomes equivalent to the4

following:5  (∇M1)2X1
f1 = −f1 ·

(
RicM1(X1)− n2

f1
(∇M1)2X1

f1

)
1
f1
(∇M2)2X2

f2 +
f2|∇M1f1|21

f1
X2 = −f1f2 · T2(X2)

,

where T2(X2) :=
(

1
f2
1
RicM2(X2) +

(
∆M1f1

f1
− (n2 − 1)

|∇M1f1|21
f2
1

)
X2

)
. Thus6 {

(1− n2)(∇M1)2f1 = −f1 · RicM1

(∇M2)2f2 = −f2 · RicM2 + f2
(
(n2 − 2)|∇M1f1|21 − f1∆

M1f1
)
IdTM2

.

Since f2 is assumed to be non-identically vanishing and the second identity above7

only depends on M2, the factor µ1(f1) := (n2 − 2)|∇M1f1|21 − f1∆
M1f1 must be8

constant on M1. Actually we shall see later that, when n2 ≥ 2, this already follows9

from the equation for f1.10

Therefore, in case f1 = φ, equation (1) for f := π∗
1f1 · π∗

2f2 is equivalent to the11

function (n2 − 2)|∇M1f1|21 − f1∆
M1f1 = µ1(f1) begin constant on M1 and12 {

(n2 − 1)(∇M1)2f1 = f1 · RicM1

(∇M2)2f2 = f2 · (µ1(f1)IdTM2 − RicM2)
.

Case f2 is constant on M2: Then ∇2f = −f · Ric on (M, g) is equivalent to the13

system14  (∇M1)2f1 = −f1 ·
(
RicM1 − n2

φ
(∇M1)2φ

)
g1(∇M1f1,∇M1φ)

φ
IdTM2 = −f1 ·

(
1
φ2RicM2 + (∆

M1φ
φ

− (n2 − 1)
|∇M1φ|21

φ2 )IdTM2

) ,

that is, assuming f1 not to vanish identically on M1,15  (∇M1)2f1 = −f1 ·
(
RicM1 − n2

φ
(∇M1)2φ

)
RicM2 =

(
− φ

f1
g1(∇M1f1,∇M1φ) + (n2 − 1)|∇M1φ|21 − φ∆M1φ

)
· IdTM2

,
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the second equation holding on the dense open subset M1 \ f−1({0}). The second of1

both above identities implies that the quantity2

µ′
1 :=

(
− φ

f1
g1(∇M1f1,∇M1φ) + (n2 − 1)|∇M1φ|21 − φ∆M1φ

)
is constant on M1 and that M2 is Einstein with constant scalar curvature equal to3

n2µ
′
1, whatever n2 is. This concludes the proof of Proposition 3.1. □4

5

Now we look at (1) on Riemannian products, where f is not assumed to be in6

product form.7

Theorem 3.2 Let (Mn, g) = (M1 × M2, g1 ⊕ g2) for some connected Riemannian8

manifolds (M1, g1) and (M2, g2). Assume M to be non Ricci-flat i.e., that RicM1 ̸=9

0 or RicM2 ̸= 0. W.l.o.g. let RicM2 ̸= 0. Then a function f ∈ C∞(M,R) \ {0}10

satisfies (1) on (Mn, g) if and only if RicM1 = 0, the function f only depends on M211

and satisfies (1) on (M2, g2). As a consequence, the map W (M2, g2) −→ W (M, g)12

extending a function trivially on the M1-factor, is an isomorphism.13

Proof: First, we split pointwise ∇f = ∇M1f +∇M2f according to the g-orthogonal14

splitting T(x1,x2)M = Tx1M1 ⊕ Tx2M2, for all (x1, x2) ∈ M . Using formulae (16) –15

(19) and φ = 1, it can be deduced that, for all X1 ∈ TM1,16

∇2
X1
f = ∇X1(∇M1f) +∇X1(∇M2f)

= ∇M1
X1

(∇M1f) + ∂X1(∇M2f)

and similarly, for all X2 ∈ TM2,17

∇2
X2
f = ∇X2(∇M1f) +∇X2(∇M2f)

= ∂X2(∇M1f) +∇M2
X2

(∇M2f).

By (22) and (23), we obtain that f satisfies (1) on (Mn, g) if and only if, for all18

(X1, X2) ∈ TM1 ⊕ TM2,19

∇M1
X1

(∇M1f) + ∂X1(∇M2f) = −fRicM1(X1) (24)

∂X2(∇M1f) +∇M2
X2

(∇M2f) = −fRicM2(X2). (25)

It can be deduced that both ∂X1(∇M2f) = 0 and ∂X2(∇M1f) = 0, for all (X1, X2) ∈20

TM1 ⊕ TM2. But the first identity is equivalent to the existence of functions a1 ∈21

C∞(M1,R) and a2 ∈ C∞(M2,R) such that f(x1, x2) = a1(x1) + a2(x2) for all22

(x1, x2) ∈ M . Then the second identity is trivial and (25) is equivalent to23

(∇M2)2a2|x2 = −(a1(x1) + a2(x2))RicM2 |x2

20



for all (x1, x2) ∈ M1 ×M2. But since the l.h.s. of the preceding inequality does not1

depend on M1 and because of RicM2 ̸= 0, this implies a1 is constant on M1, there-2

fore a1 + a2 ∈ C∞(M2,R) satisfies (1) on (M2, g2). But then (24) together with the3

assumption f ̸= 0 forces RicM1 = 0: choose a point x2 ∈ M2 where f(x2) ̸= 0. This4

concludes the proof. □5

6

Next we look for examples and partial classifications results for identities (12) and7

