
DIRAC-HARMONIC MAPS FROM INDEX THEORY

BERND AMMANN AND NICOLAS GINOUX

Abstract. We prove existence results for Dirac-harmonic maps using
index theoretical tools. They are mainly interesting if the source mani-
fold has dimension 1 or 2 modulo 8. Our solutions are uncoupled in the
sense that the underlying map between the source and target manifolds
is a harmonic map.
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1. Introduction

Dirac-harmonic maps are stationary points of the fermionic analogue of the
energy functional. The associated Euler-Lagrange equation is a coupled
system consisting of a map f : M → N and a spinor on M twisted by f∗TN ,
such that the (twisted) spinor is in the kernel of the (twisted) Dirac operator.
The goal of this article is to use index theoretical tools for providing such
Dirac-harmonic maps.

1.1. Dirac-harmonic maps. In mathematical physics a (non-linear) sigma-
model consists of Riemannian manifolds M and N . For simplicity we always
assume M and N to be compact. The classical or bosonic energy of a map
f : M → N is defined as 1

2

∫
M |df |

2. Stationary points of this functional
are called harmonic maps. Harmonic maps from M to N are interpreted
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as solutions of this sigma-model. The term “non-linear” indicates that the
target manifold N is not a vector space and will be omitted from now on.
A super-symmetric sigma-model (see [13, Chapter 3], [15]) also consists of
Riemannian manifolds M and N , but in addition to above one assumes
that M carries a fixed spin structure. A fermionic energy functional can
now be defined on pairs (f,Φ), where f is again a map M → N and Φ is a
spinor on M twisted by f∗TN . In the literature a linear and a non-linear
versions of this functional are considered, see Subsection 3.2 for details. In
our article and in most of the mathematical literature one considers the
fermionic energy functional

L(f,Φ) =
1

2

∫
M

(
|df |2 + 〈Φ, D/ fΦ〉

)
dvM ,

where D/ f is the Dirac operator acting on spinors twisted by f∗TN . Sta-
tionary points (f0,Φ0) of this fermionic energy functional are called Di-

rac-harmonic maps. They are characterized by the equations D/ f0Φ0 = 0

and trg(∇df0) =
VΦ0

2 , see Proposition 5.1 below. They are interpreted as
solutions of the super-symmetric sigma-model. Regularity and existence
questions for Dirac-harmonic maps have been the subject of many articles
recently where important results have been obtained, see Section 2.

1.2. Trivial Dirac-harmonic maps. A harmonic map together with a
spinor that vanishes everywhere provides a Dirac-harmonic map. In the
present article, such Dirac-harmonic maps are called spinor-trivial Dirac-
harmonic maps.
Another class of obvious solutions consists of constant maps f together with
a spinor Φ lying in the kernel of the (untwisted) Dirac operator, see Subsec-
tion 2.3. Such Dirac-harmonic maps will be called map-trivial. However, the
dimension of the kernel depends in a subtle way on the conformal structure
of M . For the sake of clarity we give a small review on known results about
the kernel in Subsection 2.3.

1.3. Main result.

Definition 1.1. A Dirac-harmonic map will be called uncoupled if f is
harmonic, otherwise it is called coupled.

Most of the existence results for Dirac-harmonic maps in the literature actu-
ally yield uncoupled Dirac-harmonic maps. Coupled Dirac-harmonic maps
are discussed in [21, Thm. 3], see Subsection 2.2 for details.
Our result provides criteria for the existence of sufficiently many non-trivial,
uncoupled Dirac-harmonic maps.

Theorem 1.2. For M and N as above consider a homotopy class [f ] of
maps f : Mm → Nn such that the KOm(pt)-valued index α(M, [f ]) is non-
trivial. Assume that f0 ∈ [f ] is a harmonic map. Then there is a real
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vector space V of real dimension am such that all (f0,Φ), Φ ∈ V , are Dirac-
harmonic maps, where

am :=


2 if m ≡ 0 (8)
2 if m ≡ 1 (8)
4 if m ≡ 2 (8)
4 if m ≡ 4 (8).

This theorem is an immediate consequence of Theorem 9.1. It is mainly
interesting in dimensions 1 and 2 modulo 8. In dimensions divisible by 4
the statement directly follows from the Atiyah-Singer-index theorem and
the grading techniques of Sections 6 and 7. In dimension 1 modulo 8, these
grading techniques would also yield a similar result, but the space of Dirac-
harmonic maps obtained this way would have only real dimension 1 instead
of 2.
In order to derive such results we have structured the article as follows.
We start by giving an overview about known results in Section 2 in order
to compare them to our results. It is logically independent from the rest.
Having introduced the notations and the fermionic energy in Section 3, we
recall some well-known facts about the index of twisted Dirac operators in
Section 4 and the variational formula in Section 5. This immediately leads to
the first existence result using grading techniques (Section 6) and the result
in dimensions m divisible by 4 (Section 7). In order to get better results in
dimensions 8k+1 and 8k+2 we study the “minimal” and “non-minimal case”
in Sections 8 and 9. Finally, we discuss in Section 10 numerous examples to
which the above theorem applies.

2. Previously known results

To compare our results with the existing literature we briefly recall several
known facts about Dirac-harmonic maps.
Results about regularity, investigations about the necessity for the mapping
component f to be harmonic, removal of singularity theorems and blow-up
analysis of Dirac-harmonic maps are developed in [9, 8, 38, 33, 39, 40]. We
do not give details, as these issues are far from our topic.
We now summarize existence results for Dirac-harmonic maps. Not many
concrete examples are known. Apart from the trivial examples in subsec-
tions 1.2 and 2.3, almost all examples occur in dimension m = 2 and can
be divided into uncoupled and coupled solutions. Before we describe them,
recall first that, in dimension m = 2, the existence of a Dirac-harmonic
map only depends on the conformal class of the metric chosen on M : a pair
(f0,Φ0) is Dirac-harmonic on (M2, g) if and only if (f0, e

−u
2 Φ0) is Dirac-

harmonic on (M2, e2ug), whatever u ∈ C∞(M,R) is. From the point of
view of string theory, the case m = 2 is of central importance as it describes
the evolution of strings in space-times.

2.1. Existence of uncoupled Dirac-harmonic maps. The first exis-
tence result, which appears in [9, Prop. 2.2] for M = N = S2 and then
in [21, Thm. 2] for general surfaces M , is based on an explicit construction
involving a harmonic map and so-called twistor-spinors on the source mani-
fold. Twistor-spinors are sections of the spinor bundle ΣM of M lying in the
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kernel of the Penrose operator P : C∞(M,ΣM) −→ C∞(M,T ∗M ⊗ ΣM),
PXϕ := ∇Xϕ + 1

mX · D/ϕ (here D/ denotes the untwisted Dirac operator
on M). The construction goes as follows. Let M be any m-dimensional
(non necessarily compact) spin manifold and f : M −→ N be a smooth
map. For an arbitrary ϕ ∈ C∞(M,ΣM) consider the smooth section
Φ :=

∑m
j=1 ej ·ϕ⊗df(ej) of ΣM⊗f∗TN , where (ej)1≤j≤m is a local orthonor-

mal basis of TM . Note that this (pointwise) definition does not depend on
the choice of the local orthonormal basis (ej)1≤j≤m and that the vanishing
of Φ is equivalent to that of ϕ as soon as f is an immersion. Then a short
computation shows that

D/ fΦ = −2
m∑
j=1

Pejϕ⊗ df(ej) +
2−m
m

m∑
j=1

ej ·D/ϕ⊗ df(ej)− ϕ⊗ trg(∇df).

Therefore, if ϕ is a twistor-spinor, m = 2 and f is harmonic, then D/ fΦ = 0.
Moreover, if m = 2, then one calculates that the vector field VΦ defined
in Proposition 5.1 vanishes. Therefore, (f,Φ) is a Dirac-harmonic map as
soon as f is harmonic and the spinor ϕ involved in the definition of Φ is a
twistor-spinor. This construction has the obvious drawback that the only
closed surfaces admitting non-zero twistor-spinors are the 2-torus T2 with its
non-bounding spin structure and the 2-sphere S2. In particular no example
on a hyperbolic surface can be given using this approach. However, let us
mention that all Dirac-harmonic maps from S2 to S2 are of that form [37,
Thm. 1.2]. Vanishing results in case the spinor part Φ has the form above
are considered in [26].

2.2. Existence of coupled Dirac-harmonic maps. Up to the knowled-
ge of the authors, only two examples of coupled Dirac-harmonic maps are
known. Both are constructed explicitly considering particular isometric but
non-minimal immersions from special non-compact source manifolds into
the hyperbolic space. The first one deals with an explicit non-minimal
isoparametric immersion from a hyperbolic surface of revolution into the
3-dimensional hyperbolic space [21, Thm. 3].
The second one is provided by the totally umbilical (but non-totally ge-
odesic) embedding of hyperbolic hyperplanes of sectional curvature − 4

m+2

into the m+ 1(≥ 4)-dimensional hyperbolic space of sectional curvature −1.
This example can be handled with the twistor-spinor-ansatz of [21] and is
carried out in [3].

2.3. More on trivial Dirac-harmonic maps. In this subsection we will
explain a product construction for producing examples of Dirac-harmonic
maps, and then we will summarize the knowledge about map-trivial ones.
The main objective of the article is to derive existence of Dirac-harmonic
maps which do not fall in any of these trivial categories: spinor-trivial one,
map-trivial ones, products of them.
To understand the product construction, assume that f1 : M → N1 and
f2 : M → N2 are smooth maps, so that they are the components of the
map (f1, f2) : M → N1 ×N2. Similarly, let Φj ∈ Γ(ΣM ⊗ f∗j TNj), j = 1, 2,

and let (Φ1,Φ2) ∈ Γ(ΣM ⊗ (f∗1TN1 ⊕ f∗2TN2) denote their sum. Let L
(resp. Li) be the fermionic energy functional for N = N1 × N2 (resp. N =
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Ni). Then L((f1, f2), (Φ1,Φ2)) = L1(f1,Φ1) + L2(f2,Φ2). Thus, the map
((f1, f2), (Φ1,Φ2)) is Dirac-harmonic if and only if both (f1,Φ1) and (f2,Φ2)
are Dirac-harmonic.
So we obtain new examples of Dirac-harmonic maps by taking products of
map-trivial Dirac harmonic maps with spinor-trivial maps.
The pair (f,Φ) is a map-trivial Dirac-harmonic map if and only if the fol-
lowing holds:

(1) f is constant, say f ≡ x ∈ N ,
(2) Φ ∈ Γ(ΣM⊗TxN) ∼= Γ(ΣM)⊗Rn, n = dimN , is a harmonic spinor,

i.e. D/ fΦ = 0 and D/ f = D/ ⊗ idRn where D/ : Γ(ΣM) → Γ(ΣM) is
the untwisted Dirac operator.

