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1 Introduction

In this article, which follows [§], we continue investigating those Riemannian mani-
folds (M™, g) supporting a non-identically-vanishing function f satisfying what we
call the generalised Ricci-Hessian equation [8, Eq. (1)]

V2f = —f-Ric (1)

on M, where V2f := VVf denotes the Hessian of f and Ric the Ricci-tensor of
(M", g), both seen as (1,1)-tensor fields. Recall that this equation was first con-
sidered when studying the so-called skew-Killing-spinor-equation [9], where f is a
particular function built out of a so-called skew-Killing spinor, see [§] for more de-
tails. Recall also that, although equation looks like those considered by other

*nicolas.ginoux@univ-lorraine.fr
fghabibGul.edu.1b
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authors in the search of warped product Einstein metrics [12] [13], Lorentzian Ein-
stein metrics [0], quasi-Einstein metrics |4, 0] or gradient Ricci solitons [7], it is
not connected to any of those frameworks and therefore needs very different kinds
of techniques, hence leading to very different results. Again, we refer to the intro-
duction of [§] for more references and details.

In [8], we proved that, provided sufficiently many symmetries preserving a solution
f are available on the underlying manifold (M", g), only one of the following can
occur: unless f is constant and then (M", g) is Ricci-flat, either (M", g) is isometric
to the Riemannian product of a real interval with a Ricci-flat manifold and f is
an affine-linear function on the interval; or (M™, g) is isometric to the Riemannian
product of a Ricci-flat manifold with either the 2-sphere or the hyperbolic plane and
f is the trivial extension of a solution to the Obata resp. Tashiro equation on the
second factor.

In this article, we show that, in many further situations, some of which are more
general than those from [§], mostly only those two possibilities can occur: namely
when M has harmonic curvature tensor (Theorem , is a warped product (Theo-
rem [3.4)), when the space of solutions is of dimension at least 2 (Theorem , when
M is homogeneous (Theorem 5.1)) and when M is Kéhler (Theorem [6.1)).

The article is structured as follows. After preliminary remarks in Section [2| we de-
scribe and partially classify those warped products carrying solutions to . In Sec-
tion , we turn to the case where the space of solutions to (/1)) is at least 2-dimensional.
Section [o| is dedicated to the homogeneous case, which remains partially open. We
dedicate Section [6] to the case where the manifold is Kéhler. We conclude by an
outlook (Section [7)) about further work related to the above equation.

In order for the article to remain as self-contained as possible, we included parts of
[8] in Section

We underline that no full classification is available yet. This is the object of future
work.
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2 Preliminary remarks

We start with preliminary results, some of which are already contained in [8] but,
for the sake of self-containedness, we give and reprove them here. From now on,
we shall denote by S the scalar curvature of M and, for any function A on M, by
Vh the gradient vector field of h w.r.t. ¢ on M. First observe that the equation
V2f = —f - Ric is of course linear in f but is also invariant under metric rescaling:

if g = A*g for some nonzero real number A, then Vi =\ (this comes from
the rescaling of the gradient) and Ric = A™2Ric. Let us denote by

W(M", g):={feC®MR)|V?’f=—f-Ric}
the real vector space of all smooth functions satisfying on (M™,g).

Lemma [2.1] below corresponds to [8, Lemma 2.1] expanded with claims 3], [7} and [§|

Lemma 2.1 Let (M™, g) be any connected Riemannian manifold carrying a smooth
real-valued function f satisfying on M.

1. The gradient vector field V f of f w.r.t. g satisfies

S f

Rie(Vf) = S V] + V8. (2)

2. There exists a real constant p such that

FAf 2V = p (3)
3. The identity ,
f|Ric|* = %—%(Vf,V&#—gAS (4)

holds on M.

4. If n > 2 and f is everywhere positive or negative, then f solves if and only
if, setting w := 5= In|f|, the metric g := e™g satisfies ric = (Au)g — (n —
2)(n — 3)du ® du on M and in that case Au = —-L-e* "= In particular, if
n = 3, the existence of a positive solution f to is equivalent to (M, f=2g)
being Einstein with scalar curvature —3AIn |f].

5. If M 1is closed and [ is everywhere positive or negative, then f is constant on

M.

6. If nonempty, the vanishing set Ny := f~*({0}) of f is a scalar-flat totally
geodesic hypersurface of M.
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7. For any x € M and all X,Y € T, M, the identity

10.

RxyVf=—=X(f)Ric(Y) +Y (f)Ric(X) — f (VxRic)Y — (VyRic)X) (5)

holds on M. As a consequence, at any critical point of f, the Ricci-tensor must
be Codazzi.

The dimension of W(M™, g) is always at most n + 1.

If furthermore M is Einstein or 2-dimensional, then M is Ricci-flat or n = 2
and in that case M has constant curvature. In particular, when (M? g) is
complete, there exists a nonconstant function f satisfying if and only if, up
to rescaling the metric, the manifold (M?,g) is isometric to either the round
sphere S* and f is a nonzero eigenfunction associated to the first positive
Laplace eigenvalue; or to flat R? or cylinder S* x R and f is an affine-linear
function; or to the hyperbolic plane H? and f is a solution to the Tashiro

equation V2 f = f - 1d.

If S is constant, then outside the set of critical points of f, the vector field

vi= % is geodesic. Moreover, assuming (M™, g) to be also complete,

(a) if S > 0, then up to rescaling the metric as well as f, we may assume
that S = 2 and that u = fAf + 2|V f|? = 2 on M, in which case the
function f has 1 as mazximum and —1 as minimum value and those are
the only critical values of f;

(b) if S =0 and f is nonconstant, then (M", g) is Ricci-flat, in particular it
is isometric to (R x X, dt> @ gs) for some complete Ricci-flat Riemannian

manifold (2, gs) and, up to reparametrization, the function f is given by
f(t,z) =t for all (t,z) € R x ¥;

(c) if S <0, then up to rescaling the metric, we may assume that S = —2
on M, in which case one of the following holds:

i. if p > 0, then up to rescaling f we may assume that p = 2, in
which case f has no critical value and f(M) =R, in particular M is
noncompact;

it. if p =0, then f has no critical value and empty vanishing set and,
up to changing f into —f, we have f(M) = (0,00), in particular M
1S noncompact;

. if p < 0, then up to rescaling f we may assume that up = —2, in
which case f has a unique critical value, which, up to changing f into
—f, can be assumed to be a minimum; moreover, f(M) = [1,00), in
particular M is noncompact.

4
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Proof: The proof of statement [I] follows that of [I8, Lemma 4]. On the one hand,
we take the codifferential of V2f and obtain, choosing a local orthonormal basis
(€j)1<j<n of TM and using the Weitzenbock formula for 1-forms:

SV = = (Ve V) (e5)

j=1

- i (Vejvejvf - vvﬁjejvf>
=1

= V*V(VY)
= A(Vf) - Rie(Vf). (6)

On the other hand, by and the formula dRic = -1V,

2
§V2f = §(—f-Ric)

= Ric(Vf)— f-0Ric

= Ric(Vf)+ gVS.
Comparing both identities, we deduce that A(V f) = 2Ric(V f)+ gVS . But identity
also gives

Af = —tr (V2f) = £, (7)

so that A(Vf) = V(Af) = V(fS) = SVf+ fVS and therefore Ric(Vf) = 5V f+
{VS, which is .
By and , we have

2V(IVfI?)

AV f
= —4f-Ric(Vf)

_Af - <§Vf+ %vs)

_9SFVf — f2VS
—V(5f?)

—V(fAf),

=

from which follows.

Taking the codifferential of , we obtain on the one hand, using JRic = —%VS :
§(RicVf) (6Ric, Vf) — (Ric, V> f)

—%WS, V) + fIRicl.

(=]

5
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On the other hand, the codifferential of the r.h.s. of is given by

5(§Vf+£VS) = ——<vs V) + Af— (Vf VS) +

= —§<Vf VS)+¥+JC

fAS

Comparing both identities yields .

If f vanishes nowhere, then up to changing f into —f, we may assume that f > 0
on M. Writing f as e*~™* for some real-valued function u (that is, u = ;& 1In f),

the Ricci-curvatures (as (0, 2)-tensor fields) ric and ric of (M, g) and (M, g = e?'g)
respectively are related as follows:

ric = ric + (2 — n)(Vdu — du ® du) + (Au — (n — 2)|du|§)g. (8)

But Vdf = (n—2)*f - du® du+ (2 —n)f - Vdu and the Laplace operators A of
(M, g) and A of (M,g) are related via Av = e™2* - (Av — (n — 2)g(du, dv)) for any

function v, so that
— 1 _
ric = ric+ ?Vdf — (n—2)%du ® du + (n — 2)du ® du + (Au)g
1 —
= ric+ ?Vdf —(n—2)(n —3)du ® du + (Au)g.