(13), which correspond to the case f1 = φ. An obvious case is when f1 = φ are con-8

stant (and nonvanishing) onM1. Then (M1, g1) must be Ricci-flat, f(x1, x2) = f2(x2)9

for all (x1, x2) ∈ M and, because of µ1(f1) = 0 then, the function f2 must satisfy10

(1) on (M2, g2). This is actually a consequence of Theorem 3.2 above. Therefore we11

obtain an already known example in that case, see introduction.12

Proposition 3.3 Let (Mn, g) be any connected Riemannian manifold.13

1. Assume there exists an f ∈ C∞(M,R×
+) solving ∇2f = f

m−1
· Ric on M for14

some integer m ≥ 2. Then µ1(f) := (m−2)|∇f |2+ f2S
m−1

= (m−2)|∇f |2−f∆f15

is constant on M and, if m > 2, then Ric(∇f) = − 1
(m−2)(m−1)

∇(f 2S), where16

S is the scalar curvature of (M, g). Moreover, if m > 2, then f defines a17

(0, n+m− 1)-Einstein metric on (M, g).18

2. Assume there exists an f ∈ C∞(M,R×
+) solving ∇2f = f · (µId − Ric) on M19

for some µ ∈ R. Then Ric(∇f) = − (n−1)µ
2

∇f + f
4
∇S + S

2
∇f and µ2(f) :=20

2|∇f |2 + f 2(S − (n+ 1)µ) = 2|∇f |2 + f∆f − µf 2 is constant on M .21

3. In case (Mn, g) = (Mn1
1 × Mn2

2 , g1 ⊕ f 2
1 g2) for some f1 ∈ C∞(M1,R×

+) and22

f := π∗
1f1 · π∗

2f2 for some f2 ∈ C∞(M2,R), there are, for each n1, n2 ≥ 123

examples of (Mi, gi, fi) for which f solves (1).24

4. If (Mn, g) is closed and f ∈ C∞(M,R×
+) is such that µ1(f) := k|∇f |2−f∆f is25

constant for some k ∈ R, then f must be constant on M and therefore µ1(f)26

must vanish. As a consequence, if there exists a nonzero f ∈ C∞(M,R×
+)27

solving ∇2f = f
m−1

· Ric on some closed M and for some integer m ≥ 2, then28

f must be constant and therefore M must be Ricci-flat.29

Proof: We first look at equation30

∇2f =
f

m− 1
· Ric (26)

onM , for some integerm ≥ 2. We first derive a few identities following from (26), see31

e.g. [18, Lemma 4]. We write down the proof for the sake of completeness. Namely,32

21



by (6), we know that1

δ
(
∇2f

)
= ∆(∇f)− Ric(∇f)

= ∇(∆f)− Ric(∇f)

= − 1

m− 1
∇(fS)− Ric(∇f)

= − 1

m− 1
(S∇f + f∇S)− Ric(∇f),

where, as above, S := tr(Ric) is the scalar curvature of (M, g) and where we have2

used ∆f = − fS
m−1

tracing (26). But (26) also yields3

δ
(
∇2f

)
=

1

m− 1
(−Ric(∇f) + fδ(Ric))

=
1

m− 1

(
−Ric(∇f)− f

2
∇S

)
,

so that, bringing both identities for δ (∇2f) together, we deduce that4

m− 2

m− 1
· Ric(∇f) = − 1

m− 1

(
S∇f +

f

2
∇S

)
= − 1

2(m− 1)f
· ∇(f 2S). (27)

In case m = 2, we deduce that ∇(f 2S) = 0 i.e., that f 2S = −f∆f is constant on5

M . In case m > 2, we deduce that6

Ric(∇f) = − 1

2(m− 2)f
· ∇(f 2S). (28)

Still when m > 2, it follows that7

∇
(
|∇f |2

)
= 2(∇)2∇ff

=
2f

m− 1
Ric(∇f)

(28)
= − 1

(m− 2)(m− 1)
· ∇(f 2S).

Therefore, µ1(f) := (m − 2)|∇f |2 + 1
m−1

f 2S = (m − 2)|∇f |2 − f∆f is constant8

on M . Note that this is also the case when m = 2 by the above remark. Note also9

that, when m > 2, identity (26) defines a so-called (0, n+m− 1)-Einstein metric on10

(M, g) according to [12, 13]. By [5, Theorem 2.2], the existence of such a positive f11

is equivalent to the warped product (M×F, g⊕f 2gF ) being Ricci-flat, where (F, gF )12

22



is an Einstein manifold of dimension m− 1 and with RicF = µ1 · Id, the constant µ11

being given by µ1 = (m − 2)|∇f |2 − f∆f = (m − 2)|∇f |2 + f2S
m−1

, which is exactly2

the constant µ1(f) described above, see also [18, Cor. 3]. This statement remains3

true when m = 2 and ∆f = 0 (or equivalently µ1(f) = 0). This shows statement 1.4

Next we look at5

∇2f = f · (µId− Ric) (29)

on Mn for some µ ∈ R and n ≥ 2. First and as before, a few identities can be6

deduced from (29). Namely, by (6), we know that7

δ
(
∇2f

)
= ∆(∇f)− Ric(∇f)

= ∇(∆f)− Ric(∇f)

= ∇(f(S − nµ))− Ric(∇f)

= (S − nµ)∇f + f∇S − Ric(∇f),

where we have used ∆f = f(S − nµ) tracing (29). But (29) also yields8

δ
(
∇2f

)
= −(µ∇f − Ric(∇f)) + fδ (µId− Ric)

= −µ∇f +Ric(∇f) +
f

2
∇S

so that, bringing both identities for δ (∇2f) together, we deduce that9

Ric(∇f) = −n− 1

2
µ∇f +

f

4
∇S +

S

2
∇f. (30)

It follows that10

∇
(
|∇f |2

)
= 2∇2

∇ff

= 2f(µ∇f − Ric(∇f))

(30)
= f

(
(n+ 1)µ∇f − f

2
∇S − S∇f

)
=

n+ 1

2
µ∇(f 2)− 1

2
∇(f 2S)

=
1

2
∇
(
(n+ 1)µf 2 − f 2S

)
.