Thus, to determine the map-trivial Dirac-harmonic maps, one has to de-
termine the kernel of the untwisted Dirac operator. The dimension of the
kernel is invariant under conformal change of the metric, but it depends on
the conformal class. Important progress was obtained in particular in [19],
[4], [5] and [6]. The KOm(pt)-valued index obviously gives a lower bound
on the dimension of the kernel. We say, that a Riemannian metric g is
D/ -minimal if this lower bound is attained.
At first one knows that generic metrics are D/ -minimal.

Theorem 2.1 ([2]). Let M be a connected compact spin manifold. Then
the set of D/ -minimal Riemannian metrics is open and dense in the set of
all Riemannian metrics in the Ck-topology for any k ∈ {1, 2, 3, . . .} ∪ {∞}.

The theorem was already proved in [6] for simply connected manifolds of
dimension at least 5. There is also a stronger version of the theorem in
[1] which states that any metric can be perturbed in an arbitrarily small
neighborhood to a D/ -minimal one.
In the case m = 2 the complex dimension of the kernel of D/ is at most g+ 1
where g is the genus of the surface M [19, Prop. 2.3]. This upper bound
determines the dimension of the kernel of D/ in the case g ≤ 2, α(M) = 0
and in the case g ≤ 4, α(M) = 1. The dimension of the kernel can also be
explicitly determined for hyperelliptic surfaces [7]. In the same article the
dimension of the kernel is calculated for special non-hyperelliptic surfaces of
genus 4 and 6. However, for general surfaces of sufficiently large genus, the
dimension of the kernel is unknown.
In contrast to m = 2, it is conjectured that for m ≥ 3 there is no topological
quantity that yields an upper bound on dim kerD/ .

Conjecture 2.2. [4, p. 941] On any non-empty compact spin manifold of
dimension m ≥ 3, there is a sequence of Riemannian metrics gi with

lim
i→∞

dim kerD/ gi =∞.

The conjecture is known only in few cases as e.g. the 3-sphere S3 where
Hitchin [19] has shown that a sequence of Berger metrics provides such a
sequence of metrics.
In particular, the conjecture would include that any manifold with m ≥ 3
carries a non-D/ -minimal metric. The latter statement is partially known
to be true. It was shown in [19] for m ≡ 7, 0, 1 (8) and in [4] for m ≡
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3, 7 (8) that any compact m-dimensional spin manifold carries a metric with
kerD/ 6= 0. A similar statement is known for all spheres of dimension m ≥ 4
[31] and [12].
However it is still unknown whether an arbitrary compact spin manifold of
dimension m ≡ 2, 4, 5, 6 (8) admits a non-D/ -minimal metric.

3. Notation and Preliminaries

3.1. Notation and Conventions. The Riemannian manifolds M and N
are always assumed to be compact without boundary, m = dimM , n =
dimN . We assume that M is spin and — unless stated otherwise — we
always assume that one of the spin structures on M is fixed. The (untwisted)
spinor bundle on M is denoted by ΣM , the fiber over x ∈M is denoted by
ΣxM . In this article we consider complex spinors, i. e. , ΣM is a complex
vector bundle of rank 2[m

2
]; similar statements also hold for real spinors. The

untwisted spinor bundle carries a Hermitian metric, a metric connection and
a Clifford multiplication. For an introduction to these structures we refer to
textbooks on spin geometry such as [23, 16, 18]. These structures allow to
define an (untwisted) Dirac operator D/ : C∞(M,ΣM) −→ C∞(M,ΣM).
If E is a real vector bundle with given metric and metric connection, we
define the twisted spinor bundle as ΣM ⊗E, the tensor bundle being taken
over R. The twisted spinor bundle carries similar structures as the untwisted
one. Sections of ΣM⊗E will be called spinors or spinors twisted by E. One
uses the structures on ΣM ⊗ E to define the twisted Dirac operator

D/E : C∞(M,ΣM ⊗ E) −→ C∞(M,ΣM ⊗ E).

It is a first order elliptic and selfadjoint differential operator. Its spectrum
is thus discrete, real and of finite multiplicity.
In this article E will often be obtained as E = f∗TN where f : M → N
is smooth. Here E is equipped with the pull-back of the metric and the

Levi-Civita connection on TN . In this case we simply write D/ f for D/ f
∗TN .

Our convention for curvature tensors is RNX,Y = [∇NX ,∇NY ] −∇N[X,Y ], and R

is then considered as an element in Hom(TN ⊗ TN ⊗ TN, TN) through
R(X ⊗ Y ⊗ Z) = R(X,Y )Z.
The sphere Sn with its standard metric (of constant sectional curvature 1)
will be denoted as Sn.
The complex projective space CPn will be always equipped with its Fubini-
Study metric of holomorphic sectional curvature 4. The tautological bundle
on CPn is denoted by γn.

3.2. Linear and non-linear energy functional. As mentioned in the
introduction, the fermionic energy functional is discussed in a linear and
non-linear version in the literature. We will give some details now. For a
concise introduction see [15] or [13, Chapter 3].
The most appropriate functional from the physical point of view would be
Grassmann-algebra-valued. However, as this formalism is a bit overloaded
for analytical purposes, one usually works with simplified models. One often
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considers the following fermionic energy functional

Lc(f,Φ) :=
1

2

∫
M

(|df |2 + 〈Φ, D/ fΦ〉+
1

6
〈Φ,R(Φ,Φ)Φ〉) dvM .

Here R is a section of HomC((ΣM ⊗R TN) ⊗C (ΣM ⊗R TN) ⊗C (ΣM ⊗R
TN),ΣM ⊗R TN) obtained by tensoring the Riemann curvature tensor R ∈
HomR(TN⊗RTN⊗RTN, TN) with the spinorial contraction map id⊗〈 . 〉 ∈
HomC(ΣM ⊗C ΣM ⊗C ΣM,ΣM), id ⊗ 〈 . 〉(ϕ1, ϕ2, ϕ3) = 〈ϕ2, ϕ3〉ϕ1. This
functional is often called the fermionic energy functional with curvature
term, and stationary points of this functional are called Dirac-harmonic
maps with curvature term. However this functional makes analytical conside-
rations involved, and thus only few analytical articles include this curvature
term, e. g. [11] and [10]. In [20] interesting techniques are developed which
might turn helpful to find solutions of the non-linear equation.
As the curvature term is of fourth order in Φ whereas the dominating term
is quadratic on Φ, it seems acceptable from the view point of physical appli-
cations to neglect the curvature term. The fermionic energy functional thus
obtained

L(f,Φ) :=
1

2

∫
M

(|df |2 + 〈Φ, D/ fΦ〉) dvM ∈ R,

is analytically much easier to study. A pair (f0,Φ0) is a stationary point of

L if and only if it satisfies D/ f0Φ0 = 0 and trg(∇df0) =
VΦ0

2 , see Proposition
5.1 below. Stationary points of this functional are called Dirac-harmonic
maps. Starting with [9], this functional has been intensively studied in the
literature, see Subsection 2.
The method developed in the present article applies to this linear version.

4. Index theory of Dirac-harmonic maps

Let M be a closed m-dimensional Riemannian spin manifold with spin
structure denoted by χ. Let E −→ M be a Riemannian (real) vector
bundle with metric connection. Then one can associate to the twisted
Dirac operator D/E : C∞(M,ΣM ⊗ E) −→ C∞(M,ΣM ⊗ E) an index
α(M,χ,E) ∈ KOm(pt) (see e. g. [23, p.151]). Using the isomorphism [23,
p.141]

KOm(pt) ∼=

 Z if m ≡ 0 (4)
Z2 if m ≡ 1, 2 (8)
0 otherwise,

(1)

the index α(M,χ,E) will be identified either with an integer or an element
in the group Z2 of integers modulo 2. We also say that α(M,χ,E) is the
α-genus of E −→M .
The α-genus can be easily determined out of kerD/E using the following
formula [23, Thm. II.7.13]:

α(M,χ,E) =


{ch(E) · Â(TM)}[M ] if m ≡ 0 (8).[
dimC(ker(D/E))

]
Z2

if m ≡ 1 (8)

[dimC(ker(D/E))
2 ]Z2 if m ≡ 2 (8)

1
2{ch(E) · Â(TM)}[M ] if m ≡ 4 (8)
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As usual ch(E) is to be understood as the Chern character of E ⊗R C. In
dimensions 1 and 2 modulo 8 the α-genus depends on the spin structure χ
on M , however we often simply write α(M,E), when χ is clear from the
context. We will assume from now on and until the end of Section 9 that M
comes with a fixed orientation and spin structure, so we omit the notation
χ in those sections.
The number α(M,E) is a spin-bordism-invariant, where a spin-bordism for
manifold with vector bundles means that the restriction of a vector bundle
to the boundary of the spin manifold must coincide with the vector bundle
given on the boundary: namely, [23, Thm. II.7.14] implies that α defines

a map ΩSpin
∗ (BO) −→ KO∗(pt). Note in particular that α(M,E) does de-

pend neither on the metric nor on the connection chosen on E −→ M . In
case that E is the trivial real line bundle R := R ×M −→ M , the number
α(M,E) =: α(M) is the classical α-genus of M .