As a consequence, f satisfies (1)) if and only if ric = (Au)g — (n — 2)(n — 3)du ® du
holds on M. Moreover,

FAf+20df2 = f-(=(n—22f|dul? — (n—2)fAu) + 2(n — 2)* f*|dul’
—(n—2)f% (Au— (n —2)|dul?)
= —(n—=2)f*-¢e" Au
= —(n—2)e2@mu. 2 Ay
—(n — 2)e2Bu Ay,

in particular (3) yields Au = —-£-¢*"=9* In dimension 3, we notice that Au = 2.
This shows statement [4l

If f vanishes nowhere, then again we may assume that f > 0 on M. Since M
is closed, f has a minimum and a maximum. At a point z where f attains its
maximum, we have u = f(z)(Af)(z) + 2|V.f]> = f(x)(Af)(z) > 0. In the same
way, 1 = f(y)(Af)(y) <0 at any point y where f attains its minimum. We deduce
that u = 0 which, by integrating the identity fAf+2|V f|*> = pon M, yields df = 0.
This shows statement [Bl
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The first part of statement [6] is the consequence of the following very general fact
[12, Prop. 1.2], that we state and reprove here for the sake of completeness: if some
smooth real-valued function f satisfies V2f = fq for some quadratic form ¢ on
M, then the subset Ny = f~!({0}) is — if nonempty — a totally geodesic smooth
hypersurface of M. First, it is a smooth hypersurface because of d,f # 0 for all
r € Ny: namely if ¢ R — M is any geodesic with ¢(0) = x, then the function
y := foc satisfies the second order linear ODE 3" = (V2f,¢) = q(¢,¢) -y on R with
the initial condition y(0) = 0; if d,f = 0, then 3'(0) = 0 and hence y = 0 on R,
which would imply that f = 0 on M by geodesic connectedness, contradiction. To
compute the shape operator W of Ny in M, we define v := % to be a unit normal
to Ng. Then for all x € Ny and X € T, M,

1 1
vVMy = X|— .V — . Vi¥y
XV (IVf|) T AL

XV o 1 o
avrE Y e VY
]‘ 2 2
- W'(va_<va7V>'V)v (9)

in particular W, = —(Vv), = 0 because of (V*f)_ = f(x)g, = 0. This shows that
Ny lies totally geodesically in M.
Now recall Gaul equations for Ricci curvature: for every X € TN,

Ricy, (X) = Ric(X)" — RY v + try(W) - WX — W2X,

where Ric(X)? = Ric(X)—ric(X, v)v is the component of the Ricci curvature that is
tangential to the hypersurface Ny. As a straightforward consequence, if Sy, denotes
the scalar curvature of Ny,

Sne = S — 2ric(v,v) + (tr,(W))* — W%

Here, W = 0 and Ric(v) = %V along Ny because N lies totally geodesically in M,
so that
SN, = S = 2ric(v,v) =5 — S =0.

This proves Ny to be scalar-flat and statement [6]
As for claim ., a straightforward consequence of is that, at every x € M and
for all X|Y € T, M, we have

RxyVf = [Vx,Vy]Vf—=Viyf
= —X(f)Ric(Y)+ Y (f)Ric(X) — f ((VxRic)Y — (VyRic)X),

which is identity . In particular, because 0 cannot be a critical value of f by
statement |§|., the Ricci-tensor of (M", g) must be Codazzi at every critical point of

7
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f. This proves claim [7]

Statement ., which can be found in [12, Prop. 1.1], is a further consequence of the
general fact mentioned above that any f € W(M™, g) is uniquely determined by its
value as well as the value of its gradient at a given point. This implies that, given
any z € M, the linear map

W(M", g) — RxT,M
fo— (f(@),(V)(x))

is injective, which proves claim 8] Note that the upper bound n+1 for dim(W (M™", g))
is obviously attained when (M", g) = (R", can) is the flat Euclidean space.
Statement |§| can be considered as standard. In dimension 2, Ric = ‘gId = KId,
where K is the GauB curvature of (M? g). But we also know that Ric(Vf) =
%Vf + {VS = KVf+ %VK. Comparing both identities and using the fact that
{f # 0} is dense in M leads to VK = 0, that is, M has constant Gauf} curvature.
Up to rescaling the metric as well as f, we may assume that S,y € {—2,0,2}. If M?
is complete with constant S > 0 (hence K = 1) and f is nonconstant, then p > 0 so
that, by Obata’s solution to the equation V2f + f-Idyy, = 0, the manifold M must
be isometric to the round sphere of radius 1 and the function f must be a nonzero
eigenfunction associated to the first positive eigenvalue of the Laplace operator on
S?, see [20, Theorem A]. If M? is complete and has vanishing curvature, then its
universal cover is the flat R? and the lift f of f to R2 must be an affine-linear func-
tion of the form f(z) = (a,z) + b for some nonzero a € R? and some b € R; since
the only possible nontrivial quotients of R? on which f may descend are of the form
R/7 . & x R for some nonzero @ € a*, the manifold M itself must be either flat R?
or such a flat cylinder. If M? is complete with constant S < 0, then f satisfies the
Tashiro equation V2f = f - Idrys. But then Y. Tashiro proved that (M2, g) must
be isometric to the hyperbolic plane of constant sectional curvature —1, see e.g. [23],
Theorem 2 p.252], see also [I5, Theorem G|. Note that the functions f listed above
on S?, R?, St x R or H? obviously satisfy (1))

If (M",g) is Einstein with n > 3, then it has constant scalar curvature S and
Ric = % - Id. But again the identity Ric(V f) = %Vf + %VS = %Vf yields n = 2
unless S = 0 and thus M is Ricci-flat. Therefore, n = 2 is the only possibility for
non-Ricci-flat Einstein M. This shows statement [9]

If S is constant, then Ric(Vf) = £V f. As a consequence, Vi f = —fRic(Vf) =
—%V f. But, as already observed in e.g. [22] Prop. 1], away from its vanishing set,
the gradient of f is a pointwise eigenvector of its Hessian if and only if the vector
field v = é—}c‘ is geodesic, see above. Assuming furthermore (M™, g) to be com-
plete, we can rescale as before f and g such that S, € {—2,0,2}. In case S > 0
and hence S = 2, necessarily 1 > 0 holds and thus p = 2. But then f2 + |V f]*> =1,
so that the only critical points of f are those where f? = 1, which by f? < 1 shows

8
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that the only critical points of f are those where f = £1 and hence where f takes
a maximum or minimum value. Outside critical points of f, we may consider the
function y := f o~v:R — R, where v:R — M is a maximal integral curve of the
geodesic vector field v. Then y satisfies ' = [V f| o~y > 0 and y(¢)*> +v'(1)? = 1, so
that ¢ = /1 — y? and therefore there exists some ¢ € R such that

y(t) = cos(t + @) VteR.

Since that function obviously changes sign and 0 is not a critical value of f, we
can already deduce that f changes sign, in particular Ny = f~({0}) is nonempty.
Moreover, the explicit formula for y shows that f must have critical points, which
are precisely those where cos reaches its minimum or maximum value. This shows
statement [T0al

In case S = 0, we have Ric = 0 by since f is assumed to be nonconstant. This
proves statement [T0D]

In case S < 0 and thus S = —2, there are still three possibilities for pu:

e If 4 > 0, then u = 2 and becomes — f? + |V f|> = 1, hence f has no critical

point. If v is any integral curve of the normalised gradient vector field v = ‘g—}c‘,

then the function y := f o~ satisfies the ODEs ¢y’ = /1 + 32, therefore y(t) =
sinh(t + ¢) for some real constant ¢. In particular, f(M) = R and M cannot be
compact.

o If =0, then becomes f? = |V f|*>. But since no point where f vanishes can
be a critical point by the fifth statement, f has no critical point and therefore
must be of constant sign. Up to turning f into —f, we may assume that f > 0
and thus f = |V f|. Along any integral curve v of v = %, the function y := fo~

satisfies ¢’ = y and hence y(t) = C - €' for some positive constant C'. This shows

f(M) = (0,00), in particular M cannot be compact.

o If 4 < 0, then p = —2 and becomes —f% + |V f|> = —1. As a consequence,
because of f2 = 1+ |V f|?> > 1, the function f has constant sign and hence we
may assume that f > 1 up to changing f into — f. In particular, the only possible
critical value of f is 1, which is an absolute minimum of f. If v is any integral
curve of the normalised gradient vector field v = %, which is defined at least
on the set of regular points of f, then the function y := f o v satisfies the ODEs
Yy = \/y? — 1, therefore y(t) = cosh(t + ¢) for some real constant ¢. Since that
function has an absolute minimum, it must have a critical point. It remains to

notice that f(M) = [1,00) and thus that M cannot be compact.

9
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This shows statement [I0cl O

Next we give a closer look at the case where the scalar curvature of (M", g) is
constant.

Theorem 2.2 Let (M",g) be any connected Riemannian manifold carrying a non-
zero smooth real-valued function f satisfying on M. Assume the scalar curvature
S of (M™, g) to be constant and nonvanishing. Up to rescaling the metric g on M it
may be assumed that S = 2¢ for some € € {£1}.

Then the following holds.

1. Every regular level hypersurface N, = f~'({c}) of f must have vanishing
scalar curvature and its Ricci-tensor be given by Ricy, = \VfP (VyRic).

2. If either n = 3 or both n > 4 and Ric is assumed to be nonnegative when
e = 1 resp. nonpositive when € = —1, then the Ricci-tensor has pointwise 2
eigenvalues, ¢ with multiplicity 2 and 0 with multiplicity n — 2.