Therefore, µ2(f) := 2|∇f |2 + f 2(S − (n + 1)µ) = 2|∇f |2 + f∆f − µf 2 is constant11

on M . This proves statement 2.12

As for statement 3, we look at different cases according to the values of n2 and n1.13

Case n2 = 1: Then (12) is equivalent toM1 being Ricci-flat. Together with f1∆
M1f1+14

|∇M1f1|21 = −µ1(f1) being constant by Proposition 3.1, identity (13) is equivalent to15

23



f ′′
2 = µ1(f1)f2. Whatever the sign of µ1(f1), there exists a solution f2 to that second-1

order linear ordinary differential equation on R, which is periodic (and hence can be2

pulled down on a circle of suitable radius) if and only if µ1(f1) < 0. As for f1, a trivial3

family of examples in each dimension n1 may be produced as follows. When n1 = 1,4

the function f1 solves the ordinary differential equation −f1f
′′
1 + (f ′

1)
2 = −µ1(f1),5

whose general solution is6

f1(t) =


a1(t) if µ1(f1) > 0
b1(t) if µ1(f1) = 0
c1(t), d1(t), e1(t) if µ1(f1) < 0

where7

a1(t) := A cosh(A−1
√

µ1(f1)t+ ϕ)

b1(t) := Aeϕt

c1(t) := A cos(A−1
√

−µ1(f1)t+ ϕ)

d1(t) := ±
√
−µ1(f1)t+ ϕ

e1(t) := A sinh(A−1
√

−µ1(f1)t+ ϕ)

for real arbitrary constants A, ϕ with w.l.o.g. A > 0 (remember that f1 = φ > 0 by8

assumption). Note that all solutions are defined on R but that, in case µ1(f1) < 0,9

the function f1 must change sign somewhere, which makes the solution f1 only local10

then. Moreover, in case µ1(f1) ≥ 0, the solution f1 – though positive on R – is11

not periodic and therefore cannot be pulled down on an S1. Obviously, each of the12

above f1’s can be trivially extended constantly in the other variables on Rn1 for13

every n1 ≥ 1.14

It is important to note that, in the cases where f1 > 0 on R, corresponding to15

µ1(f1) ≥ 0 as we have seen above, the induced metric ds2 ⊕ f1(s)
2dt2 on R2 is the16

hyperbolic one, for which we can anyway describe W (M, g) explicitly.17

Case n2 > 1: When n2 ≥ 2 and n1 = 1, equation (12) reduces to f ′′
1 = 0 on M1,18

which has no positive solution on M1 unless f1 is constant or M1 is a strict open19

subinterval of R.20

When n2 ≥ 2 and n1 = 2, equation (12) is equivalent to (∇M1)2f1 = f1ϕ1 · IdTM1 ,21

where ϕ1 := S1

2(n2−1)
. But by [23, Sec. 2], this implies that, on any open subset22

where f1 has no critical point, (M2
1 , g1) is locally isometric to (R2, dt2 ⊕ ρ(t)2ds2),23

where ρ := u′

u′(0)
and u is f1 along the flow of its normalised gradient ν := ∇M1f1

|∇M1f1|1
.24

Moreover, along any integral curve γ of ν, which is a geodesic of (M1, g1) because25

of ∇M1f1 being a pointwise eigenvector of (∇M1)2f1, the function u must satisfy the26

following second-order ordinary differential equation: for any t in some nonempty27

open interval,28

u′′(t) = g1((∇M1)2γ̇(t)f1, γ̇(t))

24



=
(f1S1) ◦ γ(t)
2(n2 − 1)

=

(
µ1(f1)

2f1
− n2 − 2

2
· |∇

M1f1|21
f1

)
◦ γ(t)

= −n2 − 2

2u(t)
u′(t)2 +

µ1(f1)

2u(t)
,

that is,1

u′′ · u+
n2 − 2

2
(u′)2 =

µ1(f1)

2
. (31)

In the first special case where µ1(f1) = 0, the general form of the solution u to2

(31) is u(t) = (at + b)
2
n2 for real constants a, b with a ̸= 0; assuming a and b to be3

positive, the maximal existence interval for u is [− b
a
,∞), in particular no complete4

M1 can exist unless f1 has critical points.5

In the second special case where n2 = 2, the second-order ordinary differential6

equation (31) may be reduced to the first-order one7

u′ =
√

µ1(f1) ln(u) + C

for some real constant C. Note that this implies that u is constant when n2 = 2 and8

µ1(f1) = 0. If µ1(f1) > 0, the maximal existence interval for u is of the form ]a,∞[,9

whereas if µ1(f1) < 0, that interval is of the form ]−∞, a[ for some real a.10

Conversely, let us assume u to be any positive solution with w.l.o.g. positive first11

derivative of (31) on some open interval I about 0. Consider the warped product12

(M1, g1) := (I×Σ, dt2⊕φ(t)2ds2) for Σ = R or S1, where φ(t) := u′(t)
u′(0)

. Let f(t, s) :=13

u(t) for all (t, s) ∈ M1. The above formulae (20) and (21) for the Hessian of f14

simplify to ∇2
∂t
f = u′′ · ∂t and ∇2

∂s
f = u′φ′

φ
· ∂s. The identities (22) and (23) become15

Ric = −φ′′

φ
· IdTM . Taking into account that φ = u′

u′(0)
, we have u′φ′

φ
= u′′, so that16

∇2f = u′′ · IdTM , as well as Ric = − u(3)