Definition 4.1. Let M be a closed m-dimensional Riemannian spin mani-
fold and f : M → N be a smooth map into an n-dimensional Riemannian
manifold. The α-genus of f is α(M,f) := α(M,f∗TN).

The spin-bordism-invariance of the α-genus has an important consequence
for α(M,f). We first make a

Definition 4.2. With the notations of Definition 4.1, two maps f1 : M1 →
N and f2 : M2 → N are spin-bordant in N , if there is a spin manifold W of
dimensionm+1 together with a map F : W → N such that ∂W = −M1qM2

(in the sense of manifolds with spin structure) and such that F|Mj
= fj for

both j = 1, 2.

Obviously, given any smooth spin-bordant maps fj : Mj −→ N , j = 1, 2,
the pull-back bundles f∗j (TN) −→ Mj are spin-bordant as vector bundles.
Therefore, we obtain the

Proposition 4.3. Assume that f1 : M1 → N and f2 : M2 → N are spin-
bordant in N . Then α(M1, f1) = α(M2, f2).

Since a homotopy between maps fj : M −→ N defines a spin-bordism
between them, we deduce the

Corollary 4.4. Assume that f1 : M → N and f2 : M → N are homotopic
maps. Then α(M,f1) = α(M,f2).

Because of this homotopy invariance we also write α(M, [f ]) for α(M,f),
where [f ] is the homotopy class of f .

5. Variational formulas for the fermionic energy functional

In the following, we denote by h the Riemannian metric on N . If f : M → N
is a smooth map, then M carries the twisted spinor bundle ΣM ⊗ f∗TN .
For given x ∈ M and vectors X ∈ TxM and Y ∈ Tf(x)N , we denote by

X · ⊗RNY,df(X) the linear endomorphism obtained by tensorizing the Clif-

ford multiplication by X (acting on ΣxM) with the curvature RNY,df(X) ∈
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End(Tf(x)N). It is the real tensor product of a skew-hermitian endomor-
phism with a skew-symmetric endomorphism, and thus a hermitian endo-
morphism. In particular, the expression 〈X · ⊗RNY,df(X)Φ0,Φ0〉 is real. It is

easy to notice that, if a local orthonormal basis (ej)1≤j≤m of TM is cho-
sen, then the pointwise (hermitian) endomorphism

∑m
j=1 ej · ⊗RNY,df0(ej) of

ΣM ⊗ f∗TN does not depend on the choice of the basis (ej)1≤j≤m and
hence defines a global section of End(ΣM ⊗ f∗TN). We recall the following
formulas for the first variation of L [9, Prop. 2.1].

Proposition 5.1. For (f0,Φ0) ∈ C∞(M,N) × C∞(M,ΣM ⊗ f∗0TN) and
some ε > 0 let (ft,Φt)t∈]−ε,ε[ be a variation of (f0,Φ0) which is differentiable

at t = 0. Denote by D/ t := D/ ft for all t ∈]− ε, ε[. Then

d

dt
〈D/ tΦt,Φt〉|t=0

= h(VΦ0 ,
∂f

∂t
(0)) + 〈D/ 0

∂Φ

∂t
(0),Φ0〉+ 〈D/ 0Φ0,

∂Φ

∂t
(0)〉 (2)

where the section VΦ0 of f∗0TN is defined by the pointwise relation h(VΦ0 , Y ) =∑m
j=1〈ej · ⊗RNY,df0(ej)Φ0,Φ0〉 for all Y ∈ TN and every choice of local or-

thonormal frame (ej)1≤j≤m of TM . In particular,

d

dt
L(ft,Φt)|t=0

=

∫
M
<e(〈D/ 0Φ0,

∂Φ

∂t
(0)〉)−h

(
trg(∇df0)− VΦ0

2
,
∂f

∂t
(0)

)
dvM .

The differentiability of t 7→ Φt at t = 0 is to be understood as follows. De-
note by f :]− ε, ε[×M −→ N , (t, x) 7→ f(t, x) := ft(x) the variation above.
The metric and the Levi-Civita connection on TN induce a metric and a
metric connection on the pull-back bundle f∗TN −→]− ε, ε[×M . For every
t ∈] − ε, ε[ let βt : C∞(M,ΣM ⊗ f∗0TN) −→ C∞(M,ΣM ⊗ f∗t TN) be the
unitary and parallel isomorphism induced by the parallel transport along the
curves [0, t]→]− ε, ε[×M , s 7→ (s, x), where x runs in M . Then we require

the map t 7→ Φ̂t := β−1
t ◦ Φt ∈ C∞(M,ΣM ⊗ f∗0TN) to be differentiable

at t = 0 in the following sense: the map ]− ε, ε[−→ C∞(M,ΣM ⊗ f∗0TN),

t 7→ Φ̂t, has a derivative at t = 0 which is at least continuous on M . Here we
consider the topology induced by the H1,2-norm on C∞(M,ΣM ⊗ f∗0TN).

In that case, we denote by ∂Φ
∂t (0) := ∂Φ̂

∂t (0) ∈ C1(M,ΣM ⊗ f∗0TN). Note

that, if D̂/ t := β−1
t ◦D/ t◦βt : C∞(M,ΣM⊗f∗0TN) −→ C∞(M,ΣM⊗f∗0TN),

then 〈D̂/ tΦ̂t, Φ̂t〉 = 〈D/ tΦt,Φt〉 since βt is unitary.

As a straightforward consequence of Proposition 5.1, we obtain:

Corollary 5.2. Let f0 ∈ C∞(M,N) be a harmonic map and Φ0 ∈ ker(D/ f0).
Assume the existence, for every smooth variation (ft)t∈]−ε,ε[ of f0, of a
variation (Φt)t∈]−ε,ε[ of Φ0 which is differentiable at t = 0 and such that
d
dt

(
D/ ftΦt,Φt

)
L2
|t=0

= 0. Then the pair (f0,Φ0) is an uncoupled Dirac-

harmonic map.

Proof. Only VΦ0 = 0 has to be proved, which follows from integrating (2)

and using the self-adjointness of D/ f0 . �

Corollary 5.2 is the corner stone for the proof of our main result, because
it implies the following: to obtain the pair (f0,Φ0) (with f0 harmonic) as a
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Dirac-harmonic map, it suffices to construct, for any smooth variation (ft)t
of f0, a sufficiently smooth one-parameter family of twisted spinors (Φt)t

with
(
D/ ftΦt,Φt

)
L2

= 0 for all sufficiently small t. And this can be achieved

either with considerations about the Z2-grading of the twisted spinor bundle
(see Corollary 6.1) or with a non-trivial α-genus (see Proposition 8.2).

6. The graded case

Let f ∈ C∞(M,N) be any map. In this section we consider the situation
where the map bundle ΣM admits an orthogonal and parallel Z2-grading
G ∈ End(ΣM), G2 = id, anti-commuting with the Clifford-multiplication
by tangent vectors. Such a grading naturally exists in even dimensions and
in dimension m ≡ 1 (8) and induces a grading of ΣM ⊗ f∗TN .
In even dimension m, it is given by the Clifford action of the so-called
complex volume form of TM , namely G(ϕ) = i

m
2 e1 ·. . .·em ·ϕ for a positively

oriented orthonormal local frame. One easily checks that the definition of
G does not depend on the choice of the local frame, and thus G is globally
defined. The spinor bundle then decomposes into two complex subbundles
Σ+M and Σ−M associated to the +1 and −1-eigenvalue of G respectively.
As G is Hermitian and parallel, the decomposition ΣM = Σ+M ⊕ Σ−M is
orthogonal in the complex sense and parallel.
In dimension m ≡ 1 (8), the grading G is provided by a real structure on
the complex spinor representation, see e. g. [16, Sec. 1.7]. This map is com-
plex anti-linear, involutive and anticommutes with the Clifford action by
tangent vectors. It is still self-adjoint in the real sense, i. e. <e(〈G(ϕ), ψ〉) =
<e(〈ϕ,G(ψ)〉) for all spinors ϕ,ψ. Thus the real structure induces a real-
orthogonal and parallel decomposition ΣM = Σ+M ⊕ Σ−M into real sub-
bundles associated to the eigenvalues ±1. We also have ΣM = Σ+M ⊗R C.

Since f∗TN is considered as a real vector bundle, we obtain a Z2-grading
G⊗ id on the tensor product ΣM ⊗ f∗TN anticommuting with the Clifford
multiplication by tangent vectors. In particular G⊗ id anti-commutes with

D/ f which hence splits into D/ f+ +D/ f−, where

D/ f± : C∞(M,Σ±M ⊗ f∗TN) −→ C∞(M,Σ∓M ⊗ f∗TN).

From the orthogonality of the splitting, we see that <e(〈D/ fΦ+,Φ+〉) =

<e(〈D/ fΦ−,Φ−〉) = 0 for all Φ± ∈ C∞(M,Σ±M ⊗ f∗TN). On the other

hand, (D/ fΦ±,Φ±)L2 is real as D/ f is self-adjoint. Thus (D/ fΦ+,Φ+)L2 =

(D/ fΦ−,Φ−)L2 = 0. Therefore, Corollary 5.2 implies:

Corollary 6.1. Assume m is even or m ≡ 1 (8). Let f0 ∈ C∞(Mm, N) be

a harmonic map. Split Φ0 ∈ ker(D/ f0) into Φ0 = Φ+
0 + Φ−0 . Then the pairs

(f0,Φ
+
0 ) and (f0,Φ

−
0 ) are Dirac-harmonic.

Remark 6.2. An alternative proof of Corollary 6.1 is obtained by showing
VG⊗id(Φ0) = −VΦ0 for all spinors ϕ0. If Φ0 = ±G ⊗ id(Φ0), then using
V−Φ0 = VΦ0 , we obtain VΦ0 = 0 and hence (f0,Φ0) is Dirac-harmonic.
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Corollary 6.1 is of central importance, since it will shows the existence of
non-trivial Dirac-harmonic maps in the case where the underlying map f0

is not perturbation-minimal, see Section 9.