3. Ifn = 3, the manifold (M3, g) must be isometric to either S*(g) xR or S%(e) x
St with product Riemannian metric, where S*(g) is the simply-connected com-
plete surface of constant curvature ¢ € {£1}; and f must be the trivial exten-
sion to M of a solution of the Obata resp. Tashiro equation on S*(1) = S* (if
e=1)resp. S*(—=1) =H? (if e = —1).

Pmof: We look at the Gaufl equations for Ricci and scalar curvature along each

= f71({c}) for any regular value ¢ of f. Denoting W = —Vv = |fo|RIC =
L_Ric the Weingarten-endomorphism-field of N, in M, where Ric! is the pointwise

|Vf|
orthogonal projection of Ric onto T'N,, we have tr(W) = ﬁ -5 by Ric(v) = Sv.
As a consequence, we have, for all X € T'N,:

Ric(X) = Ric(X)”
= Ricy, (X) + W2X —tr(W)WX + Ry,v

f (RicQ(X) - gRiC(X)) + Rx .

(
= RiCNC(X) |Vf‘2

But we can compute the curvature term Rx ,v explicitly from : for any X € T'N,,

B (O T PO S
Rx,v = 7] Ric(v) + |Vf|R c(X) — V7] ((VxRic)r — (V,Ric)X)
= Ric(X) — S Vx(Ricy) — Rie(Vxv) | + L(V Ric) X
v | Ve N

10
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= Ric(X) + V7 < Id — Ri c) (WX)+ W(V yRic) X
= Ric(X) + |fo|2 (SRIC(X) — RicQ(X)> + |fo|(V Ric)X,  (10)

so that, with (V,Ric)(v) = V,(Ric(v)) — Ric(V,v) = V,(2v) = 0 on M, we obtain

f

-V, Ric,
VSl

Ric N, =

as claimed in statement [I} That identity has important consequences. First, choosing
a local o.n.b. (ej)lgjgnfl of TNC,

n—1
Sn. = ) (Ricw.(€),€5)
j=1
f n—1
= —— V.R
7 TR0
- f
Lz tr (V,Ric),
because of (V,Ric)(v) =0, so that
__ I S SN SN
SN, = v/ tr(V,Ric) = v/ v(tr(Ric)) = v/ v(S) =0.

Therefore, each level hypersurface N, is scalar-flat. This concludes the proof of
statement . We turn to . Because of S being constant, we already know by ([2|) that,
outside its vanishing set, the gradient vector field V f of f is a pointwise eigenvector
for the Ricci tensor associated to the eigenvalue g = e. Writing the Ricci tensor
as Ric = e’ ® v + Ric’, where Ric’ is a pointwise symmetric endomorphism of

vt C TM, we deduce from (4)) and the fact that {f # 0} is dense in M that

2
IRic”|? = SI =1 (11)

on {Vf # 0}. Since tr(Ric") = £ = ¢, identity implies that, at every point
outside the critical set, the set of possible eigenvalues of Ric? stands in one-to-one
correspondence with the sphere S"~2 of dimension n — 3, seen as the unit sphere in
the (n — 2)-dimensional space v*. If n = 3, then this means that Ric” has pointwise
the eigenvalues € and 0, each of multiplicity one, on the regular set of f. If n > 4,
we assume furthermore that Ric > 0 when ¢ = 1 and Ric < 0 when ¢ = —1. In

11
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that case, implies that Ric” has exactly one eigenvalue that is equal to £ and
that all other eigenvalues vanish, at least on {V f # 0}. To sum up, the Ricci tensor
of (M", g) has at each point of {Vf # 0} C M the eigenvalues ¢ of multiplicity
2 and 0 of multiplicity n — 2 respectively. Note that both eigendistributions of the
Ricci-tensor are smooth since they have constant rank. Furthermore, the critical set
{Vf = 0} of f must have empty interior, otherwise the Ricci tensor would vanish
identically on that interior by (1)) and the fact that 0 is not a critical value of f. But
this would contradict the fact that the scalar curvature S of (M", g) is assumed to
be constant and nonvanishing. Therefore, Ric has actually ¢ and 0 as eigenvalues
with multiplicities 2 and n — 2 respectively on all of M. This proves [2]

It remains to show that, when n = 3, both eigendistributions of the Ricci tensor of
(M3, g) are actually parallel. Let n be a unit eigenvector of Ric associated to the
eigenvalue € and ez be a unit eigenvector of Ric associated to the eigenvalue 0; since
both Ric-eigenvalues are constant and distinct and Ric is smooth, 1 and e3 exist
globally along N., no need of analyticity. In dimension 3 again, because Sy, = 0
yields Ricy, = 0 and thus V,Ric = 0, the vector fields n and e3 can actually be
defined everywhere on the regular set of f using parallel transport along v-geodesics.
Moreover, because the eigenvalue 0 of the Ricci-tensor has multiplicity 1 on all of
M as we showed above, the vector field e3 can be defined globally on M.

We show that Ves = 0, i.e. ez is parallel on the dense open subset {V f # 0} and
hence on M. First, because of V,Ric = 0, ker(Ric) = Rez and |e3| = 1, we have
V,e3 € ker(Ric) Nes = {0} i.e., V,e3 = 0. Next, following from the identity

1
0 = -VS = —0Ric = (V,Ric)n + (V¢,Ric)es + (V, Ric) v,
2 ——
0

we have (V,Ric)n = —(V,,Ric)es. Here we notice that
(VyRic)n = eVyn — Rie(Vyn) = e(Vyn — (Vyn, v)v)

and, with V.,v = —Wez = |v—ff|RiC<€3) =0, that

(Ve,Ric)es = —Ric(Ve,es) = —e(Ve,es, n)1.
Therefore,

0 = 5<V7777777>
= ((VyRic)n, n)
= —((Ve;Ric)es, n)
= &(Vees,n).
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Since (V,es,v) = —(es, Ve,v) = 0 and (Vezes,e3) = 0, it can be deduced that
V63€3 =0.
Analogously,

0 = —&{Vees,n)(n, e3)
= ((V,Ric)es, e3)
= —((VyRic)n, es)
= —E(Vm7,€3>,

so that (V,es,n) = 0. Again, because (V,e3,e3) =0 = (V,e3,v), it can be deduced
that V,e3 = 0. To sum up, we obtain Ves = 0 i.e., the vector field e3 is parallel on
M\ {Vf =0} and hence on M. As a consequence, the holonomy group of M splits
locally, therefore the universal cover of M is isometric to the Riemannian product
3 x R of some complete surface ¥ with R. Moreover, using formula for X =n
and taking into account that V, Ric = 0, we obtain

S 2 2
R, v = (1 + QIV—];P) - Ric(n) — ]foP -Ric*(n) = Ric(n) = en,

so that K (n,v) = (R, ,v,n) = |n|* = . Therefore, the distribution Span(n, v) — M
integrates to a surface of constant curvature e € {+1}. Thus X = S?%(e), which is
the simply-connected complete surface with curvature ¢ € {£1}. In case ¢ = 1,
the lift f of f to S? x R is constant along the R-factor and satisfies the equation
(VSQ)2 f = —f -1d, which is exactly the equation characterizing the eigenfunctions
associated to the first positive Laplace eigenvalue [20, Theorem A]. Furthermore, the
isometry group of S2 x R embeds into the product group of both isometry groups
of S? and R and the first factor must be trivial since f , as the restriction of a linear
form from R? onto S?, is not invariant under {+Id}. Therefore, M is isometric to
either S? x R or to S? x S! and in both cases f is the trivial extension of an eigen-
function associated to the first positive Laplace eigenvalue on S%. In case ¢ = —1,
the lift f of f to H2 x R is constant along the R-factor and satisfies the equation
(VE))2f = f.1d, which is exactly the Tashiro equation. Since the isometry group
of H? x R embeds into the product group of both isometry groups of H? and R and
the first factor must be trivial since f has no nontrivial symmetry [23, Theorem 2
p.252], we can deduce as above that M is isometric to either H? x R or H? x S* and
f is the trivial extension of a solution to the Tashiro equation on H2. This proves
statement [3| and concludes the proof of Theorem [2.2] O

Next we look at manifolds with harmonic curvature tensor. Recall that, by definition,
the Riemann curvature tensor R of (M™, g) is harmonic if and only if R = 0 holds

on M. By the first and second Bianchi identities, we have, for all X, Y, 7 € T, M at
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some x € M:
(0R)(X,Y, Z) = (VyRic)(Z, X) — (VzRic)(Y, X).
As a consequence, 0R = 0 at some x € M is equivalent to
(VxRic)(Y) — (VyRic)(X) =0

forall X,Y € T, M i.e., to Ric being a Codazzi-tensor at x. A 3-dimensional Rieman-
nian manifold has harmonic curvature if and only if it is conformally flat and has
constant scalar curvature. In dimension n > 4, a Riemannian manifold has harmonic
curvature if and only if it has harmonic Weyl tensor W, that is, W = 0 holds on
M, and constant scalar curvature. For instance, any conformally flat manifold with
constant scalar curvature has harmonic curvature tensor. We refer to [2, Sec. 16.4]
for more details about harmonic curvature.