(n2−1)u′ · IdTM (recall that n2 = 2 here).17

Therefore, ∇2f = f
n2−1

· Ric if and only if u′′ = − uu(3)

(n2−1)u′ on I. But because u′′ =18

µ1(f1)
2u

− n2−2
2u

(u′)2, we have19

− uu(3)

(n2 − 1)u′ = − u

(n2 − 1)u′ ·
(
µ1(f1)

2u
− n2 − 2

2
· (u

′)2

u

)′

= − u

(n2 − 1)u′ ·
(
−µ1(f1)u

′

2u2
− n2 − 2

2
· 2u

′u′′u− (u′)3

u2

)
=

1

n2 − 1
·
(
µ1(f1)

2u
+

n2 − 2

2
· 2u

′′u− (u′)2

u

)
=

1

n2 − 1
·
(
µ1(f1)

2u
+

n2 − 2

2
· µ1(f1)− (n2 − 2)(u′)2 − (u′)2

u

)
25



=
1

n2 − 1
·
(
(n2 − 1)µ1(f1)

2u
− (n2 − 2)(n2 − 1)(u′)2

2u

)
= u′′,

so that (26) is satisfied on (M2
1 , g1).1

In the subcase where n2 = 2, equation (13) is equivalent to (∇M2)2f2 = f2ϕ2 · IdTM2 ,2

where ϕ2 := µ1 − S2

2
. Now (30) yields S2

2
∇M2f2 = S2−µ1

2
∇M2f2 +

f2
4
∇M2S2, that is,3

f2∇M2S2 = 2µ1∇M2f2, which is equivalent to the existence of a real constant C such4

that5

S2 = 2µ1 ln(|f2|) + C

on each connected component of the dense open subset M2 \ f−1
2 ({0}). Denoting6

µ2 := µ2(f2), it can be deduced that7

|∇M2f2|2 =
µ2

2
− f 2

2 (S2 − 3µ1)

2

=
µ2

2
− f 2

2 (2µ1 ln(|f2|) + C − 3µ1)

2

=
µ2

2
+

(
3µ1 − C

2
− µ1 ln(|f2|)

)
f 2
2 .

This gives rise to a first-order ordinary differential equation for u(t) := f2◦F ν
t , where8

(F ν
t )t is the local flow of ν := ∇M2f2

|∇M2f2|2
on some open subset of the regular set of f2.9

Namely, [23, Sec. 2] again implies that, on any open subset where f2 has no critical10

point and vanishes nowhere, (M2
2 , g2) is locally isometric to (R2, dt2 ⊕ ρ(t)2ds2),11

where ρ := u′

u′(0)
. Moreover, along any integral curve γ of ν, which is a geodesic of12

(M2, g2) because of ∇M2f2 being a pointwise eigenvector of (∇M2)2f2, the function13

u must satisfy the following first-order ordinary differential equation: for any t in14

some nonempty open interval,15

u′ =

(
µ2

2
+ (

3µ1 − C

2
− µ1 ln(|u|))u2

) 1
2

. (32)

Except in possibly very particular cases – e.g. when µ1 = µ2 = C = 0, in which16

u is constant – the maximal existence time for such a solution u to (32) is strictly17

contained in R. Note also that, if u solves (32), then18

u′′ =
1

2

(
µ2

2
+ (

3µ1 − C

2
− µ1 ln(|u|))u2

)− 1
2

· ((3µ1 − C − 2µ1 ln(|u|))uu′ − µ1u
′u)

=

(
µ2

2
+ (

3µ1 − C

2
− µ1 ln(|u|))u2

)− 1
2

·
(
µ1 −

C

2
− µ1 ln(|u|)

)
uu′

26



= (u′)−1 ·
(
µ1 −

C

2
− µ1 ln(|u|)

)
uu′

=

(
µ1 −

C

2
− µ1 ln(|u|)

)
u,

where µ1 − C
2
− µ1 ln(|u|) = µ1 − S2◦γ

2
by the above identity for S2.1

This implies that, given any nowhere vanishing solution u to (32) on some open2

interval I about 0, the function f(t, s) := u(t) solves3

∇2f = u′′ · IdTM =

(
µ1 −

S

2

)
· IdTM

on (M2
2 , g2) := (I × Σ, dt2 ⊕ ( u

′(t)
u′(0)

)2ds2), where Σ = R or S1.4

Still in the case where n2 = 2, equation (26) has not been considered yet in5

the literature as far as we know. In the special subcase where µ1 = 0, which is6

equivalent to S1 = 0, equation (26) can be rewritten under the form (∇M1)2f1 =7

f1 · RicM1 − (∆M1f1) · Id, which is the general form of an element of ker(L∗
g1
) in [6]8

when the underlying manifold is scalar-flat. In case ker(L∗
g1
) ̸= {0}, the metric g19

is called static. Although it is unclear whether a nonconstant positive solution f110

to that equation can exist on a complete M1, there is a noncomplete example: take11

the outer Schwarzschild manifold (R3 \Bm
2
, (1+ m

2r
)4⟨· , ·⟩) for some constant m > 0,12

where r = r(x) = |x| in R3 and f1(x) =
1−m

2r

1+m
2r
, see [6, p.145]. In case M1 is either13

closed, complete with nonnegative Ricci curvature or with so-called moderate vol-14

ume growth, the function f1 must be constant. The latter two are due to S.T. Yau15

