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Abstract: Following [5, Sec. IV.6] and Perelman’s solution to the ge-

ometrisation conjecture, we present the classification of those closed 3-

manifolds admitting a Riemannian metric with positive scalar curvature.

The classification is two-step: first we show that a 3-manifold admitting a
K(G, 1)-factor cannot carry any metric with positive scalar curvature (PSC);
then we use the geometrisation for 3-manifolds to deduce that, in the con-
nected-sum-decomposition of a 3-manifold carrying PSC into prime factors,
only S1 × S2’s or quotients of S3 can appear.

1 Closed 3-manifolds with a K(G, 1)-factor

Definition 1.1 Given a group G, a K(G, 1)-space is a topological space X
such that π1(X) = G and πk(X) = 0 otherwise.

For instance, the circle S1 is a K(Z, 1)-space and more generally, the n-torus
T
n := (S1)n is a K(Zn, 1)-space. Any path-connected covering of a K(G, 1)-

space is a K(G′, 1)-space for some subgroup G′ ⊂ G. The homotopy- (in
particular the homology-)type of a K(G, 1)-CW-complex is uniquely deter-
mined by G, see [4, Thm. 1B.8]. Moreover, a CW-complex X is K(G, 1) iff
its universal covering is contractible.

If an (n ≥ 1)-dimensional closed manifold Mn is K(G, 1), then G is infinite,

since otherwise the universal covering M̃n of Mn would be compact and con-
tractible, in particular orientable; but then Hn(M̃n;Z) ∼= Z 6= 0, contradic-
tion. Actually a much stronger statement holds: if a (finite-dimensional but
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non-necessarily compact) manifold Mn is K(G, 1), then G has no nontrivial
element of finite order: since otherwise there would exist g ∈ G with 〈g〉 ∼= Zk

for some k ∈ N \ {0, 1} and, corresponding to 〈g〉, a covering M̂ →M of M

with π1(M̂) = 〈g〉, in particular M̂ would be K(〈g〉, 1) = K(Zk, 1); but for
all l ∈ N, one has H2l(K(Zk, 1);Zk) ∼= Zk (see [4, Ex. 1B.4] for a concrete

description of a K(Zk, 1)-space), in particular H2l(M̂ ;Zk) ∼= Zk 6= 0 for any

l with 2l > dim(M̂), contradiction. Therefore g has to be of infinite order,
i.e., 〈g〉 ∼= Z.

Another important feature of K(G, 1)-spaces is the following “classifying”
property [4, Prop. 1B.9]: if X is a connected CW-complex, Y a K(G, 1)-
space and (x0, y0) ∈ X ×Y arbitrary points, then any group homomorphism
π1(X, x0)→ G = π1(Y, y0) is induced by a continuous map (X, x0)→ (Y, y0)
which is unique up to homotopy fixing x0.

The main result of this section if the following theorem [5, Thm. IV.6.18],
originally stated and proved in [3] (see [3, Thm. 8.1]).

Theorem 1.2 (Gromov-Lawson [3]) Any closed smooth 3-manifold M3

which can be written as the connected sum with a (closed smooth) K(π, 1)-
manifold cannot carry any metric with positive scalar curvature. Moreover,
any metric with non-negative scalar curvature on M3 must be flat.

Proof: W.l.o.g. we may assume that M is connected and, up to taking a two-
fold-covering of M , that M is orientable. We first assume that the closed man-
ifold M itself is a K(π, 1)-manifold. Since any orientable 3-manifold is already
spin, M is spin. Since π 6= 1, there exists a loop – which, up to homotopy,
may be assumed smooth and embedded – γ such that 1 6= [γ] ∈ π. Consider

the covering M̂ := M̃/〈[γ]〉 →M , where M̃ →M is the universal covering of

M and 〈[γ]〉 ⊂ π is the subgroup of π generated by [γ]. Then the loop γ lifts

to M̂ as a curve γ̂ which, by construction of M̂ , is actually a loop in M̂ and
whose homotopy class generates π1(M̂); in an equivalent way, [γ̂] ∈ π1(M̂)

is the preimage of [γ] via the canonical isomorphism π1(M̂) ∼= 〈[γ]〉 provided
by the lifting property for curves and homotopies to coverings. Note that
〈[γ]〉 ∼= Z by the preliminary remarks above, in particular M̂ is a K(Z; 1)-

space and therefore cannot be compact (for M̂ is homotopy-equivalent to the
K(Z, 1)-space S1, for which H3(S