7. The case m ∈ 4N

As noticed above, if we assume m to be even, the Dirac operator Df is odd
with respect to the above grading. Restriction to sections of Σ+M thus
yields an operator

D/ f+ : C∞(M,Σ+M)→ C∞(M,Σ−M).

It is a Fredholm operator and the Atiyah-Singer index theorem yields its
(complex) index:

ind(D/ f+) = {ch(f∗TN) · Â(TM)}[M ].

This implies

ind(D/ f+) = dimC ker(D/ f+)−dimC ker(D/ f−) =

 α(M,f) if m ≡ 0 (8)
0 if m ≡ 2, 6 (8)
2α(M,f) if m ≡ 4 (8)

This follows from the definition of α if m is a multiple of 4 and from the fact
that the real (case m ≡ 6 (8)) or quaternionic (case m ≡ 2 (8)) structure

on ΣM exchanges kerD/ f+ and kerD/ f− if m ≡ 2, 6 (8). Alternatively, the
statement in the case m ≡ 6 (8) can be deduced from the index theorem.
We now restrict to the case that m is a multiple of 4. Corollary 6.1 yields
the following

Corollary 7.1. Let m ∈ 4N. Assume f0 ∈ C∞(Mm, N) to be a harmonic

map with ind(D/ f0
+ ) 6= 0. Set ε := sign(ind(D/ f0

+ )) ∈ {+,−}. Then

{(f0,Φ
ε
0) |Φε

0 ∈ ker(D/ f0
ε )}

is a linear space of Dirac-harmonic maps of complex dimension at least

|ind(D/ f0
+ )|. This complex dimension is even for m ≡ 4 (8).

8. Minimality

The present and the following sections provide results for any dimension m,
but are mainly interesting if m ≡ 1, 2 (8).

Definition 8.1. A smooth map f0 : M −→ N is called perturbation-

minimal if and only if dim(ker(D/ f
∗TN )) ≥ dim(ker(D/ f

∗
0 TN )) for all f in

a C∞-neighbourhood of f0.

Obviously, any homotopy class of maps from M to N contains perturba-
tion-minimal maps.

Proposition 8.2. Let f0 : M → N be perturbation-minimal and harmonic.

Then for any Φ0 ∈ ker(D/ f0), the pair (f0,Φ0) is an uncoupled Dirac-har-
monic map.
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Proof. Since f0 is harmonic and D/ f0Φ0 = 0, it suffices by Corollary 5.2
to show that, for every smooth variation (ft)t∈]−ε,ε[ of f0, there exists a

variation (Φt)t of Φ0, differentiable at t = 0, such that D/ ftΦt = 0 for all t
close enough to 0. To that extent we fix such a variation (ft)t∈]−ε,ε[ of f0 and

consider, for each t ∈ ]−ε, ε[, the L2-orthogonal projection πt : L2(M,ΣM⊗
f∗0 (TN)) −→ ker(D̂/ t) ⊂ C∞(M,ΣM ⊗ f∗0TN), where D̂/ t := β−1

t ◦ D/ t ◦ βt
and D/ t := D/ ft , see Proposition 5.1.
Claim A: For every Ψ0 ∈ ker(D/ 0) one has ‖πt(Ψ0)−Ψ0‖L2 = O(t) as t→ 0.

Proof of Claim A. By assumption, one has dim(ker(D̂/ t)) ≥ dim(ker(D̂/ 0)) =
dim(ker(D/ 0)) for all t small enough. Since the dimension of the kernel is
always upper semi-continuous in the parameter, this already implies the

equality dim(ker(D̂/ t)) = dim(ker(D/ 0)) =: k for all t in a sufficiently small

neighbourhood of 0. Let now {λj(D̂/ t)}∞j=1 denote the spectrum of D̂/ t, where

0 ≤ |λ1| ≤ . . . ≤ |λj | ≤ |λj+1| ≤ . . .. Since the map t 7→ ft is smooth, the

spectrum of D̂/ t depends continuously on t (each eigenvalue is continuous in t)

[34, Sec. 9.3], in particular t 7→ λk+1(D̂/ t) is continuous. But the condition

dim(ker(D̂/ t)) = k forces λk+1(D̂/ t) to be positive for all small enough t,

therefore there exists λ0 > 0 such that |λk+1(D̂/ t)| ≥ λ0 for all small t. The

min-max principle then implies that, for every Ψ ∈ ker(D̂/ t)
⊥ ∩H1,2(M),

‖D̂/ tΨ‖L2 ≥ |λk+1(D̂/ t)| · ‖Ψ‖L2 ≥ λ0 · ‖Ψ‖L2 .

Putting Ψ = πt(Ψ0) − Ψ0 ∈ ker(πt) ∩ H1,2(M) = ker(D̂/ t)
⊥ ∩ H1,2(M), we

obtain

λ0 · ‖πt(Ψ0)−Ψ0‖L2 ≤ ‖D̂/ t(πt(Ψ0)−Ψ0)‖L2

= ‖(D̂/ 0 − D̂/ t)(Ψ0)‖L2

≤ ‖D̂/ 0 − D̂/ t‖op · ‖Ψ0‖H1,2 ,

where ‖ · ‖op denotes the operator norm for bounded linear operators from

H1,2(M) into L2(M). Since by construction all operators D̂/ t have the same
principal symbol and depend smoothly on the parameter t, it is easy to see

that ‖D̂/ 0 − D̂/ t‖op = O(t) and hence ‖πt(Ψ0)−Ψ0‖L2 = O(t) as t goes to 0,
which was to be shown. X

Claim B: For every Ψ0 ∈ ker(D/ 0), the limit lim
t→0

πt(Ψ0)−Ψ0

t exists in H1,2

and is actually smooth on M .
Proof of Claim B. For obvious reasons (see (2) above), we use the short

notation d
dtD̂/ t|t=0

:=
∑m

j=1 ej · ⊗RN∂f
∂t

(0),df0(ej)
∈ C∞(M,End(ΣM ⊗ f∗0TN)).

We first show that d
dtD̂/ t|t=0

Ψ0 ∈ ker(D/ 0)⊥ ∩ H1,2(M) (as in Claim A, the

orthogonal complement is considered in L2). Let X0 ∈ ker(D/ 0), then for

every small t 6= 0 one has ( ddtD̂/ t|t=0
Ψ0, X0)L2 =lim

t→0
(1
t D̂/ tΨ0, X0)L2 , where the

convergence of the zero-order-operator
D/ t−D/ 0

t to d
dtD̂/ t|t=0

is to be understood
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in the C0-sense (and not in the operator norm ‖ · ‖op above). Now

(
1

t
D̂/ tΨ0, X0)L2 = (

1

t
·Ψ0, D̂/ tX0)L2

= (Ψ0 − πt(Ψ0),
1

t
D̂/ tX0)L2

because of D̂/ t(πt(Ψ0)) = 0. But 1
t D̂/ tX0 −→

t→0

d
dtD̂/ t|t=0

X0 (which is well-

defined and lies in C∞(M,ΣM ⊗ f∗0TN)) and Ψ0 − πt(Ψ0) −→
t→0

0 in L2 by

Claim A, therefore (1
t D̂/ tΨ0, X0)L2 −→

t→0
0, and this implies

(
d

dt
D̂/ t|t=0

Ψ0, X0)L2 = 0.

Since this holds for every X0 ∈ ker(D/ 0), we obtain d
dtD̂/ t|t=0

Ψ0 ∈ ker(D/ 0)⊥.

Elliptic regularity yields the smoothness of Ψ0 and thus d
dtD̂/ t|t=0

Ψ0 is smooth
as well.
Hence there exists a unique Θ0 ∈ ker(D/ 0)⊥ such that D/ 0Θ0 = − d

dtD̂/ t|t=0
Ψ0.

Note that, because of the ellipticity of D/ 0, the section Θ0 has to be smooth.

We show that lim
t→0

πt(Ψ0)−Ψ0

t = Θ0 in H1,2. By Claim A, we have, for every

t 6= 0,

D/ 0(
πt(Ψ0)−Ψ0

t
−Θ0) =

(D/ 0 −D/ t)
t

(πt(Ψ0))−D/ 0Θ0

L2

−→
t→0

− d

dt
D̂/ t|t=0

Ψ0 +
d

dt
D̂/ t|t=0

Ψ0,

that is, ‖D/ 0(πt(Ψ0)−Ψ0

t − Θ0)‖L2 −→
t→0

0. Since D/ 0 is elliptic, it remains to

show that ‖πt(Ψ0)−Ψ0

t − Θ0‖L2 −→
t→0

0. Pick any X0 ∈ ker(D/ 0), then for any

t 6= 0, (πt(Ψ0)−Ψ0

t
−Θ0, X0

)
L2 =

(πt(Ψ0)−Ψ0

t
,X0

)
L2

=
(πt(Ψ0)−Ψ0

t
,X0 − πt(X0)

)
L2 .