[24, Cor. 1 p. 217] and to L. Karp [16, Theorem B] (see also [17, Sec. 3]) respectively,16

using only the harmonicity of f1. As a consequence, if n1 = 2 (and n2 = 2), then17

there is no nonconstant solution f1 (for S1 = 0 implies RicM1 = 0).18

Case n2 > 2 and n1 > 2: Then (26) defines a so-called (0, n1 + n2 − 1)-Einstein19

metric on (M1, g1) according to [12, 13] as we noticed in statement 1. As for (13),20

it has not been considered either in the literature when µ1 ̸= 0 – for µ1 = 0, it is21

already (1) on M2. When µ1 ̸= 0, we may take for (Mn2
2 , g2, f2) the standard solu-22

tion to the Obata resp. Tashiro equation on the n2-dimensional simply-connected23

spaceform of sectional curvature µ1(f1)
n2−2

, which are the only Einstein solutions to (13)24

when n2 > 2. This shows statement 3.25

26

In the particular case where (Mn, g) is closed and f ∈ C∞(M,R×
+) is such that27

µ1(f) := k|∇f |2 − f∆f is constant for some k ∈ R, we can mimic the proof of28

Lemma 2.1.5. First, we have µ1(f) = 0: it suffices to evaluate µ1(f) at two points,29

one where min
M

(f) is attained and one where max
M

(f) is attained to obtain that µ1(f)30

must be both nonpositive and nonnegative because of f > 0 and the opposite signs of31

27



the Laplace operator of f at a minimum and maximum respectively. Independently,1

we can integrate µ1(f) over M and obtain2

µ1(f) · Vol(Mn, g) = (k − 1) ·
∫
M

|∇f |2 dµg.

Therefore, if k ̸= 1, then f must be constant. If k = 1, the vanishing of µ1(f) is3

equivalent to ∆f = |∇f |2
f

≥ 0 on the closed manifold M , which with
∫
M
∆f dµg = 04

shows that, again, ∇f = 0 must hold on M , therefore f must also be constant on5

M . This proves statement 4 and concludes the proof of Proposition 3.3. □6

7

In case the factor (M1, g1) of the warped product is complete, we show that actually8

the map f must be constant along M1.9

Theorem 3.4 Let f = π∗
1f1 · π∗

2f2 satisfy (1) on (Mn, g) = (M1 × M2, g1 ⊕ f 2
1 g2)10

for some smooth positive function f1 on M1 and smooth function f2 on M2. Assume11

(M1, g1) to be complete and connected.12

Then f1 must be constant on M1, the manifold (M1, g1) must be Ricci-flat and f213

must satisfy (1) on (M2, g2). Therefore, the map W (M2, g2) −→ W (M, g) extending14

any solution (1) to M is an isomorphism.15

Proof: In case f1 > 0 on M1 and for f = π∗
1f1 · π∗

2f2 on M1 ×f2
1
M2, the constants16

µ(f), µ1(f1) and µ2(f2) defined above are related as follows:17

µ(f) = f∆f + 2|∇f |2

= f1f2((∆f1)f2 + f1∆f2) + 2|f2(∇f1) + f1∇f2|2

= f1f2((∆
M1f1)f2 +

f1
f 2
1

∆M2f2) + 2|f2(∇M1f1) +
f1
f 2
1

∇M2f2|2

= f1(∆
M1f1)f

2
2 + f2(∆

M2f2) + 2f 2
2 |∇M1f1|21 + 2|∇M2f2|22

=
(
f1(∆

M1f1) + 2|∇M1f1|21
)
· f 2

2 + f2∆
M2f2 + 2|∇M2f2|22

=
(
f1(∆

M1f1) + 2|∇M1f1|21 + µ1(f1)
)
· f 2

2

+f2∆
M2f2 + 2|∇M2f2|22 − µ1(f1)f

2
2

= n2|∇M1f1|21f 2
2 + µ2(f2).

This implies that, if f ̸= 0 solves (1) and φ = f1 > 0, then |∇M1f1|1 is constant18

on M1. Note that this holds whether (M1, g1) is complete or not, i.e. whenever M119

is connected. From now on assume (M1, g1) to be complete. By contradiction, if20

|∇M1f1|1 were a positive constant, then f1 would have no critical point on M1 and21

therefore the flow of the normalised gradient vector field ν1 :=
∇M1f1

|∇M1f1|1
would define22

a diffeomorphism from M1 to the product R×Σ1 for some smooth level hypersurface23

28



Σ1 of f1; and f1 would be a nonconstant affine linear function of t ∈ R. But this1

would contradict f1 > 0 on M1. Therefore, ∇M1f1 = 0 must hold on M1 i.e., f12

must be constant on M1. In turn, this implies that µ1(f1) = 0, RicM1 = 0 when3

n2 ≥ 2 (anyway RicM1 = 0 when n2 = 1 as we saw above) and that f2 ∈ W (M2, g2).4

Therefore, the function f is the trivial extension on M of f2 ∈ W (M2, g2). □5

6

4 Case where dim(W (Mn, g)) ≥ 27

In this section, we look at the particular case where (1) has a k ≥ 2-dimensional8

space of solutions.9

Theorem 4.1 Let (Mn, g) be any connected complete Riemannian manifold. As-10

sume that (1) has a k ≥ 2-dimensional space of solutions. Then we have one of the11

following:12

1. Case k = 2: the manifold (Mn, g) must be isometric to the Riemannian product13

(Mn−1
1 × R, g1 ⊕ dt2) for some complete Ricci-flat manifold admitting no line14

(Mn−1
1 , g1). Moreover, the solutions of (1) on (Mn, g) are the affine linear15

functions of t ∈ R extended constantly along M1.16

2. Case k > 2: the manifold (Mn, g) must be isometric to the Riemannian product17

(Mn−k+1
1 ×Mk−1

2 , g1 ⊕ g2) for some complete Ricci-flat manifold admitting no18

line (Mn−k+1
1 , g1) and where (Mk−1

2 , g2) is either S2,R2 or H2 with standard19

metric of curvature 1, 0,−1 (up to rescaling g) for k = 3 or is Rk−1 with20

standard flat metric for k > 3. Moreover, the solutions of (1) on (Mn, g)21

are the solutions of the Obata resp. Tashiro equation on (M2, g2) extended22

constantly along M1.23

Proof: We first assume M to be simply-connected. By [12, Theorem A], which can24

be applied since (1) is the particular case of the equation ∇2f = f · q for some25