1;Z) = 0 holds).
Now if M carried a metric with positive scalar curvature, then the pull-back
metric on the spin manifold M̂ would be complete (as is the pull-back of
any complete metric on a covering), would have uniformly positive scalar
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curvature and bounded Ricci curvature (since M is compact and the ranges
of Scal and |Ric| do not change when passing to coverings). Choose a suffi-

ciently small open tubular neighbourhood U of γ̂ in M̂ and consider the (non-

compact complete) manifold X := M̂\U with boundary ∂X = ∂U ∼= S1×S1.

If we show that X is a bad end for M̂ in the sense of [5, Def. IV.6.16],
that is, if there exists a smooth map F : X → Y with Y enlargeable1 and
deg(F|∂X ) 6= 0, then [5, Thm. IV.6.17] (“Any non-compact spin manifold con-
taining a bad end cannot carry any complete metric with uniformly positive
scalar curvature and bounded Ricci curvature”) implies a contradiction for

M̂ .
To prove that X is a bad end, we first notice that the inclusion ι : ∂X → X
induces an isomorphism H1(∂X;Z) → H1(X;Z): indeed since both U and

X = M̂ \ U have small neighbourhoods which deformation retract onto
them, one may write the Mayer-Vietoris long exact homology sequence for
(M̂ = X ∪ U,X,U) down and obtain (with U ∩X = ∂X)

. . .→ H2(M̂ ;Z)→ H1(∂X;Z)→ H1(X;Z)⊕H1(U ;Z)
j→ H1(M̂ ;Z)→ H0(∂X;Z)→ . . . ,

where H1(M̂ ;Z) → H0(∂X;Z) is the zero-map since both H0(∂X;Z) →
H0(X;Z) ∼= Z and H0(∂X;Z)→ H0(U ;Z) ∼= Z are isomorphisms, and where

H2(M̂ ;Z) = 0 since the K(Z; 1)-space M̂ is homotopy equivalent to S1. More-

over, the inclusion U ⊂ M̂ is a homotopy equivalence since all induced group
homomorphisms πk(U) ∼= πk(γ̂(S1))→ πk(M̂) are isomorphisms (see e.g. [4,
Thm. 4.5] for Whitehead’s theorem characterising homotopy equivalences

between connected CW-complexes), in particular H1(U ;Z) → H1(M̂ ;Z)
must be an isomorphism, which implies that the injective homomorphism
H1(∂X;Z) → H1(X;Z) also has to be surjective: for any c ∈ H1(X;Z),

there exists a unique c′ ∈ H1(U ;Z) with ιX(c) = ιU(c′) ∈ H1(M̂ ;Z), so
that (c, c′) ∈ ker(j) = im(ιX∂X ⊕ ιU∂X) and thus c ∈ im(ιX∂X), as claimed.
Hence, H1(∂X;Z)→ H1(X;Z) is an isomorphism and therefore H1(X;Z) ∼=
H1(S

1 × S1;Z) = Z
2.

The trick is now to reinterpret the Hurewicz group homomorphism π1(X)→
H1(X;Z) ∼= Z

2 as a group homomorphism π1(X) → π1(K(Z2, 1)); but then
the “classifying property” of K(G, 1)-spaces yields the existence of a continu-
ous (which we can probably assume to be smooth) map F : X → S1 × S1 =
K(Z2, 1) inducing that group homomorphism π1(X) → π1(K(Z2, 1)). Since

1A smooth manifold Y is called enlargeable iff, for any ε > 0, there exists an oriented
covering Ŷε → Y and an ε-contracting C1 map fε : Ŷε → Sn which is constant at infinity
and of non-zero degree [5, Def. IV.5.2].
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the diagramme

π1(∂X)

��

// H1(∂X;Z)

∼=
��

π1(X) // H1(X;Z) ∼= π1(S
1 × S1)

commutes and the Hurewicz homomorphism π1(∂X)→ H1(∂X;Z) is an iso-
morphism (the group π1(∂X) is abelian), the group homomorphism π1(F|∂X ) :
π1(∂X) → π1(S

1 × S1) must be an isomorphism. Since πk(F|∂X ) : 0 =
πk(∂X) → 0 = πk(S1 × S1) is anyway an isomorphism for all k 6= 1, we
deduce that F|∂X : ∂X → S1 × S1 is a homotopy equivalence (see again e.g.
[4, Thm. 4.5]), which in turn implies that it must have degree ±1. Since

S1 × S1 is enlargeable, the subset X is a bad end for M̂ and therefore we
obtain a contradiction.