Since by Claim A both πt(Ψ0)−Ψ0

t remains L2-bounded near t = 0 and X0 −
πt(X0) −→

t→0
0 in L2, we deduce that

(πt(Ψ0)−Ψ0

t −Θ0, X0

)
L2 −→

t→0
0. This holds

for any X0 in the finite-dimensional space ker(D/ 0), therefore ‖πt(Ψ0)−Ψ0

t −
Θ0‖L2 −→

t→0
0, which yields the result. X

It follows from Claim B that, setting Φ̂t := πt(Φ0), then Φ̂t ∈ C∞(M,ΣM ⊗
f∗0TN) is a solution of D̂/ tΦ̂t = 0 for every t with Φ̂t|t=0

= Φ0 and the

map ] − ε, ε[−→ H1,2(M), t 7→ Φ̂t is differentiable at t = 0 with ∂Φ̂
∂t (0) ∈

C∞(M,ΣM⊗f∗0TN). Therefore, Φt := βt◦Φ̂t fulfills the conditions required
above and the proposition is proved. �



14 BERND AMMANN AND NICOLAS GINOUX

9. Non-minimality

Assume that a harmonic map f0 : M → N is given with α(M,f0) 6= 0,

thus in particular ker(D/ f0) 6= 0. In the previous section we have seen that,

if f0 is perturbation-minimal, then for any Φ ∈ ker(D/ f0) the pair (f0,Φ)
is an uncoupled Dirac-harmonic map. Hence we have obtained a linear

space of uncoupled Dirac-harmonic maps of real dimension 2 dimC ker(D/ f0).
Although we have no proof for the moment, it seems that the perturbation-
minimal case is the generic one.
In this section we study the case where f0 is not perturbation-minimal.
Obviously, the proof of the perturbation-minimal setting cannot be easily
adapted since the dimension of ker(D/ t) does no longer remain constant for
small t. However, using the grading arguments explained in Section 6, we
will obtain a space of uncoupled, nontrivial Dirac-harmonic maps of even
larger dimension. Most of the spaces — but not all — are actually complex
vector spaces. Nevertheless, for homogeneity of presentation we only use
real dimensions in the theorem below.
To that extent we define, for any m ≡ 0, 1, 2, 4 (8), the integers bm and
dm by the following formulas in which the minimum runs over all compact
Riemannian spin manifolds M of dimension m, all spin structures on M , all
compact Riemannian manifolds N and all smooth maps f : M → N with
non-trivial α-index.

bm := min
{

dimR(ker(D/ f )) | f ∈ C∞(Mm, N), α(M,f) 6= 0
}

and

dm := min
{

max
ε∈{±}

{
dimR(ker(D/ fε ))

}
| f ∈ C∞(Mm, N), α(M,f) 6= 0

and f non-perturbation-minimal
}
.

Both bm and dm are positive integers because of the assumption α(M,f) 6= 0
for all admissible M and f (and such exist in each dimension under consid-
eration).
From now on assume f0 ∈ C∞(M,N) to be a harmonic map. By Proposi-
tion 8.2, the number bm is a lower bound for the real dimension of the space
of Φ0’s such that (f0,Φ0) is a Dirac-harmonic map for a given perturbation-
minimal and harmonic map f0 ∈ C∞(Mm, N). In case the given map
f0 ∈ C∞(Mm, N) is harmonic but no more perturbation-minimal, the num-
ber dm is a lower bound for the real dimension of the space of Φ0’s such that
(f0,Φ0) is Dirac-harmonic (Corollary 6.1). The main result of this section
provides a lower bound for dm. For the sake of completeness, we include the
corresponding lower bound for bm.

Theorem 9.1. With the above notations, bm and dm are bounded below by
the following integers:

m mod 8 0 1 2 4

bm ≥ 2 2 4 4
dm ≥ 4 3 6 8

In particular, bm ≥ am and dm ≥ am where again am = 2 for m ≡ 0, 1 (8)
and am = 4 for m ≡ 2, 4 (8).
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Roughly speaking, the theorem says that in the non-perturbation-minimal
case the space of Dirac-harmonic maps we obtain is larger than in the
perturbation-minimal one. Note that Theorem 9.1 implies Theorem 1.2.

Proof. We handle the four cases separately.
• Case m ≡ 0 (8): If α(M,f0) 6= 0, then |α(M,f0)| ≥ 1, thus

|dimC kerD/ f0
+ + dimC kerD/ f0

− | ≥ |ind(D/ f0
+ )| ≥ 1,

which implies bm ≥ 2. On the other hand we have

max
ε∈{±}

(dimC ker(D/ f0
ε )) = min

ε∈{±}
(dimC ker(D/ f0

ε )) + |ind(D/ f0
+ )|

Thus, if f0 is not perturbation-minimal, i. e. if ker(D/ f0
ε )) 6= {0}, then

dm = 2 min
{

max
ε∈{±}

(dimC ker(D/ f0
ε ))
}
≥ 4.

• Case m ≡ 4 (8): If α(M,f0) 6= 0, then |α(M,f0)| ≥ 1 as well. Recall that,
in these dimensions there exists a quaternionic structure on the (twisted)
spinor bundle commuting with both the Z2-grading and the Dirac operator

D/ f0 , see e. g. [16, Sec. 1.7]. This quaternionic structure turns the vector
spaces Σ±M ⊗ f∗0TN into quaternionic spaces. Thus the discussion is ana-
logous to above, but all real dimensions are divisible by 4 instead of 2. We
obtain bm ≥ 4 and dm ≥ 8.
• Case m ≡ 1 (8): If α(M,f0) 6= 0, then α(M,f0) = 1 ∈ Z2, so that

dimC ker(D/ f0) ≥ 1 in case f0 is perturbation-minimal. Hence bm ≥ 2. If f0 is

not perturbation-minimal, then for any ε ∈ {+,−} we have dimR ker(D/ f0
ε ) =

dimC ker(D/ f0) ≥ 3. This shows dm ≥ 3.
• Case m ≡ 2 (8): If α(M,f0) 6= 0, then α(M,f0) = 1 ∈ Z2. Re-
call that, in these dimensions there exists a quaternionic structure on the
(twisted) spinor bundle anti-commuting with the Z2-grading G ⊗ id and

commuting with the Dirac operator D/ f0 , see again e. g. [16, Sec. 1.7]. Thus

ker(D/ f0) is a quaternionic vector spaces and thus dimC ker(D/ f0) ≥ 2 in the
perturbation-minimal case, implying bm ≥ 4. As the quaternionic structure
anti-commutes with G⊗ id, we also have

dimR ker(D/ f0
ε ) = dimC ker(D/ f0)

for ε = + and ε = −. If f0 is not perturbation-minimal, then dimC ker(D/ f0) ≥
6. It follows dm ≥ 6. �

Remark 9.2. For a given Dirac-harmonic map (f0,Φ0) with harmonic map-
ping-component f0, the pair (f0, λΦ0) obviously remains Dirac-harmonic for
every λ ∈ C. In particular the space of Dirac-harmonic maps (f0,Φ0) with
fixed harmonic mapping-component f0 is a complex cone. Therefore, in
dimension m ≡ 1 (8) (which is the only one where the space of Φ0’s ma-
king (f0,Φ0) Dirac-harmonic is a priori only real) and for non-perturbation-
minimal harmonic maps f0, we actually obtain a complex cone of real di-
mension at least 4 of Φ0’s such that (f0,Φ0) is Dirac-harmonic.
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10. Examples of maps with non-trivial index

In this section, we still assume that M is a compact spin manifold but do
not fix the spin structure since e. g. in Corollary 10.3 we want to choose it
such that the index does not vanish. As a consequence the spin structure χ
will no longer be suppressed in α(M,χ,E).

10.1. The case m = 2. In this subsection we assume M to be a closed ori-
entable connected surface. Such a surface always carries a spin structure χ.
In general this spin structure is not unique; the space of all spin structures
(up to isomorphism) is an affine Z2-space, modeled on the Z2-vector space
H1(M,Z2). Thus χ+ α is a spin structure on M for every α ∈ H1(M,Z2).
We first compute the α-genus in terms of simpler bordism invariants of
surfaces which we use to produce new examples of Dirac-harmonic maps.

Proposition 10.1. Let E −→ M be a real vector bundle of rank k over
a closed connected oriented surface M with spin structure χ. Let w1(E) ∈
H1(M,Z2) and w2(E) ∈ H2(M,Z2) be the first and second Stiefel-Whitney
classes of E −→M respectively. Then

α(M,χ,E) = (k + 1) · α(M,χ) + α(M,χ+ w1(E)) + w2(E)[M ]. (3)

Proof. The proof consists of two steps.
Claim 1: The statement holds in case that E −→M is orientable.
Proof of Claim 1. Since any orientable real line bundle is trivial, we may
assume k ≥ 2. First, we show that it suffices to handle the case where
M = CP1. Let indeed D2 ⊂M be any embedded closed 2-disc in M . Then

the loop ∂D2 lies in the commutator subgroup [π1(M\
◦
D 2), π1(M\

◦
D 2)] of

π1(M\
◦
D 2). More precisely, M\

◦
D 2 deformation retracts onto the wedge

sum of 2g circles, where g is the genus of M . Since any orientable real vector
bundle over the circle is trivial, it is also trivial on the wedge sum of circles.

This in turn implies that E|
M\
◦
D2
−→ M\

◦
D 2 is trivial. It follows that M

together with E −→ M can be seen as the connected sum M]CP1, where
the first factor M carries the trivial vector bundle Rk := Rk ×M −→ M
and CP1 carries some vector bundle F −→ CP1 such that E is obtained by
gluing Rk together with F . Here one should pay attention to the fact that,
when performing the connecting sum, the bundles on both factors have
to be trivialized so that their trivializations coincide on ∂D2. Now as in
classical surgery theory (without bundles), any surgery between manifolds
with bundles provides a spin-bordism for vector bundles. The invariance
of α under spin-bordism then gives α(M,χ,E) = α(M,χ,Rk) + α(CP1, F )
(there is only one spin structure on CP1, so we omit the notation χ in
that case). Obviously one has α(M,χ,Rk) = kα(M,χ,R) = kα(M,χ) - in
particular (3) holds for trivial vector bundles (of any rank), since w2(Rk) =
0. Moreover, the Stiefel-Whitney number w2(E)[M ] is also a spin-bordism
invariant, a fact which is analogous to Pontrjagin’s theorem [25, Thm. 4.9
p.52] and which can be elementarily proved in just the same way. Therefore,
w2(E)[M ] = w2(Rk)[M ]+w2(F )[CP1] = w2(F )[CP1]. Hence we are reduced
to showing α(CP1, F ) = w2(F )[CP1], which is exactly (3) for M = CP1

since α(CP1) = 0 (the existence of a metric with positive scalar curvature
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implying the vanishing of the kernel of the untwisted Dirac operator).
Since CP1 is simply-connected, each vector bundle over CP1 is orientable. If
k ≥ 3, then there are only two isomorphism-classes of k-ranked real vector
bundles over CP1, whereas those isomorphism classes stand in one-to-one
correspondence with the integral powers of the tautological complex line
bundle γ1 −→ CP1 if k = 2, see e. g. [32, Thm. 18.5]. Actually, it suffices to
show (3) for the tautological complex line bundle E = γ1. Consider indeed