quadratic form q on TM , we already know that, if k ≥ 2, then (Mn, g) must be26

isometric to the warped product (M1 × M2, g1 ⊕ f 2
1 g2) for some smooth positive27

function f1 on M1, where (M
n−k+1
1 , g1) and (Mk−1

2 , g2) are complete [3, Lemma 7.2]28

simply-connected Riemannian manifolds and f1 is a smooth positive function on29

M1. Moreover, (M2, g2) must be a spaceform and any solution f of (1) is of the form30

f = π∗
1f1 · π∗

2f2, where f2 satisfies the Obata resp. Tashiro equation on (M2, g2) [12,31

Theorem B]. Taking the above considerations on solutions of (1) on warped products32

into account in case f1 is the warping function, Theorem 3.4 can be applied and33

implies that f1 is constant, that (M1, g1) is Ricci-flat and that f2 ∈ W (M2, g2). We34

look at different cases according to k:35

29



1. Case k = 2: then we could conclude above that f2 is an affine linear function of1

t ∈ R. Since no nonconstant affine function can be periodic, any group action2

leaving invariant some nonconstant f2 ∈ W (M2, g2) must be trivial. Moreover,3

if (M1, g1) could be split off a line, then it would be isometric to Σ1 × R for4

some smooth hypersurface Σ1 of M1; but then M1 ×R ∼= Σ1 ×R2 would carry5

a k ≥ 3-dimensional space of solutions to (1), which would contradict k = 2.6

Therefore, (M1, g1) cannot contain any line.7

2. Case k > 2: then we could conclude above that f2 ∈ W (M2, g2). If k = 3,8

then, up to rescaling g, the manifold (M2, g2) must be isometric to either9

S2,R2 or H2 with standard metric of constant curvature 1, 0,−1 respectively;10

and W (M2, g2) must consist of the solutions of the Obata resp. Tashiro equa-11

tion on (M2, g2) as we saw in Lemma 2.1.9. Again, in case M2 = S2 or H2, no12

group action on M2 can leave any nonzero solution to (1) invariant on M2. If13

M2 = R2, then no nontrivial group action preserves the 3-dimensional space14

of affine linear functions on R2.15

If k > 3, then, as a consequence of Lemma 2.1.9, the manifold (M2, g2) must16

be isometric to flat Rk−1 and again no nontrivial group action preserves the17

k-dimensional space of affine linear functions on Rk−1.18

In both subcases, (M1, g1) cannot contain any line, otherwise dim(W (Mn, g)) ≥19

k + 1.20

In all cases, the only possible nontrivial group actions on M1 ×M2 is trivial along21

the M2 factor. Thus, if M is not simply-connected, then M must be isometric to22

Mn−k+1
1 ×Mk−1

2 , where M2 is a simply connected model space as above and M1 is a23

complete Ricci-flat manifold having no line since its universal cover cannot contain24

any. Furthermore, every f ∈ W (M, g) must be the trivial extension on M1 ×M2 of25

a solution f2 ∈ W (M2, g2). This concludes the proof of Theorem 4.1. □26

27

Note that, as a consequence of Theorem 4.1, if a complete (Mn, g) carries an (n+1)-28

dimensional space of solutions to (1) with n ̸= 2, then (Mn, g) must be isometric to29

Rn+1 with standard flat metric.30

5 Homogeneous case31

Next, we look at homogeneous manifolds carrying nontrivial solutions of (1).32

Theorem 5.1 Let (Mn, g) be any connected homogeneous Riemannian manifold.33

Assume the existence of a non-identically vanishing smooth function f on M satis-34

fying (1).35

Then one of the following holds:36

30



1. If the scalar curvature S of (Mn, g) vanishes and f is nonconstant, then1

(Mn, g) must be isometric to a flat manifold Rn
/Γ for some discrete fixed-point2

free subgroup Γ of O(n)⋉Rn.3

2. If k := dim(W (Mn, g)) = 2, then (Mn, g) must be isometric to the Riemannian4

product Rn−1
/Γ×R for some discrete fixed-point free and co-compact subgroup5

Γ of O(n−1)⋉Rn−1. In that case, the map W (R, dt2) −→ W (Mn, g) extending6

any affine linear function trivially on the first factor is an isomorphism.7

3. If k = 3, then up to rescaling g, the manifold (Mn, g) must be isometric to8

the Riemannian product Rn−2
/Γ × S2(ε), where S2(ε) is the simply-connected9

complete surface of constant curvature ε ∈ {0,±1} and Rn−2
/Γ is a compact10

flat manifold. In that case, the map W (S2(ε), gS2(ε)) −→ W (Mn, g) extending11

any function trivially on the Σ-factor is an isomorphism.12

4. If k ≥ 4, then (Mn, g) must be isometric to the Riemannian product Rn−k+1
/Γ×13

Rk−1, where Rn−k+1
/Γ is a compact flat manifold and Rk−1 carries its standard14

Euclidean metric.15

5. If k = 1, then unless W (Mn, g) consists of constant functions, µ(f) = 016

must hold for every f ∈ W . Moreover, the manifold (Mn, g) must be a one-17

dimensional extension of some homogeneous Riemannian manifold satisfying18

the particular conditions (33) below.19

Proof: If (Mn, g) has vanishing scalar curvature and f is nonconstant, then we20

already know from Lemma 2.1 that (Mn, g) must be Ricci-flat. But because any21

homogeneous Ricci-flat Riemannian manifold must be flat [1], actually (Mn, g) must22

be isometric to a flat manifold Rn
/Γ for some discrete and necessarily fixed-point free23

subgroup Γ of O(n)⋉Rn. This shows statement 1.24

If dim(W (Mn, g)) = k ≥ 2, then Theorem 4.1 implies that (Mn, g) must be isometric25

to the Riemannian product Mn−k+1
1 ×Mk−1

2 , where Mn−k+1
1 is a Ricci-flat manifold26

containing no line andMk−1
2 is flat Euclidean space except when k = 3, in which case27

it is also allowed to be S2 or H2 with standard spherical resp. hyperbolic metric.28