Theorem 2.3 Let (M™,g) be any connected complete Riemannian manifold carry-
mg a nonzero smooth real-valued function f satisfying on M. If the Riemann
curvature tensor of (M™,g) is harmonic, then either (M™, g) is Ricci-flat or, up to
rescaling the metric g, the manifold (M™, g) is isometric to the Riemannian prod-
uct S*(e) x X2, where S?(g) is the simply-connected complete surface of constant
curvature ¢ € {1} and "2 is a Ricci-flat manifold. Moreover, f is the trivial
extension to M of a solution of the Obata resp. Tashiro equation on S* (if e = 1)
resp. H? (if e = —1).

Proof: First recall that, if §R = 0 holds on M — or, equivalently, if Ric is a Codazzi-
tensor — then the scalar curvature S of (M™, g) must be constant: given any pointwise
on.b. (e;)1<j<n of TM and X € T'M, we have

X(S) = X (tr(Ric))
= tr(VXRic)

= ) (VxRic)(e;, ¢)

I
.
M: I
LN

(V¢,Ric)(X, e;)
j=1
= —(0Ric)(X)
X(5)
2
so that necessarily dS = 0 holds on M. Since the scalar curvature S is assumed to
be non-identically vanishing, we may assume up to rescaling g that S = 2¢ with

14
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e € {£1}.

For any s € N, we denote by (a,) the assertion tr(Ric®) = 2¢® and by (bs) the
assertion d(Ric®) = 0. We show that, since the Ricci-tensor is assumed to be Codazzi,
both (as) and (bs) are true.

First, we have that, for every s, (bs) implies (asy1): namely, as a consequence of

Ric(Vf) =V (see (2)),
(VxRic*)(Vf) = —f(e°RicX — Ric*t1X)

for every X € T'M. This yields, in a pointwise o.n.b. (€;)1<j<n of TM,

O(Ric*)(Vf) = —Z(VejRiCS)(ejyvf)

= f(aS;S — tr(Ric*t))
= f(2e"™ — tr(Ric*t)).

Therefore, if 6(Ric®) = 0, then tr(Ric®™) = 2. This shows the claim. Note that
here we have not used the property that Ric is a Codazzi-tensor.

Second, we have, under the condition that Ric is Codazzi, that (bs) = (bsy1). Namely
assuming (by), assertion (asy1) must hold true from the previous claim. Therefore,
for every X € TM,

n

Z(VXRiC)(ej, Ric’e;) = tr(VxRic o Ric’) = :11)( ((tr (Ric5+1))) =0.

j=1
Now using the fact that the Ricci-tensor is Codazzi, we compute

n

0 = Z(VXRiC)(ej, Ric%e;)

j=1

— Z(VejRic)(Ricsej,X)
— Z((vejRicsﬂ)(ei), X) — Ric(((V,Ric®)(e;), X)

— —(0Ric*T)(X)

using again (b). We deduce that (bsyq) is true.

Since (as) and (bs) are satisfied for s = 1, we deduce that they are satisfied for all
s € N. From the Newton identities, it can be deduced that the Ricci tensor must
have pointwise the eigenvalues £ and 0, the former of multiplicity 2 and the lat-
ter of multiplicity n — 2. Therefore, we get the pointwise orthogonal decomposition

15
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TM = ker(Ric — €Id) @ ker(Ric).

It remains to show that both eigendistributions of the Ricci-tensor are parallel. Let
X,Y € ker(Ric — eld) and Z € ker(Ric). Then the scalar product with Y in the
formula (VxRic)Z = (VzRic)X allows to get on the one hand

9((VxRic)Z,Y) = —g(Ric(Vx Z),Y) = —eg(Vx Z,Y),
and on the other hand

J((VZRi0)X,Y) = eg(V,X,Y) - g(Ric(V5X),Y)
= e9(VzX,Y) —g(VzX,RicY)
= 0.

Thus, we deduce that 0 = ¢(VxZ,Y) = —g(VxY, Z). Hence VxY € ker(Ric —¢ld)
and therefore the distribution ker(Ric — eId) is parallel. The same computations
can be done for the distribution ker(Ric). This straightforwardly implies that both
eigendistributions ker(Ric — €Id) and ker(Ric) are parallel and therefore integrable
and totally geodesic. By the de Rham theorem, M splits locally as the Riemannian
product of a surface and an n — 2-dimensional submanifold. Moreover, the Ricci-
curvature — which is the Gauf-curvature — of the surface that is pointwise tangent
to the distribution ker(Ric —¢ld) is € and the submanifold that is pointwise tangent
to ker(Ric) is Ricci-flat, see e.g. [2, Thm. 1.100]. Therefore the universal cover of M
is isometric to the Riemannian product S?(e) x 3 of the simply-connected complete
surface with curvature ¢ € {—1,0,1} with some simply-connected Ricci-flat mani-
fold ¥. The rest of the proof is analogous to that of Theorem . This concludes
the proof of Theorem [2.3] O

3 Examples in warped product form

We look for examples of warped products (M,g) = (M; X My, g1 & ©3gs) for
some smooth positive function ¢ on M;, where (M, ¢g1) and (Ms,gs) are con-
nected Riemannian manifolds. We make the ansatz f(z1,xs) = fi(x1)fo(zs) for
all (z1,29) € M where f; and fy are smooth real-valued functions on M; and M,
respectively. We look for necessary and sufficient conditions for f to satisfy on

(M, g).
Proposition 3.1 Let (M", g) := (M} x M3?, g1 ¢*ga) be a connected Riemannian
warped product, where ¢ € C®(M;,RY). For any two functions f; € C*(M;,R),

i=1,2let f:=mifi-75fo te, [z, 22) = fi(21)f2(22) for all (x1,22) € M. Then
f solves V2f = —f - Ric on (M, g) if and only if one of the following occurs:

16
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a) The function L is constant on My, in which case it can be assumed up to resca-
®
ling f that fi = ¢. Then py(f1) = (ny — 2)|[VM 1|3 — 1AM} is constant on

My and fi, fa solve

(ne —1)(VM)*f1 = fi-Ricy,
<VM2)2f2 = f2 : (:u1<f1>1dTM2 - RiCMz)

respectively.

(b) The function fy is constant on My, in which case f; solves

(VMY fi=—f - (RiCM1 — %(VM1)2S0>

(14)

on My, the function —£ g1 (VM fi, VM) +(no—1) VMo —pAMi is constant
on each connected component of My \ f;*({0}) and the manifold (M, gs) is
Einstein with scalar curvature equal to

s (—fgl<lef1, VM)t (ng — )|Vl - soAM190>

1

Proof: First, we have Vf = foVfi + fiVfa = fo VM f1 + %Vszg, where Vi f; de-
notes the g;-gradient of f; on (M;, g;). Recall Koszul’s formula, valid for any tangent
vector fields X, Y, Z on some Riemannian manifold (M, g):

1

9(VxY.2) = S{X(9(Y.2)+Y(9(2, X)) - Z(g(X.Y))

+9(X,Y],2) = g(1Y, 20, X) + 9((2, X, Y) }.

It can be deduced from that, for any X;,Y;, Z; € I'(7}TM;), we have

Vx, Yi

Vx, Y,
Vx,Y1

Vx, Y5

13 As a first consequence,

v?)(lf = f?lelefl +

vy,

X
Ox,Ys + 1(o)

Y,

Y,
Ox, Y7 + 1(90)

X

1
VY, — ;g(Xz,Yz)lego.

X1(f1)e® — 2f1.X1(p)

S0VM2]C2+

()04

17
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1

S

= f(VMM5 N+ @Xl(gp)VMQf (20)

Similarly,

Vi, f = X2<f2>vM1f1+f2vx2vM1f1+f Vx, VM f

M M
= XQ(f2)VM1f1 + fo (aXQVM1f1+91<V fi,V gp)XQ)
A/_/ (p

0

+§ ((VMQ)?XJQ - ég(XQ, VM2f2)VM190>
= j;l (VY% f2 + Xa(f2) (Vle fl 90)
+{0291(VM1f17 Vi) X

- gl (V)5 fo+ Xa(f) eV (%) égl(Vlel,VMlsO)Xz (21)

Independently, by [2, Prop. 9.106], we have

Ric(X1) = Ricy, (X1) —Z(VMI)XISO (22)

1 AM VM)t
Rie(X) = —Ricw(Xa) + ( . 2 (g — 1)' (pf'l) X, (23)

Therefore, f satisfies on (M, g) if and only if the following system of equations
holds, for all (X1, Xy) € TM:
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(X)) = —fife: (RiCMl(Xl) - E(VMl)gclw)

lh(Xs) = %(VMZ)g(QfQ + X (f2)p VM (%) + %gl(lethMlsﬁ))Q
Ml M1 2
ro(Xs) = —fifa- <%RicM2(X2) + (A(p L (ng — 1)|V90_290‘1> X2) .

Both equations imply that d (%) ® dfs = 0, that is, that % is constant on M; or f,
is constant on Ms.