l ·γ1 :=
⊕l

j=1 γ1 −→ CP1 for any l ∈ N, l ≥ 1. Then l ·γ1 is a 2l-ranked real

vector bundle over CP1 and is non-trivial (its total Chern-class is 1 + l · a 6=
1, where a ∈ H2(CP1,Z) ∼= Z is the generator given by the tautological
bundle). Moreover, l · γ1 represents up to isomorphism the only non-trivial
2l-ranked real vector bundle over CP1 if l ≥ 2. Since trivially α(CP1, l ·γ1) =
l · α(CP1, γ1) and w2(l · γ1) = l · w2(γ1), we are reduced to the case where
l = 1. In case k = 2l+1 is odd, the bundle l·γ1⊕R −→ CP1 is again k-ranked
and non-trivial, so it is up to isomorphism the only non-trivial k-ranked real
vector bundle over CP1. As noticed above, the spin Dirac operator on CP1

has trivial kernel, so that α(CP1, l · γ1 ⊕R) = α(CP1, l · γ1) = l · α(CP1, γ1)
and, as is well-known, w2(l · γ1 ⊕ R) = w2(l · γ1) = l · w2(γ1), so that again
we are reduced to the case where E = γ1. Note that the case k = 2 can be
deduced from the case k ≥ 3 by adding a trivial real line bundle: as we have
seen above, α(M,χ,E⊕R) = α(M,χ,E)+α(M,χ) and w2(E⊕R) = w2(E).
It remains to show α(CP1, γ1) = 1 = w2(γ1)[CP1]. On the one hand, since γ1

is a complex line bundle, w2(γ1) = [c1(γ1)]Z2 . From c1(γ1)[CP1] = −1, we
obtain w2(γ1)[CP1] = [c1(γ1)[CP1]]Z2 = 1. On the other hand, it follows
from [17, Thm. 4.5] that dimC(ker(D/ γ1) = 2 (beware that we tensorize
over R, so that ΣTCP1 ⊗R γ1 = {ΣTCP1 ⊗C γ1} ⊕ {ΣTCP1 ⊗C γ

−1
1 }).

Therefore α(CP1, γ1) = 1, which concludes the proof of Claim 1. X
Claim 2: The statement holds in general.
Proof of Claim 2. By definition of the determinant bundle ΛkE → M ,
the bundle E ⊕ ΛkE → M is orientable. Alternatively, this follows from
w1(E) = w1(ΛkE). Moreover, the spinor bundle associated to the spin
structure χ+w1(E) on M is ΣM⊗RΛkE, in particular α(M,χ,E⊕ΛkE) =
α(M,χ,E) +α(M,χ,ΛkE) = α(M,χ,E) +α(M,χ+w1(E)). We apply the
proposition in the orientable case for E ⊕ ΛkE instead of E and obtain

α(M,χ,E) + α(M,χ+ w1(E)) = (k + 1)α(M,χ) + w2(E ⊕ ΛkE).

Now we calculate w2(E ⊕ ΛkE) = w2(E) + w1(E) ∪ w1(ΛkE) + w2(ΛkE).
As ΛkE is of real rank 1 we have w2(ΛkE) = 0. According to Lemma 10.2
below w1(E)∪w1(E) = 0. Thus w2(E ⊕ΛkE) = w2(E) which shows Claim
2 and concludes the proof of Proposition 10.1. �

Lemma 10.2. Let M be an orientable surface and β ∈ H1(M,Z2). Then
β ∪ β = 0.

Proof. As M is orientable, the homology group Hk(M,Z) is a finitely gen-
erated free Z-module for k = 0, 1, 2, and thus the universal coefficient the-
orem implies that tensoring the coefficients with Z2 yields isomorphisms

mod 2 : Hk(M,Z) ⊗ Z2
∼=−→ Hk(M,Z2). These isomorphisms are compati-

ble with the ∪-products on H∗(M,Z) and on H∗(M,Z2). Let β ∈ H1(M,Z)
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such that β mod 2 = β. As the cup-product on H∗(M,Z) is skew-symmetric
β ∪ β = 0. Thus

β ∪ β = (β mod 2) ∪ (β mod 2) = (β ∪ β) mod 2 = 0.

�

From now on and unless explicitly mentioned N will be orientable.

Corollary 10.3. Let f : M → N be a smooth map from a closed ori-
entable connected surface M of positive genus to an odd-dimensional orien-
table manifold N . Then M admits a spin structure χ such that the α-genus
α(M,χ, f) 6= 0. In particular, each harmonic map in the homotopy class of
f provides a 4-dimensional space of Dirac-harmonic maps.

Proof. For any spin structure χ on M the identity (3) reads α(M,χ, f) =
α(M,χ)+w2(f∗TN)[M ] because ofN being odd-dimensional and orientable.
The term w2(f∗TN)[M ] does not depend on the spin structure χ on M .
Since the genus of M is at least one, there exists for any x ∈ Z2 at least
one spin structure with α-genus x. Therefore, whatever w2(f∗TN)[M ] is,
α(M,χ, f) can be made equal to 1 for at least one spin structure on M . The
homotopy invariance of the α-genus (Corollary 4.4) concludes the proof. �

Example 10.4. The choice of spin structure χ for Corollary 10.3 depends
on f through the value w2(f∗TN)[M ]. Choose for instance E to be an
orientable but non-spin real vector bundle of rank 3 over M := T2, e. g. let
E := (γ1]R2) ⊕ R −→ CP1]T2 = T2 where γ1 is the tautological bundle
over CP 1 which is glued together with the trivial line bundle to give a
bundle over the connected sum CP1]T2. Let N be the total space of E,
take f1 : M → N to be the embedding by the zero-section and consider
f2 : M → N defined by f2(z1, z2) := f1(z2

1 , z2) for all (z1, z2) ∈ S1×S1 = T2.
Then w2(f∗1TN)[M ] = 1 but w2(f∗2TN)[M ] = 0.

Another straightforward consequence of Proposition 10.1 is the following

Corollary 10.5. Let M be a compact orientable connected surface with a
bounding spin structure χ, and assume that f : M → N is given. If N
is orientable and 〈w2(TN), f∗[M ]〉 6= 0 (in particular N is non-spin), then
α(M,χ, f) 6= 0.

Next we apply Proposition 10.1 and Corollary 10.3 to produce new examples
of Dirac-harmonic maps. Those examples are constructed out of harmonic
maps from surfaces with spin structures such that the corresponding genus
α(M,χ, f) does not vanish.

Recall a result from the celebrated Sacks-Uhlenbeck paper [29], proven si-
multaneously by L. Lemaire [24]. Given a closed orientable surface M and a
closed n-dimensional Riemannian manifold N , there exists in each homotopy
class of maps from M to N an energy-minimizing (in particular harmonic)
map as soon as π2(N) = 0; if π2(N) 6= 0 then there exists a system of ge-
nerators for π2(N) as π1(N)-module, each containing an energy-minimizing
map from S2 = CP1 to N .
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Case π2(N) = 0: We obtain α(S2, f) = 0 for every map f : S2 −→ N
since f∗TN −→ S2 is trivial, therefore we cannot apply our main result for
M = S2.
If the genus of M is at least 1 and n is odd, then Corollary 10.3 already shows
the existence of a spin structure χ on M for which α(M,χ, f) 6= 0, whatever
f : M −→ N is. Thus we obtain in that case the existence of a 4-dimensional
space of Dirac-harmonic maps of the form (f0,Φ) where f0 is a harmonic
map in the homotopy class of f . This enhances the previous example [21,
Thm. 2] (based on twistor-spinors) for either genus at least 2 or genus 1
and bounding spin structures on T2, since in both situations no non-trivial
twistor-spinor is available. If n is even, then α(M,χ, f) = w2(f∗TN)[M ].
For n = 2 and N closed one has w2(f∗TN)[M ] = 0 since N is spin, hence
our main result cannot be applied. For n ≥ 4 the number α(M,χ, f) 6= 0 as
soon as f∗TN −→ M is non-trivial, since a k(≥ 3)-ranked real vector bun-
dle over a surface is trivial if and only if its first and second Stiefel-Whitney
classes vanish, see e. g. [25, Sec. 12] (in particular N must be non-spin).
Note that, if n ≥ 3 and N is non-spin, then there exists at least one M and
one map f such that f∗TN −→ M is non-trivial [23, Prop. II.1.12], thus
providing a non-trivial Dirac-harmonic map.
Case π2(N) 6= 0: We obtain α(S2, f) = w2(f∗TN)[S2] for any map f :
S2 −→ N . For n = 2 and N non-orientable (otherwise N is spin) the de-
gree of any map f : S2 −→ N has to be even since S2 is simply-connected,
therefore w2(f∗TN)[S2] = deg(f) · w2(TN)[N ] = 0, so that nothing can
be said. For n ≥ 3 the α-genus vanishes if and only if f∗TN −→ S2 is
trivial. As an example for non-vanishing, consider the standard embedding

CP1 f−→ CP2, [z1 : z2] 7−→ [z1 : z2 : 0]. Choosing the Fubini-Study metrics
of holomorphic sectional curvature 4 on both CP1 and CP2, the map f be-
comes isometric and totally geodesic, in particular harmonic. Moreover, the
pull-back bundle f∗TCP2 can be identified with γ−2

1 ⊕ γ−1
1 , in particular

w2(f∗TCP2) = w2(γ1) 6= 0, so that α(S2, f) = 1. Therefore there exists a
non-zero Φ ∈ C∞(S2,ΣS2 ⊗ f∗TCP2) such that (f,Φ) is Dirac-harmonic.
Actually the space of such Φ’s is at least (real) 12-dimensional and Φ may
even be chosen not to come from any twistor-spinor on S2, see [3]. Note

that, if one changes f into f̂ := ι ◦ π, where ι : RP2 −→ CP2 is a totally
geodesic embedding and π : S2 −→ RP2 is the canonical projection, then

f̂ is harmonic but this time f̂∗TCP2 becomes trivial, hence no non-trivial
Dirac-harmonic map can be found using our methods.