Moreover, any solution to (1) must be the trivial extension to M of a standard29

solution on M2. Now recall the following result, which is a combination of Lemma30

5.6 and the first part of the proof of Theorem 5.7 in [13]; the latter can be applied31

because of W (Mn, g) being invariant under isometry: in our notation, the isometries32

of (M1 × M2, g1 ⊕ g2) are the maps of the form h = (h1, h2), where h1 and h2 are33

isometries of (M1, g1) and (M2, g2) respectively. This already implies that, writing34

M = G/K, the group G when can be embedded into the direct product of two35

groups, the first one acting isometrically and transitively on M1 and the second36

one acting transitively on M2. In particular, (M1, g1) must itself be homogeneous. In37
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turn, this implies that, being Ricci-flat, (M1, g1) must be flat, again by [1]. Therefore1

(M1, g1) must be isometric to Rn−k+1
/Γ for some discrete fixed-point free subgroup2

Γ of O(n − k + 1) ⋉ Rn−k+1. Since only compact flat manifolds have no line, the3

subgroup Γ must be co-compact i.e., M1 must be compact. This shows statements4

2, 3 and 4.5

Let us now assume the space W (Mn, g) of functions satisfying (1) to be one-6

dimensional on M = G/K. Then as in [13, Sec. 5] we consider the action of G7

on W (Mn, g). Because the Ricci-tensor of M is isometry- and thus G-invariant, so8

is equation (1), i.e. for every f satisfying (1) and every h ∈ G, the function f ◦Lh−19

also satisfies (1). But because of dim(W (Mn, g)) = 1, there exists for a fixed nonzero10

f ∈ W (Mn, g) and every h ∈ G a nonzero constant Ch such that f ◦ Lh−1 = Ch · f .11

The map G → R×, h 7→ Ch is a Lie-group homomorphism and actually takes its12

values in {±1} if µ(f) ̸= 0 since, by invariance of µ(f) under isometry,13

µ(f) = µ(f ◦ Lh−1) = µ(Ch · f) = C2
h · µ(f)

for every h ∈ G. Therefore, if µ(f) ̸= 0, then Ch ∈ {±1} for every h ∈ G. Now if M14

is connected as in the assumptions, then so can be assumed G (otherwise replace15

G by the connected component of the neutral element), in which case necessarily16

Ch = 1 holds for every h ∈ G and therefore every f ∈ W (Mn, g) is constant.17

Therefore µ(f) = 0 holds. As a consequence, S = −2 and f has no critical point on18

M , see Lemma 2.1.19

Next we show that (Mn, g) must be the one-dimensional extension of some homo-20

geneous Riemannian manifold Nn−1 with Ricci-tensor having particular properties.21

Consider the subgroup H of G defined by22

H := {h ∈ G |Ch = 1} ,

that is, H is the subgroup of all elements of G leaving a (thus any) function23

f ∈ W (Mn, g) invariant. Since C:G → R×
+ is a nontrivial and therefore surjec-24

tive Lie-group-homomorphism, H = ker(C) is a closed normal subgroup of G and25

of codimension 1. Moreover, fixing f ∈ W (Mn, g) \ {0}, we know from Lemma 2.126

that f(M) = R×
+ = (0,∞) since f can be expressed as an exponential function27

along any integral curve of its normalised gradient. We let N := f−1({1}), which is28

a smooth hypersurface of M . By definition, H leaves N invariant. Moreover, fixing29

some x ∈ N , any h ∈ G with Lh(x) = x must satisfy Ch = 1 and therefore lie in30

H. In other words, the isotropy group Hx := {h ∈ H |Lh(x) = x} of x under the31

H-action must coincide with K = Gx. Independently, for any y ∈ N , there is an32

h ∈ G such that Lh(x) = y; again, because of f(x) = f(y) ̸= 0, necessarily Ch = 133

must hold, i.e. h ∈ H. This proves that the orbit H · x := {Lh(x) |h ∈ H} of x34

in N must be all of N and therefore N = H/K is a H-homogeneous Riemannian35

manifold. As in the proof of [14, Theorem 5.1], we split the Lie algebra G = P ⊕K36

32



of G in an AdG(K)-invariant and orthogonal way and let ξ ∈ P ∼= TM be the1

vector corresponding to ν ∈ T⊥N . Note that, because of C|H = 1, the gradient of f2

and therefore also ν are preserved by the H-action, so that ξ makes sense. Actually,3

P = Rξ ⊕
(
(Rξ)⊥ ∩ P

)
and H =

(
(Rξ)⊥ ∩ P

)
⊕K, the splittings being orthogonal.4

Furthermore, the Lie-bracket of ξ in G preserves H because of H being a normal5

subgroup of G. This already proves that G = H ⋉ R and that (M, g) is the one-6

dimensional extension of the H-homogeneous space (Nn−1, g|N ).7

In that case, following [14], we fix some α ∈ R× and let D := 1
α
[ξ, ·] = 1

α
Lξ,8

which is hence a derivation of H. We denote by S and A the symmetric and skew-9

symmetric parts of D respectively seen as endomorphisms of TN , see [14, Eq. (2.1)].10