Case £ is constant on M;: We may assume, up to rescaling fo and hence f,
that f; = ¢ holds on M;. The above system of equations becomes equivalent to the
following;:

(VY% /i = i+ (Riea, (X1) = 22(VM)3, 1)
(V)% fo+ MXQ = —fifa - To(Xy)

b

where Tp(X3) := (JC%QJ—:{iCM2 (X2) + <% — (ng — 1)%) X2>. Thus
{ (1 —ng)(VM)?fi = —f1-Ricy,
(VM)2 f, = —fa - Ricag, + fo ((TLQ —2)|VMifi]3 — flAlel) Id7ay,

Since f> is assumed to be non-identically vanishing and the second identity above
only depends on My, the factor pui(f1) == (ny — 2)|[VM f1]2 — fiAMf; must be
constant on M;. Actually we shall see later that, when n, > 2, this already follows
from the equation for f;.

Therefore, in case f; = ¢, equation for f := wjfi1 - 7 f2 is equivalent to the
function (ny — 2)|VM 112 — /1AM f; = p1(f1) begin constant on M; and

{ (ne — 1)(VM)2f1 = fi - Ricay
(VM2)2 fy = fa - (pa(f)ldrar, — Ricas,)

Case f, is constant on M,: Then V?f = —f - Ric on (M, g) is equivalent to the
system

(V)2 = —fi - (Ricar, — 2(V*)%p)
u@UAIN gy, = —fr -+ (SRiea, + (22— (ny — 1) 5 )1y,

that is, assuming f; not to vanish identically on Mj,

(V¥ fr = —fi - (Rica, — 2(V)%p)
Ricy, = (—%gl(Vlel, Vo) + (ny — 1)Vt — soA%) ldrag,

)
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the second equation holding on the dense open subset M; \ f~({0}). The second of
both above identities implies that the quantity

py = (—fgl(Vlel, V) + (na = 1)Vt — sDAMlsO>

fi
is constant on M; and that M, is Einstein with constant scalar curvature equal to
nopty, whatever ny is. This concludes the proof of Proposition O

Now we look at on Riemannian products, where f is not assumed to be in
product form.

Theorem 3.2 Let (M™,g) = (M; x My, g1 ® g2) for some connected Riemannian
manifolds (M, g1) and (M, g2). Assume M to be non Ricci-flat i.e., that Ricyy, #
0 or Ricy, # 0. W.lo.g. let Ricy, # 0. Then a function f € C®(M,R) \ {0}
satisfies (1)) on (M™, g) if and only if Ricy, = 0, the function f only depends on My
and satisfies on (Ms, g2). As a consequence, the map W(Ms, go) — W (M, g)
extending a function trivially on the M;-factor, is an isomorphism.

Proof: First, we split pointwise Vf = VM1 f + VM2 f according to the g-orthogonal
splitting Ty, oy M = Ty, My @ Ty, Mo, for all (x1,22) € M. Using formulae —
and ¢ = 1, it can be deduced that, for all X; € T'My,
Vil = Vx, (VY [) + Vi, (V)
= Vi (VM) +0x, (VM)
and similarly, for all Xy € T'Ms,
Vil = Vo (VM) 4+ Vx, (V)
= Ox, (VM f) + ViV ).
By and (23), we obtain that f satisfies on (M", g) if and only if, for all
(X1, Xo) € TMy & TM,,
VX (V) +0x, (V) = —fRicar (X)) (24)
Ox, (VM ) + VAZ(VM ) = —[Ricay, (Xa). (25)
It can be deduced that both dx, (VM2 f) = 0 and dx, (VM f) = 0, for all (X1, X») €
TM, ® TM,. But the first identity is equivalent to the existence of functions a; €

C>®(M;,R) and ay € C>®(My,R) such that f(zi,22) = a1(z1) + az(xz) for all
(x1,22) € M. Then the second identity is trivial and is equivalent to

(VM2)26L2|I2 = —(al(xl) —+ ag(xg))RicM2|I2

20
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2

for all (z1,29) € My x M. But since the Lh.s. of the preceding inequality does not
depend on M; and because of Ricyy, # 0, this implies a; is constant on M, there-
fore a1 + ay € C°(My, R) satisfies on (Ms, g2). But then together with the
assumption f # 0 forces Ricy, = 0: choose a point x5 € My where f(x5) # 0. This
concludes the proof. O

Next we look for examples and partial classifications results for identities and
, which correspond to the case f; = ¢. An obvious case is when f; = ¢ are con-
stant (and nonvanishing) on M;. Then (M, g1) must be Ricci-flat, f(xq, x2) = fo(22)
for all (x1,25) € M and, because of ui(f;) = 0 then, the function f must satisfy
(1)) on (Ms, g2). This is actually a consequence of Theorem above. Therefore we
obtain an already known example in that case, see introduction.

Proposition 3.3 Let (M™, g) be any connected Riemannian manifold.

1. Assume there exists an f € C®(M,RY) solving V*f = mi Ric on M for
some integer m > 2. Then py(f) == (m—2)|V f]?+ L= 25 5 ( =2)|VfI2—fAf
is constant on M and, if m > 2, then Ric(Vf) = T(ml V(f%S), where

S is the scalar curvature of (M, g). Moreover, if m > 2, then f defines a
(0,n +m — 1)-Einstein metric on (M, g).

2. Assume there exists an f € C°(M,RY) solving V*f = f - (uId — Ric) on M
for some p € R. Then Ric(Vf) = —@Vf + {VS + gi and po(f) ==
2IVIP>+ f2(S — (n+ D) =2|Vf>+ fAf — uf? is constant on M.

3. In case (M",g) = (M{" X My? g1 & figa) for some fi € C(M;,RY) and
f = 7w fi - whfy for some fo € C°(My,R), there are, for each ny,ny > 1
ezamples of (M;, g;, fi) for which f solves ([)).

4. If (M™, g) is closed and f € C°°(M,RY) is such that p1(f) == k|V f|*— fAf is
constant for some k € R, then f must be constant on M and therefore u(f)
must vanish. As a consequence, if there exists a nonzero f € C*(M,RX)
solving V2 f = - Ric on some closed M and for some integer m > 2, then
f must be constant and therefore M must be Ricci-flat.

Proof: We first look at equation

on M, for some integer m > 2. We first derive a few identities following from , see
e.g. [I8, Lemma 4]. We write down the proof for the sake of completeness. Namely,
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by @, we know that
5 (VEf) = A(VS) - Ric(Vf)
— V(Af) - Ric(V)
= L V(f8) ~ Ric(V/)

_ _ﬁ (SVf + fVS) = Ric(Vf),

where, as above, S := tr(Ric) is the scalar curvature of (M, g) and where we have
used Af = —% tracing |D But also yields

5(V2f) = ﬁ (=Ric(V/) + f5(Ric))

1 . S
so that, bringing both identities for § (V?f) together, we deduce that
m—2 _. 1 /
1 2

In case m = 2, we deduce that V(f2S) = 0 i.e., that f2S = —fAf is constant on
M. In case m > 2, we deduce that

. 1 2
Still when m > 2, it follows that
V(IVIE) = 2(V)3,f
_ mzf Ric(V)
(28) 1 2
= — -V(f%S).
(m—2)(m—1) (F°5)

Therefore, pi(f) = (m — 2)|Vf]* + 25 /%S = (m — 2)|V[f|* — fAf is constant
on M. Note that this is also the case when m = 2 by the above remark. Note also
that, when m > 2, identity defines a so-called (0,n 4+ m — 1)-Einstein metric on
(M, g) according to [12], 13]. By [5, Theorem 2.2], the existence of such a positive f
is equivalent to the warped product (M x F, g&® f2gr) being Ricci-flat, where (F, gr)
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is an Finstein manifold of dimension m — 1 and with Ricg = p; - Id, the constant py
being given by py = (m — 2)|Vf|? — fAf = (m — 2)|Vf|]* + %, which is exactly
the constant p(f) described above, see also [I8, Cor. 3]. This statement remains
true when m = 2 and Af = 0 (or equivalently p1(f) = 0). This shows statement [1]
Next we look at

V2f = f - (uld — Ric) (29)

on M" for some p € R and n > 2. First and as before, a few identities can be

deduced from . Namely, by @, we know that

5 (V2f) = A(VS)—Rice(Vf)
= V(Af) - Ric(V )
= V(f(S—nu)) —Ric(Vf)

= (S—nu)Vf+ fVS —Ric(Vf),
where we have used Af = f(S — nu) tracing (29). But also yields
§ (V2f) = —(uVf—Ric(Vf))+ 6 (uld — Ric)

= —uVf+Ric(Vf)+ gvs

so that, bringing both identities for 6 (V2 f) together, we deduce that

Ric(Vf) = —”;1qu+£

VS + gi. (30)
It follows that
V(IVIP) = 2V3f
— 2f(uV] - Ric(V )

f ((n—l— DuVf — gVS— SVf)

n+1 9 1 9
iV = 5 V(S

%v ((n+1)uf? - f25).