In an analogous way, existence results for harmonic maps by e. g. Eells-
Sampson [14] (see also [30]) or Y.L. Xin [35] (see also [36, Thm 5.11]) give
Dirac-harmonic maps provided the corresponding α-genus does not vanish.
We summarize the results in the following two theorems, where we assume
all surfaces to be connected. Note that if we say that there is a 4-dimensional
space of Dirac-harmonic maps, we do not exclude the possibility that there
is even a space of higher dimension. We distinguish both cases where the
homotopy class of the underlying map can be prescribed (Theorem 10.6)
from the one where it cannot (Theorem 10.7).
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Theorem 10.6. Let M be a closed orientable surface of genus g and N be a
closed n(≥ 3)-dimensional orientable Riemannian manifold. Let f : M −→
N be an arbitrary smooth map.

i) Assume π2(N) = 0, g > 0 and n odd. Then there exist a harmonic
map f0 homotopic to f and at least one spin structure χ on M such
that there is a 4-dimensional space of Dirac-harmonic maps of the
form (f0,Φ).

ii) Assume π2(N) = 0, g > 0, n even, and f∗TN −→ M non-trivial.
Then there is a harmonic map f0 homotopic to f such that for
any spin structure on N there is a 4-dimensional space of Dirac-
harmonic maps of the form (f0,Φ).

Note in particular that the situation where the target manifold N has non-
positive sectional curvature or, more generally, no focal points, is covered
by Theorem 10.6.i) and ii), since then π2(N) = 0.

In the case π2(N) 6= 0, bubbling-off can happen, and in general one cannot
prescribe a homotopy class [f ] ∈ [M,N ]. It only can be prescribed mod-
ulo π2(N). However similar statements follow in this case, summarized in
Theorem 10.7.
In this theorem two modifications of the spin condition appear that shall be
discussed now.
The second Stiefel-Whitney class of TN , denoted by w2(TN) ∈ H2(N,Z2) =
Hom(H2(N,Z2),Z2), can be composed with the map mod 2 : H2(N,Z) →
H2(N,Z2) and then with the Hurewicz map h : π2(N) → H2(N,Z). Then
w2(TN) = 0 if and only if N is spin, and it is an elementary exercise to

show that w2(TN) ◦ mod 2 ◦ h = 0 if and only if the universal covering Ñ
of N is spin.
If w2(TN) ◦ mod 2 vanishes, then w2(TN) factors over the Bockstein map
β : H2(N,Z2) → H1(N,Z), i.e. there is a homomorphism w : im(β) → Z2

with w2(TN) = w ◦ β. Choose a complement Γ of the 2-torsion subgroup

of H1(N,Z), and let Γ̂ ⊂ π1(N) be its preimage under the Hurewicz map

π1(N)→ H1(N,Z). Let N̂ → N be the covering associated to Γ̂. This is a
finite covering and the number of sheets is the order of the 2-torsion group
of H1(N,Z), thus a power of 2. Since im(β) is included in the 2-torsion

subgroup of H1(N,Z), the composition H2(N̂ ,Z) → H2(N,Z)
w2(TN)→ Z2

vanishes, and it follows that N̂ is spin.
This provides a necessary condition for the vanishing of w2(TN) ◦ mod 2,
but it is unclear to us whether this is sufficient as well.

Theorem 10.7. Let N be a closed n(≥ 3)-dimensional orientable Rieman-
nian manifold.

iii) Assume that the universal covering Ñ of N is not spin. Then there
is a non-constant harmonic map f0 : S2 → N such that f∗0TN is
non-trivial. In particular, there is a 4-dimensional space of Dirac-
harmonic maps of the form (f0,Φ).

iv) Assume that Ñ is spin, even-dimensional and that w2(TN) defines
a non-trivial map H2(N,Z)→ Z2. Then there is an oriented closed
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surface M of genus g ≥ 1 and a non-constant harmonic map f0 :
M → N such that for any spin structure on M there is a 4-dimen-
sional space of Dirac-harmonic maps of the form (f0,Φ).

v) Assume that Ñ is spin, odd-dimensional and that w2(TN) defines a
non-trivial map H2(N,Z) → Z2. Then there is an oriented closed
surface M of genus g ≥ 1, a non-constant harmonic map f0 :
M → N , and at least 3 spin structures on M such that there is
a 4-dimensional space of Dirac-harmonic maps of the form (f0,Φ).

vi) Assume that w2(TN) defines a trivial map H2(N,Z)→ Z2 (in par-

ticular Ñ is spin) and that n is odd. Then for every oriented closed
surface M of genus g ≥ 1 and for every smooth map f : M → N
with f∗[M ] /∈ h(π2(N)), there exists a non-constant harmonic map
f0 : M → N and at least one spin structure on M such that there is
a 4-dimensional space of Dirac-harmonic maps of the form (f0,Φ).

vii) Assume that w2(TN) defines a trivial map H2(N,Z) → Z2, and
that N is not spin. Then there is a non-orientable closed surface M
on which there is a non-constant harmonic map f̄0 : M → N with
〈f∗0w2(TN), [M ]〉 6= 0.

vii− α) Assume that M is not diffeomorphic to RP2 and that n is odd.

The orientation covering M̂ → M defines a non-constant har-

monic map f̂0 : M̂ → N . Then there is at least one spin struc-

ture on M̂ for which there is a 4-dimensional space of Dirac-
harmonic maps of the form (f̂0,Φ).

vii− β) Assume M = RP2. Then the induced map π1(RP2) → π1(N)
is injective. Thus π1(N) has an element of order 2.

In vii) we used [M ] for the Z2-fundamental class of M . Note that, in the

cases where either H2(N,Z)
w2(TN)→ Z2 vanishes and n is even or M = RP2

(case vii−β)) we cannot deduce the existence of non-trivial Dirac-harmonic
maps.

Proof. We prove all cases separately.
iii) Choose any smooth map f : S2 → N with 〈f∗w2(TN), [S2]〉 6= 0.
Applying Sacks-Uhlenbeck’s method (Theorem A.3), one obtains a har-

monic map f0 :
∐l
j=1 S2 → N which is spin bordant to f , in particu-

lar 〈f∗w2(TN), [S2]〉 = 〈f∗0w2(TN), [
∐l
j=1 S2]〉 =

∑l
j=1〈f∗0jw2(TN), [S2]〉,

where f0j : S2 → N denotes the (harmonic) map induced by f0 on the

jth connected component of
∐l
j=1 S2. In particular there is at least one

j ∈ {1, . . . , l} with 〈f∗0jw2(TN), [S2]〉 6= 0, which already implies that f0j

is non-constant. Therefore, the harmonic map f0j : S2 → N satisfies
α(S2, f0j) = 〈f∗0jw2(TN), [S2]〉 6= 0 and hence provides a 4-dimensional space
of Dirac-harmonic maps.

iv) Since H2(N,Z)
w2(TN)→ Z2 does not vanish, there exists a closed orientable

surface M and a smooth map f : M → N such that 〈f∗w2(TN), [M ]〉 6=
0. Necessarily M is of positive genus because of Ñ being spin. Theo-

rem A.3 yields a harmonic map f0 : M q
∐l
j=1 S2 → N which is bor-

dant to f , in particular 〈f∗w2(TN), [M ]〉 = 〈f∗0w2(TN), [M q
∐l
j=1 S2]〉 =



22 BERND AMMANN AND NICOLAS GINOUX

〈f∗00w2(TN), [M ]〉+
∑l

j=1〈f∗0jw2(TN), [S2]〉 , where f00 : M → N and f0j :

S2 → N denote the maps induced on each connected component. Again,

since Ñ is spin, each 〈f∗0jw2(TN), [S2]〉 vanish, so that 〈f∗00w2(TN), [M ]〉 6=
0, in particular f00 is a non-trivial harmonic map. Because of n being even,
we obtain α(M,χ, f00) = 〈f∗00w2(TN), [M ]〉 6= 0 for every spin structure χ
on M , which shows the result in that case.
v) The only difference with v) lies in the formula α(M,χ, f00) = α(M,χ) +
〈f∗00w2(TN), [M ]〉. Choosing those spin structures χ with α(M,χ) = 0 (and
there are at least 3 of those) one obtains the statement.
vi) For any closed orientable surface M of genus g ≥ 1 and any smooth
map f : M → N with f∗[M ] /∈ h(π2(N)), Theorem A.3 yields a harmonic
map f0 : M → N which has to satisfy 〈f∗0w2(TN), [M ]〉 = 0 because of
the vanishing of the map H2(N,Z)→ Z2. However, because only 2-spheres
have possibly popped off M , the map f0 also satisfies f0 ∗ [M ] /∈ h(π2(N)),
in particular f0 cannot be constant. Since n is odd and g ≥ 1, there ex-
ists at least one spin structure χ on M with α(M,χ) = 1, in particular
α(M,χ, f0) = α(M,χ) = 1 and the statement follows.

vii) In case H2(N,Z)
w2(TN)→ Z2 vanishes but N itself is non-spin, there

exists a (necessarily) non-orientable closed surface M and a smooth map

f : M → N with 〈f∗w2(TN), [M ]〉 6= 0. Theorem A.2 gives a harmonic map

f0 : M → N with 〈f∗0w2(TN), [M ]〉 = 〈f∗w2(TN), [M ]〉 6= 0 (recall that
none of the bubbles contribute to the second Stiefel-Whitney number be-

cause of Ñ being spin). In particular f0 cannot be constant. Obviously, the

induced map f̂0 on M̂ remains harmonic and non-constant. Beware however

that, since M̂ →M is two-fold, 〈f̂∗0w2(TN), [M̂ ]〉 = 2·〈f∗0w2(TN), [M ]〉 = 0,

so that α(M̂, χ, f̂0) = n · α(M̂, χ) for any spin structure χ on M̂ . In

case n is odd and M̂ is not diffeomorphic to S2 (that is, M is not dif-

feomorphic to RP2), there exists at least one spin structure χ on M̂ with

α(M̂, χ) = 1, hence α(M̂, χ, f̂0) = 1, which proves vii − α). In case
M = RP2, assume the group homomorphim π(RP2) → π1(N) induced by

f0 were trivial. Then f0 could lift to a smooth map f̃0 : RP2 → Ñ through

the universal cover Ñ → N . Since by assumption Ñ is spin one would

have 0 = 〈f̃∗0w2(TÑ), [RP2]〉 = 〈f∗0w2(TN), [RP2]〉, contradiction. There-
fore π(RP2) → π1(N) is injective. This shows vii − β) and concludes the
proof. �

10.2. The case m ≥ 3. In higher dimensions, existence results for har-
monic maps still provide non-trivial examples of Dirac-harmonic maps. Con-
sider for instance the situation where the closed target manifold N has
non-positive sectional curvature. Then there exists an energy-minimizing
(hence harmonic) map in every homotopy class of smooth maps from any
closed manifold M into N [14, 30]. As an application, pick any closed con-
nected Riemannian spin manifold N with non-positive sectional curvature
and dimension n ≡ 1 (8). Let N ′ be any n-dimensional closed Riemann-
ian spin manifold with non-vanishing α-genus. In dimension n = m = 9
the Riemannian product of a Bott manifold with an S1 with non-bounding
spin structure gives an example of such a manifold. Define the map f :
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N qN ′ → N , f|N := idN and f|N′ := cst. Obviously, the restricted map f|N′
being constant, the vector bundle f∗|N′

TN is trivial and hence

α(N qN ′, f) = α(N, f|N ) + α(N ′, f|N′ )

= α(N, idN ) + nα(N ′)

= α(N, idN ) + α(N ′)

= α(N, idN ) + 1.

On the other hand, since disks are contractible and N is connected, the map
f induces a (smooth) map f ] : M := N]N ′ → N which is spin bordant to f .
By the spin-bordism-invariance of the α-genus, α(M,f ]) = α(N, idN ) + 1.
Therefore, either α(N, idN ) = 1 or α(M,f ]) = 1. A 2-dimensional space of
Dirac-harmonic maps is provided by (N, idN ) in the first case and by (M,f ])
in the second case.

Appendix A. Bubbling-off for harmonic maps

In their celebrated article [29] Sacks and Uhlenbeck showed the existence of
harmonic maps under certain conditions. In particular, they explained that
bubbling-off effects play an important role. However, the conclusions one
may draw out of the proofs of their article are stronger than the statements
of their theorem. In particular, certain relations to bordisms hold, see The-
orems A.1 to A.3. As these theorems are used in our article, we will explain
them and give other references that finally yield complete proofs. We also
need harmonic maps defined on non-orientable surfaces, and modifications
of the results of [29] also hold in this non-orientable case. In order to faci-
litate the comparison to [29] we adapt to their notation to a large extend.
One considers maps s : M → N from a closed Riemannian surface M with
metric g to a closed Riemannian manifold N with metric h.

A.1. Non-orientability of M . As already said above, in [29] it is claimed
that M should be orientable. This assumption can be easily removed. Ori-
entability of M is needed to define the quadratic differential φ in [29] and
to prove [29, Lemma 1.5] which states ∂φ = 0 for harmonic maps. One
easily verifies that the only parts in [29] using orientation are parts of the
introduction, the definition of φ, Lemma 1.5 and Theorem 1.6.
As a consequence, in all existence results of [29] the “orientability of M”-
assumption can be removed. Theorem 1.6 provides an interpretation for
harmonic maps with the special property φ = 0. By slightly exchanging
notation, this also works for non-orientable surfaces, as we will explain now.
On Riemann surfaces quadratic differentials are in natural bijection to trace-
free symmetric 2-tensors, and ∂ then turns into the divergence. Thus the
condition ∂φ = 0 is equivalent to saying that the g-trace-free part of s∗h has
vanishing divergence. This is usually written as div(s∗h)0 = 0. Lemma 1.5
then says: If s is harmonic, then (s∗h)0 is divergence free. Theorem 1.6 then
states: If s is harmonic and if s∗h0 = 0, then s is a (conformal) branched im-
mersion. Since those conditions are independent on the orientability of M ,
both proofs also work in the non-orientable case.
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A.2. Bubbling-off and bordisms. We recall further notations from [29].
For α ≥ 1 they define the energy functional Eα(s) :=

∫
M (1 + |ds|2)α dvM .

The map s0 : M → N is harmonic if and only if it is a stationary point of
the energy functional E1. One can try to fix a homotopy class [M,N ] of
maps M → N and to minimize E1 in this class. Unfortunately the direct
method in the calculus of variation fails. The reason for this is that E1

is conformally invariant in the following sense: if g1 and g2 are conformal
metrics with vol(M, g1) = vol(M, g2) then the functional E1 defined with
respect to g1 coincides with the functional E1 defined for g2. The problem
is avoided if one minimizes Eα for α > 1 instead. For α > 1 Sacks and
Uhlenbeck showed that any homotopy class [M,N ] contains a smooth map
sα minimizing Eα. It remains to discuss whether and in which sense the
functions sα converge to a harmonic map s : M → N for α → 1. An
interesting bubbling-off phenomenon appears in [29]. As one often passes to
subsequences, we will take a sequence αi > 1, i ∈ N, converging to 1, and
substitute si := sαi .
The following theorem can be deduced from the proofs in [29]:

Theorem A.1. Assume that M is a closed surface, and that n = dimN ≥
3. Further let si : M → N be stationary points of Eαi where αi > 1,
i ∈ N, is a sequence converging to 1, and assume that Eαi(si) converges.
Then after passing to a subsequence of indices i there is a harmonic map

s : M q
∐`
j=1 S2 → N for some ` ∈ N ∪ {0} such that si converges to s in a

certain sense.

The convergence of si to s is as follows: there are finitely many poins x1,. . . ,
xl such that si converges to s in C1(U \ {x1, . . . , xl}), see [29, Theorem 4.4].
In xj spheres may bubble-off. We work in isothermic coordinates around
xj , i.e. xi ∼= 0 is the base point, and the coordinates are defined on the
neighborhood U(xi) ∼= B2r(0). Then there are sequences yi → 0 and εi → 0
such that w 7→ si(εiw + yi), defined on a ball of radius rε−1

i , converges to a
map s̃ : R2 → N in the C1-topology. This map s̃ is harmonic. Conformally
identifying R2 with S2\{p} one obtains a harmonic map S2\{p} → N , which
can be extended to a harmonic map S2 → N , see [29, Theorem 4.6]. This is
the restriction of the map s above to one of the spheres S2. The situation
is even slightly more involved as spheres can bubble-off simultaneously on
different growth scales in the same point xj . In other words it might happen
that on a given bubble, a finite numbers of new bubbles emerge. And this
bubbles-on-bubbles-phenomenon can be iterated to bubbles on bubbles on
bubbles, etc.. However, for a given manifold N and a given upper bound
on the energy (which trivially exists as we consider minimizing maps, see
also [29, Prop. 2.4]), a finite number of iterations suffices. This leads to the
notion of bubble tree. The precise way in which the maps sα converge to
such a bubble tree was analyzed by Parker in [27]. We also recommend [28]
for a more informal introduction to bubble trees.
This precise description of the bubbling-off procedure also implies the fol-
lowing theorem.

Theorem A.2. With the assumptions of the previous theorem, the subse-
quence can be chosen such that there is a 3-dimensional manifold W with
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boundary ∂W = M q
∐`
j=1 S2 q M with smooth maps Fi, F : W → N

extending si and s.

We will now describe the manifold W . We assume for simplicity that M is
connected, otherwise one should consider each connected component sepa-
rately. The manifold W is obtained by attaching ` copies of a 1-handle to

W0 := (M q
∐`
j=1 S2)× [0, 1]. Such an attachment is carried out inductively

as follows, see e.g. [22, VI.6] for details. We combine two maps B1(0)→M

and B1(0) → S2 which are diffeomorphisms onto balls in M and S2, to a

map G : B1(0)qB1(0)→ (M q S2)× {1} ⊂ ∂W0. We define W1 := W0 ∪G
([−1, 1]×B1(0)), where the subscript G indicates that we identify each point

in {−1, 1}×B1(0)) = B1(0)qB1(0) with its image under G in ∂W0. Strictly
speaking W1 is a smooth manifold with boundary and a corner, but this
corner can be smoothed out by slightly changing the differentiable structure
close to the corner. Then W1 is a manifold with boundary, the boundary

consists of two pieces: one piece is (M q
∐`
j=1 S2) × {0} ⊂ W0 ⊂ W1. The

remaining piece is diffeomorphic to M q
∐`−1
j=1 S2. Several choices are done

here, but they do not alter the diffeomorphism type of W1.
By attaching a further 1-handle we obtain a manifold W2 with boundary

(M q
∐`
j=1 S2) q (M q

∐`−2
j=1 S2), and finally after ` such attachments, we

get W = W` with boundary (M q
∐`
j=1 S2)qM .

If M is orientable, we even get more structure on W . In this case M also
admits a spin structure, and this defines an orientation and spin structure
on M × [0, 1]. Orientations can then be chosen on the spheres S2 such that
the induced orientation on W0 extends to W . Similarly the spin structure
on M yields a unique spin structure on W . The manifold W then has the
boundary

∂W = −(M q
∐̀
j=1

S2)qM.

Here the minus sign indicates that this piece of the boundary carries the
opposite orientation, and all pieces of the boundary carry the spin structures

induced from W . Such a W is called a spin-bordism from M q
∐`
j=1 S2 to

M .
For orientable surfaces we have thus strengthened the previous theorem:

Theorem A.3. With the hypotheses of the previous theorems, assume fur-
thermore that M carries a fixed orientation and spin structure. Then the
3-dimensional manifold W carries an orientation and spin structure, such

that it is a spin bordism from M q
∐`
j=1 S2 to M .
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