Let T := −∇ξ denote the Weingarten map of N in M . Then by [14, Prop. 2.7] we11

have T = αS and ∇ξT = −α2[S,A]. Furthermore, [14, Lemma 2.9] implies that,12

for all X, Y ∈ TN ,13 
ric(ξ, ξ) = −α2tr(S2)
ric(X, ξ) = α(δS)(X)
ric(X, Y ) = ricN(X, Y )− (α2tr(S))g(SX, Y )− α2g([S,A]X, Y )

Now writing f(t) = et, where t lies in the R-factor of G = H ⋉ R, we have ∇df =14

fdt2 − fg(T ·, ·) which, together with ∇ξξ = 0, gives that identity (1) is equivalent15

to16 
α2tr(S2)(= α2|S|2) = 1
α(δS) = 0
−αg(SX, Y ) = −ricN(X, Y ) + α2tr(S)g(SX, Y ) + α2g([S,A]X, Y )

for all X, Y ∈ TN . In other words, (1) is equivalent to17 
α = ϵ

|S|
δS = 0
RicN = 1

|S|2 ((tr(S) + ϵ|S|)S + [S,A])
(33)

for some ϵ ∈ {±1}. This shows statement 5 and completes the proof of Theorem18

5.1. □19

20

Note that [21, Theorem 1.5] allows for some partial classification in case (Mn, g) is21

homogeneous, because in their notation our 2-tensor q = −Ric is preserved by the22

group action. Nevertheless, we point out that the results we obtain in Theorem 5.123

describe the underlying space as well as the space of solutions in a more detailed24

way according to the dimension.25

26

The case where dim(W (Mn, g)) = 1 could lead to new examples, see [14] and [11].27

28
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6 Kähler case1

As in [5], we next consider the case where (Mn, g) is assumed to be Kähler.2

Theorem 6.1 Assume (M2n, g, J) to be a complete Kähler manifold and let f be3

any nonconstant smooth real-valued function satisfying (1) on M . Then, up to resca-4

ling g, the Kähler manifold (M2n, g, J) is holomorphically isometric to S2(ε)×Σ2n−2
5

for some Ricci-flat Kähler manifold Σ, where S2(ε) = S2 if ε = 1, H2 if ε = −1 and6

either R2 or R × S1 if ε = 0; moreover, the Kähler structure is the product Kähler7

structure and f is the trivial extension to M of a solution to (1) on S2(ε).8

Proof: The first steps follow those in the proof of [5, Theorem 1.3]. Since the Ricci-9

tensor of (M, g, J) is J-invariant, so is the Hessian of f by (1), i.e. ∇2f ◦J = J ◦∇2f .10

As a first consequence, the vector field J∇f is a (real) holomorphic vector field on11

(M, g, J) and therefore its zeros – which are precisely the critical points of f – form12

a totally geodesic Kähler submanifold of M of dimension 2k < 2n; in particular the13

regular set of f is dense inM . As a second consequence, the 2-form g(∇2f◦J · , ·) may14

be rewritten 1
2
L∇fΩ, where Ω := g(J · , ·) is the Kähler form of (M, g, J). Therefore,15

d
(
g(∇2f ◦ J · , ·)

)
=

1

2
d (L∇fΩ) =

1

2
d (∇f⌟dΩ + d(∇f⌟Ω)) = 0,

i.e. g(∇2f ◦ J · , ·) is a closed 2-form on M . But because the Ricci-form g(Ric ◦ J · , ·)16

is also closed on M , so is the 2-form 1
f
g(∇2f ◦ J · , ·) on {f ̸= 0}, again by (1). This17

implies df ∧ (g(∇2f ◦ J · , ·)) = 0 on {f ̸= 0} and therefore on M by density (recall18

that f−1({0}), if nonempty, is a totally geodesic hypersurface of (M, g)). In turn19

this implies the existence at each regular point of f of a linear form λ on (∇f)⊥20

such that, for every X ⊥ ∇f ,21

∇2
JXf = λ(X)∇f. (34)

For X = J∇f , we obtain via (2) that ∇S is pointwise tangent to ∇f , i.e. there22

exists a function θ on M such that ∇S = θ∇f on M (this holds true on the regular23

set of M and hence on M by density, taking into account that at every critical point24

both ∇f and ∇S vanish). For X ∈ {∇f, J∇f}⊥, by J-invariance of ∇2f the r.h.s.25

of (34) must vanish whenever the basepoint is a regular point of f . In turn this26

implies Ric(X) = 0 for all X ∈ {∇f, J∇f}⊥ and at every regular point of f . Now27

because of Ric(∇f) =
(
S
2
+ fθ

4

)
∇f , the J-invariance of Ric and Ric|{∇f,J∇f}⊥

= 0,28

we obtain29

S = S +
fθ

2
,

so that θ = 0, first on the regular set of f and then on M by density, i.e. S is con-30

stant on M . This implies that both distributions Span(∇f, J∇f) and {∇f, J∇f}⊥31

34



are integrable and totally geodesic, the former one being the tangent bundle of a1

surface of curvature S
2
– which may be assumed to be ±1 up to rescaling g in case2

S ̸= 0 – and the latter the tangent bundle of a necessarily Ricci-flat Kähler manifold3

Σ. The rest of the proof is analogous to that of Theorem 2.2.3. □4

5

7 Outlook6

The equation (1) can be seen as a particular case of the more general equation7

∇2f = − f

m
(Ric− λ · Id) , (35)

where λ ∈ R and m ∈ N are parameters which are a priori allowed to take arbitrary8

values. Note that, form = n−2 and positive f , equation (35) is the same as equation9

(7) in [19, Lemma 2.1]. As in [11, 12, 13, 14], a much broader and richer family of10

geometries could be recovered from Equation (35). This is the object of future work.11

References12
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