E

Therefore, po(f) = 2|V + f2(S — (n+ 1)) = 2|V f|* + fAf — pf? is constant
on M. This proves statement

As for statement [3| we look at different cases according to the values of ny and n.
Case ny = 1: Then is equivalent to M; being Ricci-flat. Together with f; AM: f;+
|VMf112 = —puy(f1) being constant by Proposition , identity is equivalent to
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15 = p1(f1) fo. Whatever the sign of p;(f1), there exists a solution f, to that second-
order linear ordinary differential equation on R, which is periodic (and hence can be
pulled down on a circle of suitable radius) if and only if ;1 (f1) < 0. As for fi, a trivial
family of examples in each dimension n; may be produced as follows. When n; = 1,
the function f; solves the ordinary differential equation —fif + (f1)* = —u1(f1),
whose general solution is

ax(t) if i (f1) >0
) =4 b it (1) = 0
c1(t),di(t),er(t) if pa(f1) <0
where
ay (t) Acosh(A™ /i (fi)t + ¢)
bl(t) = A€¢t
ci(t) = Acos(A™/—ui(fi)t + o)
di(t) = v/ —m(fi)t+¢

er(t) = Asinh(A™'N/—u(fi)t + ¢)

for real arbitrary constants A, ¢ with w.l.o.g. A > 0 (remember that f; = ¢ > 0 by
assumption). Note that all solutions are defined on R but that, in case p;(f1) < 0,
the function f; must change sign somewhere, which makes the solution f; only local
then. Moreover, in case pi(f;) > 0, the solution f; — though positive on R — is
not periodic and therefore cannot be pulled down on an S'. Obviously, each of the
above fi’s can be trivially extended constantly in the other variables on R™ for
every ny > 1.

It is important to note that, in the cases where f; > 0 on R, corresponding to
p1(f1) > 0 as we have seen above, the induced metric ds® & f1(s)?dt* on R? is the
hyperbolic one, for which we can anyway describe W (M, g) explicitly.

Case ny > 1: When ny > 2 and ny = 1, equation ([12)) reduces to f; = 0 on My,
which has no positive solution on M; unless f; is constant or M is a strict open
subinterval of R.

When ny, > 2 and n; = 2, equation is equivalent to (VM)2f, = fi¢y - Idray,,
where ¢, = % But by [23, Sec. 2], this implies that, on any open subset
where f; has no critical point, (M3, g1) is locally isometric to (R? dt* @ p(t)*ds?),
where p := #lo) and u is f1 along the flow of its normalised gradient v :=
Moreover, along any integral curve 7 of v, which is a geodesic of (M, g1) because
of VM1 f, being a pointwise eigenvector of (V*1)2f,, the function u must satisfy the
following second-order ordinary differential equation: for any ¢ in some nonempty
open interval,

u'(t) = 91((VM1)A2-,(t)f177(t))
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that is,

n2—2 ne
() = (31)

In the first special case where py(f1) = 0, the general form of the solution u to

is u(t) = (at + b)"% for real constants a,b with a # 0; assuming a and b to be
positive, the maximal existence interval for u is [—g, 00), in particular no complete
M can exist unless f; has critical points.

In the second special case where ny = 2, the second-order ordinary differential
equation (31)) may be reduced to the first-order one

u' = /pa(f1) In(u) + C

for some real constant C'. Note that this implies that u is constant when ny = 2 and
p1(fi) = 0. If i (f1) > 0, the maximal existence interval for u is of the form ]a, oo,
whereas if p;(f1) < 0, that interval is of the form | — oo, a] for some real a.

Conversely, let us assume u to be any positive solution with w.l.o.g. positive first
derivative of on some open interval I about 0. Consider the warped product
(My, g1) := (I x %, dt*® p(t)?ds®) for & = R or S, where ¢(t) := Z,/((é)) Let f(t,s) ==
u(t) for all (¢,s) € M. The above formulae and for the Hessian of f
simplify to Vgt f=u"-0, and Vgs f= % - 0s. The identities and become

u//_u+

Ric = —%l - Idyps. Taking into account that ¢ = #/0), we have % = u”, so that
V2f = u" - Idpy, as well as Ric = —% - Idpps (recall that ny = 2 here).
Therefore, V2f = —— . Ric if and only if " = — wj(s) - on I. But because u” =
na—1 (n2—1)u
—“12(1{1) — 22=2(4/')%, we have
uu® _ u p(fy) na—2 ()
(ng — D' (ng— D/ 2u 2 u
B u p(f)u ng—2 2u'u"u— ()3
 (ng— D 2u? 2 u?
B 1 w1 (f1) N no —2 2u"u— (u')?
oy —1 2u 2 U
1 p(fi) m2 =2 p(fi) = (n2 = 2)(u)* — (u)?
— . _|_ .
ne — 1 2u 2 U
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so that is satisfied on (M%Z, g1).

In the subcase where ny, = 2, equation 1) is equivalent to (VM2)2f, = fody - Idray,,
where ¢o := 7 — % Now yields 22V f, = SQ—E“—lvM2f2 + %VM252, that is,
fo VM2 Gy = 2,1, VM2 f, which is equivalent to the existence of a real constant C' such
that

SQ = 2,LL1 hl(|f2|) + C

on each connected component of the dense open subset M, \ f;'({0}). Denoting
o = po(f2), it can be deduced that

2 —
|VM2f2|2 _ H2 fQ(SQ 3/“)

2 2
_pe [3Cmn(f]) +C = 3m)
2 2
3, — C
- % + (MT — ln<|f2|)) f3.

This gives rise to a first-order ordinary differential equation for u(t) := foo F}, where

(FY); is the local flow of v := |VVI\1/\1422;;2|2 on some open subset of the regular set of fs.

Namely, |23, Sec. 2] again implies that, on any open subset where f; has no critical
y

point and vanishes nowhere, (MZ,go) is locally isometric to (R?,dt? @ p(t)*ds?),

where p = #/0). Moreover, along any integral curve v of v, which is a geodesic of

(M, go) because of VM2 f, being a pointwise eigenvector of (VM2)2 £, the function
u must satisfy the following first-order ordinary differential equation: for any t in
some nonempty open interval,

1
2

w/=(%+wﬁ%;9—uumwmﬁ>. (32)

Except in possibly very particular cases — e.g. when puy = pus = C = 0, in which
u is constant — the maximal existence time for such a solution u to is strictly
contained in R. Note also that, if u solves , then

1
2

~ ) ) (@ = € = 2~ '

2

2 2

1 3uy — C
u// (M2+( H1

3, — C K ¢ /
= (% + (MT — I ln(IUI))uQ) : (Nl —5 —m ln(!“D) u
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C

= @) (= S — i) )

_ (m — % — 1H(IU|)) u,

where 11 — $ — pi In(Jul) = p1 — @ by the above identity for Ss.
This implies that, given any nowhere vanishing solution u to on some open
interval I about 0, the function f(¢,s) := wu(t) solves

" S
VQf =u - Idry = (Nl - 5) Idpy

on (M3,g0) := (I x X, dt* & (;L,,((é)))?dSQ), where ¥ = R or S'.

Still in the case where ny, = 2, equation has not been considered yet in
the literature as far as we know. In the special subcase where p; = 0, which is
equivalent to S; = 0, equation can be rewritten under the form (VM1)2f, =
fi - Ricy, — (AM fy) - 1d, which is the general form of an element of ker(L? ) in [6]
when the underlying manifold is scalar-flat. In case ker(L} ) # {0}, the metric g,
is called static. Although it is unclear whether a nonconstant positive solution f;
to that equation can exist on a complete M, there is a noncomplete example: take

the outer Schwarzschild manifold (R*\ Bz, (1+ £2)*(-,-)) for some constant m > 0,
where r = r(x) = |z] in R® and fi(x) = ;—%, see [0, p.145]. In case M, is either
closed, complete with nonnegative Ricci curvature or with so-called moderate vol-
ume growth, the function f; must be constant. The latter two are due to S.T. Yau
[24, Cor. 1 p. 217] and to L. Karp [16, Theorem B] (see also [I7, Sec. 3]) respectively,
using only the harmonicity of f;. As a consequence, if n; = 2 (and ny = 2), then
there is no nonconstant solution f; (for S; = 0 implies Ricy, = 0).

Case ny > 2 and n; > 2: Then defines a so-called (0,717 + ny — 1)-Einstein
metric on (M, g1) according to [12} [13] as we noticed in statement [1} As for (13),
it has not been considered either in the literature when p; # 0 — for py = 0, it is
already on My. When py # 0, we may take for (MJ?, g, fo) the standard solu-

tion to the Obata resp. Tashiro equation on the no-dimensional simply-connected
spaceform of sectional curvature %, which are the only Einstein solutions to 1)

when ny > 2. This shows statement [3]

In the particular case where (M™, g) is closed and f € C*°(M,RY) is such that
pi(f) == k|Vf|> — fAf is constant for some k € R, we can mimic the proof of
Lemma [2.1]F] First, we have p(f) = 0: it suffices to evaluate y;(f) at two points,
one where mj\}n (f) is attained and one where max (f) is attained to obtain that p; (f)

must be both nonpositive and nonnegative because of f > 0 and the opposite signs of
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the Laplace operator of f at a minimum and maximum respectively. Independently,
we can integrate p;(f) over M and obtain

() - Vol(M™, g) = (k— 1) /M VP dpy.

Therefore, if £ # 1, then f must be constant. If k& = 1, the vanishing of py(f) is

equivalent to Af = % > 0 on the closed manifold M, which with [, Afdu, =0
shows that, again, Vf = 0 must hold on M, therefore f must also be constant on
M. This proves statement 4] and concludes the proof of Proposition [3.3] 0]

In case the factor (M, g1) of the warped product is complete, we show that actually
the map f must be constant along M;.

Theorem 3.4 Let f = 7} f1 - m fa satisfy on (M", g) = (My; x My, g1 & figo)
for some smooth positive function fi on My and smooth function fo on M,. Assume
(M, g1) to be complete and connected.

Then f1 must be constant on M, the manifold (M, g1) must be Ricci-flat and fy
must satisfy on (Ms, go). Therefore, the map W (M,, go) — W (M, g) extending
any solution to M s an isomorphism.

Proof: In case f; > 0 on M; and for f = 7y f1 - 75 f2 on My X2 My, the constants
p(f), u1(f1) and ps(fz) defined above are related as follows:

u(f) = FAf+2/VfP
= fif(Af)fo+ [idf2) +2[f2(V 1) + f1V fol?
= fufo(AMf1) fo + f_;AMsz) +2| (VM) + %VMQJ%F
1 1
= [UAM )7+ f(AM2 fo) + 23|V AT+ 2|V fof
= (AAMA) + 2V AR) - f5 + LAY fo + 2]V f]3
= (A@AM )+ 2V AR + () - f3
+ AN fy + 2]V Y2 o5 — (1) f3
= m| VMR f5 + pa(fo).

This implies that, if f # 0 solves and o = f; > 0, then |[VMif]; is constant
on M. Note that this holds whether (M, g;) is complete or not, i.e. whenever M,
is connected. From now on assume (M, g;) to be complete. By contradiction, if
|V £, were a positive constant, then f; would have no critical point on M; and
therefore the flow of the normalised gradient vector field v := ;ﬁ%ﬁh
a diffeomorphism from M; to the product R x ¥; for some smooth level hypersurface

would define
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31 of f1; and f; would be a nonconstant affine linear function of ¢ € R. But this
would contradict f; > 0 on M;. Therefore, VM f; = 0 must hold on M, ie., f;
must be constant on M;j. In turn, this implies that pi(f;) = 0, Ricy, = 0 when
ny > 2 (anyway Ricy, = 0 when ny = 1 as we saw above) and that fo € W(Ms, go).
Therefore, the function f is the trivial extension on M of fy € W (M, gs). O

4 Case where dim(W(M", g)) > 2

In this section, we look at the particular case where has a £ > 2-dimensional
space of solutions.

Theorem 4.1 Let (M",g) be any connected complete Riemannian manifold. As-
sume that has a k > 2-dimenstonal space of solutions. Then we have one of the
following:

1. Case k = 2: the manifold (M™, g) must be isometric to the Riemannian product
(M}t x R, g1 @ dt?) for some complete Ricci-flat manifold admitting no line
(M, g1). Moreover, the solutions of on (M™, g) are the affine linear
functions of t € R extended constantly along M; .

2. Case k > 2: the manifold (M", g) must be isometric to the Riemannian product
(MP 1 5 ME™Y g1 @ go) for some complete Ricci-flat manifold admitting no
line (M %1 g1) and where (M5, g5) is either S*, R? or H? with standard
metric of curvature 1,0, —1 (up to rescaling g) for k = 3 or is R*1 with
standard flat metric for k > 3. Moreover, the solutions of on (M", g)
are the solutions of the Obata resp. Tashiro equation on (Ms,gs) extended
constantly along M, .

Proof: We first assume M to be simply-connected. By [12, Theorem A], which can
be applied since is the particular case of the equation V2f = f - ¢ for some
quadratic form ¢ on TM, we already know that, if & > 2, then (M™,g) must be
isometric to the warped product (M; x My, g & fZgs) for some smooth positive
function f; on My, where (M g;) and (M§™!, g5) are complete [3, Lemma 7.2]
simply-connected Riemannian manifolds and f; is a smooth positive function on
M;. Moreover, (M, go) must be a spaceform and any solution f of is of the form
f =t fi- 75 fa, where fo satisfies the Obata resp. Tashiro equation on (Ms, go) [12]
Theorem B]. Taking the above considerations on solutions of (|1) on warped products
into account in case f; is the warping function, Theorem [3.4] can be applied and
implies that f; is constant, that (M, g1) is Ricci-flat and that fo € W(Ms, g2). We
look at different cases according to k:

29



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1. Case k = 2: then we could conclude above that f5 is an affine linear function of
t € R. Since no nonconstant affine function can be periodic, any group action
leaving invariant some nonconstant fo € W(Ma, go) must be trivial. Moreover,
if (M, g1) could be split off a line, then it would be isometric to ¥; x R for
some smooth hypersurface ¥; of M;; but then M; x R & ¥, x R? would carry
a k > 3-dimensional space of solutions to , which would contradict & = 2.
Therefore, (M, g;) cannot contain any line.

2. Case k > 2: then we could conclude above that fo € W(Ms,go). If k& = 3,
then, up to rescaling g, the manifold (Ms,gy) must be isometric to either
S?, R? or H? with standard metric of constant curvature 1,0, —1 respectively;
and W (Ma, go) must consist of the solutions of the Obata resp. Tashiro equa-
tion on (M, g2) as we saw in Lemma[2.1][g] Again, in case My = S? or H?, no
group action on My can leave any nonzero solution to invariant on M. If
M, = R2, then no nontrivial group action preserves the 3-dimensional space
of affine linear functions on R2.

If £ > 3, then, as a consequence of Lemma the manifold (Ms, go) must
be isometric to flat R*~! and again no nontrivial group action preserves the
k-dimensional space of affine linear functions on R*~1.

In both subcases, (M7, g1) cannot contain any line, otherwise dim(W (M", g)) >
kE+1.

In all cases, the only possible nontrivial group actions on M; x M, is trivial along
the Mj factor. Thus, if M is not simply-connected, then M must be isometric to
Mf’kﬂ X Mf’l, where M, is a simply connected model space as above and M; is a
complete Ricci-flat manifold having no line since its universal cover cannot contain
any. Furthermore, every f € W (M, g) must be the trivial extension on M; x My of
a solution fo € W(Ms, g2). This concludes the proof of Theorem . 0

Note that, as a consequence of Theorem [4.1] if a complete (M", g) carries an (n+1)-
dimensional space of solutions to with n # 2, then (M™, g) must be isometric to
R"™! with standard flat metric.

5 Homogeneous case

Next, we look at homogeneous manifolds carrying nontrivial solutions of .

Theorem 5.1 Let (M",g) be any connected homogeneous Riemannian manifold.
Assume the existence of a non-identically vanishing smooth function f on M satis-

fying .
Then one of the following holds:
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1. If the scalar curvature S of (M™,g) vanishes and f is nonconstant, then
(M™, g) must be isometric to a flat manifold R"f0 for some discrete fized-point
free subgroup T' of O(n) x R™.

2. If k.= dim(W (M", g)) = 2, then (M™, g) must be isometric to the Riemannian
product Rnfl/[‘ x R for some discrete fized-point free and co-compact subgroup
[ of O(n—1)xR""'. In that case, the map W (R, dt*) — W (M™, g) extending
any affine linear function trivially on the first factor is an isomorphism.

3. If k = 3, then up to rescaling g, the manifold (M", g) must be isometric to
the Riemannian product Rn_2/r x S%(g), where S?(g) is the simply-connected
complete surface of constant curvature ¢ € {0,4+1} and Rn*Q/r is a compact
flat manifold. In that case, the map W (S?(e), gs2(c)) —> W(M", g) extending
any function trivially on the X-factor is an isomorphism.

4. Ifk >4, then (M"™, g) must be isometric to the Riemannian product R7 R+ T x

R¥=1 where Rn_k“/r is a compact flat manifold and R*=1 carries its standard
Euclidean metric.

5. If k = 1, then unless W(M™,g) consists of constant functions, p(f) = 0
must hold for every f € W. Moreover, the manifold (M™,g) must be a one-
dimensional extension of some homogeneous Riemannian manifold satisfying

the particular conditions below.

Proof: If (M™,g) has vanishing scalar curvature and f is nonconstant, then we
already know from Lemma that (M", g) must be Ricci-flat. But because any
homogeneous Ricci-flat Riemannian manifold must be flat [1], actually (M™, g) must
be isometric to a flat manifold Rn/r for some discrete and necessarily fixed-point free
subgroup I' of O(n) x R™. This shows statement [1]

If dim(W (M™, g)) = k > 2, then Theorem [4.1]implies that (M™, g) must be isometric
to the Riemannian product M7 * x M1 where M7 " is a Ricci-flat manifold
containing no line and M5! is flat Euclidean space except when k = 3, in which case
it is also allowed to be S? or H? with standard spherical resp. hyperbolic metric.
Moreover, any solution to must be the trivial extension to M of a standard
solution on M,. Now recall the following result, which is a combination of Lemma
5.6 and the first part of the proof of Theorem 5.7 in [I3]; the latter can be applied
because of W (M™, g) being invariant under isometry: in our notation, the isometries
of (My X Ms, g1 & g2) are the maps of the form h = (hy, hy), where hy and hy are
isometries of (Mj, g1) and (Ms, g2) respectively. This already implies that, writing
M = G/K, the group G when can be embedded into the direct product of two
groups, the first one acting isometrically and transitively on M; and the second
one acting transitively on M,. In particular, (M, g;) must itself be homogeneous. In
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turn, this implies that, being Ricci-flat, (M, g;) must be flat, again by [1]. Therefore

(M7, g1) must be isometric to Rn*kﬂ/r for some discrete fixed-point free subgroup
[ of O(n — k + 1) x R** 1. Since only compact flat manifolds have no line, the
subgroup I' must be co-compact i.e., M; must be compact. This shows statements
2 3 and [4

Let us now assume the space W (M", g) of functions satisfying to be one-
dimensional on M = G/i. Then as in [I3, Sec. 5] we consider the action of G
on W(M™, g). Because the Ricci-tensor of M is isometry- and thus G-invariant, so
is equation , i.e. for every f satisfying and every h € G, the function fo L,
also satisfies ([1)). But because of dim(W (M", g)) = 1, there exists for a fixed nonzero
feW(M", g) and every h € G a nonzero constant Cj, such that fo Ly,-1 = C} - f.
The map G — R*, h — (} is a Lie-group homomorphism and actually takes its
values in {£1} if u(f) # 0 since, by invariance of p(f) under isometry,

u(f) = p(f o Lyp-1) = p(Ch- f) = Ch - u(f)

for every h € G. Therefore, if u(f) # 0, then C}, € {1} for every h € G. Now if M
is connected as in the assumptions, then so can be assumed G (otherwise replace
G by the connected component of the neutral element), in which case necessarily
C} = 1 holds for every h € G and therefore every f € W(M", g) is constant.
Therefore p(f) = 0 holds. As a consequence, S = —2 and f has no critical point on
M, see Lemma [2.1]

Next we show that (M™, g) must be the one-dimensional extension of some homo-

geneous Riemannian manifold N"~! with Ricci-tensor having particular properties.
Consider the subgroup H of G defined by

H:Z{h€G|Ch:1},

that is, H is the subgroup of all elements of G leaving a (thus any) function
f € W(M™,g) invariant. Since C:G — RY is a nontrivial and therefore surjec-
tive Lie-group-homomorphism, H = ker(C) is a closed normal subgroup of G' and
of codimension 1. Moreover, fixing f € W(M", g) \ {0}, we know from Lemma
that f(M) = RY = (0,00) since f can be expressed as an exponential function
along any integral curve of its normalised gradient. We let N := f~*({1}), which is
a smooth hypersurface of M. By definition, H leaves N invariant. Moreover, fixing
some x € N, any h € G with L,(z) = = must satisfy Cj, = 1 and therefore lie in
H. In other words, the isotropy group H, := {h € H|Lp(z) =z} of x under the
H-action must coincide with K = G,. Independently, for any y € N, there is an
h € G such that L;(z) = y; again, because of f(z) = f(y) # 0, necessarily Cj, = 1
must hold, i.e. h € H. This proves that the orbit H -z := {Lp(x)|h € H} of z
in N must be all of N and therefore N = H/ ¢ is a H-homogeneous Riemannian
manifold. As in the proof of [14], Theorem 5.1], we split the Lie algebra G = P & K
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of G in an Adg(K)-invariant and orthogonal way and let £ € P = TM be the
vector corresponding to v € T+N. Note that, because of C|,, = 1, the gradient of f
and therefore also v are preserved by the H-action, so that & makes sense. Actually,
P=R¢D ((Rf)l N B) and H = ((Rﬁ)L N B) @ K, the splittings being orthogonal.
Furthermore, the Lie-bracket of £ in G preserves H because of H being a normal
subgroup of G. This already proves that G = H x R and that (M, g) is the one-
dimensional extension of the H-homogeneous space (N"!, g|.).

In that case, following [14], we fix some @ € R* and let D = L[¢] = 1L,
which is hence a derivation of H. We denote by S and A the symmetric and skew-
symmetric parts of D respectively seen as endomorphisms of T'N, see [14, Eq. (2.1)].
Let T := —V¢ denote the Weingarten map of N in M. Then by [14, Prop. 2.7] we
have T = a8 and VT = —a?[S, A]. Furthermore, [14, Lemma 2.9] implies that,
forall XY € TN,

ric(§,€) = —a?tr(S8?)
ric(X,¢) = a(68)(X)
ric(X,Y) =r1ic™(X,Y) — (?t1(8))g9(SX,Y) — a?g([S, A|X,Y)

Now writing f(t) = €', where t lies in the R-factor of G = H x R, we have Vdf =
fdt* — fg(T-,-) which, together with V¢£ = 0, gives that identity is equivalent
to

?tr(8?) (= o?|S)?) =1
a(0S) =0
—ag(SX,Y) = —1icV(X,Y) 4+ ®t1(8)g(SX,Y) + a2g([S, A]X,Y)

for all X,Y € T'N. In other words, is equivalent to

o :i|

S =0 (33)
Ricy = # ((tr(S) +€|S)) S + [S, A])

for some € € {£1}. This shows statement |5 and completes the proof of Theorem
Bl O

Note that |21, Theorem 1.5] allows for some partial classification in case (M",g) is
homogeneous, because in their notation our 2-tensor ¢ = —Ric is preserved by the
group action. Nevertheless, we point out that the results we obtain in Theorem
describe the underlying space as well as the space of solutions in a more detailed
way according to the dimension.

The case where dim(W (M™, g)) = 1 could lead to new examples, see [14] and [11].
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6 Kahler case

As in [5], we next consider the case where (M", g) is assumed to be Kéhler.

Theorem 6.1 Assume (M?*",g,J) to be a complete Kdihler manifold and let f be
any nonconstant smooth real-valued function satisfying on M. Then, up to resca-
ling g, the Kdhler manifold (M?", g, J) is holomorphically isometric to S%(g) x X222
for some Ricci-flat Kdhler manifold 3, where S?(e) = S? if e = 1, H? if e = —1 and
either R? or R x St if ¢ = 0; moreover, the Kdhler structure is the product Kdhler
structure and f is the trivial extension to M of a solution to on S?(e).

Proof: The first steps follow those in the proof of [5 Theorem 1.3]. Since the Ricci-
tensor of (M, g, J) is J-invariant, so is the Hessian of f by , i.e. V2foJ = JoV2f.
As a first consequence, the vector field JV f is a (real) holomorphic vector field on
(M, g, J) and therefore its zeros — which are precisely the critical points of f — form
a totally geodesic Kahler submanifold of M of dimension 2k < 2n; in particular the

regular set of f is dense in M. As a second consequence, the 2-form g(V?foJ- ) may
be rewritten 3Ly, where Q := g(J-,-) is the Kahler form of (M, g, J). Therefore,

<uﬂvvof,»:%dwwny:%NVﬁMQ+avLm»=a

i.e. g(V2folJ-,-)is a closed 2-form on M. But because the Ricci-form g(Rico J-,-)
is also closed on M, so is the 2-form %g(VZf oJ-,-)on {f # 0}, again by . This
implies df A (g(V2foJ-,-)) =0 on {f # 0} and therefore on M by density (recall
that f~1({0}), if nonempty, is a totally geodesic hypersurface of (M, g)). In turn
this implies the existence at each regular point of f of a linear form A on (Vf)*
such that, for every X 1 Vf,

Viyf = MX)V. (34)

For X = JVf, we obtain via that V.S is pointwise tangent to Vf, i.e. there
exists a function 6 on M such that V.S = 6V f on M (this holds true on the regular
set of M and hence on M by density, taking into account that at every critical point
both Vf and V.S vanish). For X € {Vf, JVf}*+, by J-invariance of V2f the r.h.s.
of must vanish whenever the basepoint is a regular point of f. In turn this
implies Ric(X) = 0 for all X € {Vf,JVf}t and at every regular point of f. Now
because of Ric(Vf) = (£ + %) Vf, the J-invariance of Ric and Ric| o ope =0,
we obtain
1o

S=5+,

so that 8 = 0, first on the regular set of f and then on M by density, i.e. S is con-
stant on M. This implies that both distributions Span(V f, JV f) and {Vf, JVf}+

34
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are integrable and totally geodesic, the former one being the tangent bundle of a
surface of curvature % — which may be assumed to be £1 up to rescaling ¢g in case
S # 0 — and the latter the tangent bundle of a necessarily Ricci-flat Kahler manifold
¥.. The rest of the proof is analogous to that of Theorem [2.2][3] O

7 Outlook

The equation can be seen as a particular case of the more general equation

V2f:—i(Ric—)\~Id), (35)
m

where A € R and m € N are parameters which are a priori allowed to take arbitrary
values. Note that, for m = n—2 and positive f, equation is the same as equation
(7) in [19, Lemma 2.1]. As in [11], 12} 13} 14], a much broader and richer family of

geometries could be recovered from Equation . This is the object of future work.
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