In the general case, the closed connected oriented manifold M can be written
in the form M = M ′]N , where M ′ is K(π, 1). Take any smooth map col :
M →M ′ collapsing the N -factor to a point p′ ∈M ′. As before, pick a smooth
embedded loop γ in M ′ \ {p′} such that 1 6= [γ] ∈ π1(M ′) (one may assume

that γ does not run through p′) and let M̂ ′ := M̃ ′
/〈[γ]〉

pr′→ M ′ be a covering

of M ′ with π1(M̂
′) ∼= 〈[γ]〉 ∼= Z. Let γ̂ be the lifted loop in M̂ ′ \ pr′−1({p′}).

Pulling the covering M̂ ′ pr′→ M ′ back via the map col provides a covering
M̂

pr→M making the diagramme

M̂

pr

��

ĉol //
M̂ ′

pr′

��
M

col // M ′

commute. Actually the map ĉol : M̂ → M̂ ′ collapses the copies of N -
factors in M̂ to points of pr′−1({p′}) and its restriction to the comple-

ment of the N -factors is a diffeomorphism onto M̂ ′ \ pr′−1({p′}). As above,
if a metric with positive scalar curvature is given on M , then it can be
lifted to the spin manifold M̂ as a complete metric with uniformly posi-
tive scalar curvature and bounded Ricci curvature. Now we can choose a
sufficiently small tubular neighbourhood U ′ about the lifted loop γ̂ in M̂ ′

such that U ′ ⊂ M̂ ′ \ pr′−1({p′}), take the (relatively compact) preimage

U := ĉol
−1

(U ′) ⊂ M̂ and consider X := M̂ \ U and X ′ := M̂ ′ \ U ′ respec-
tively. As before, there exists a smooth map F ′ : X ′ → S1 × S1 such that

4



F ′|∂X′
: ∂X ′ → S1×S1 is of non-zero degree. Composing with ĉol, one obtains

a smooth map F = F ′ ◦ ĉol : X → S1 × S1 such that F|∂X is of non-zero

degree since ĉol|∂X : ∂X → ∂X ′ is a diffeomorphism. Therefore X is a bad

end for M̂ and we obtain again a contradiction.
For the proof of the flatness of any metric with non-negative scalar curvature
on M , we refer to [3, Thm. 7.48]. �

2 Classification

We are now ready to state the main result of this talk. Recall that any closed
(orientable) 3-manifold M can be written as the connected sum of finitely
many irreducible manifolds and of copies of S1 × S2’s (Kneser’s theorem).
More precisely, J. Milnor [6] showed that the irreducible factors of M are
either K(π, 1)-manifolds or closed 3-manifolds Σj with finite fundamental
group. If M carries PSC, then by Theorem 1.2, there is no K(π, 1)-factor in
the connected sum, so that only S1×S2’s or Σj’s can appear. But Perelman’s
solution to the geometrisation conjecture [7, 8, 9] implies that the universal
covering of Σj, being simply-connected and closed, is diffeomorphic to S3

and therefore Σj
∼= S3

/Γj
, where Γj is a finite subgroup of SO4. Obviously,

S1 × S2 and each quotient of S3 by a finite fixed-point-free subgroup of SO4

carry a metric with PSC (even a homogeneous one); since PSC is preserved
by codimension k ≥ 3-surgery [2, 10], the connected sum of any two closed
3-manifolds with PSC also admits PSC. Therefore, we obtain the following

Theorem 2.1 (Closed orientable 3-manifolds with PSC) A closed ori-
entable 3-dimensional smooth manifold M3 admits a metric with positive
scalar curvature iff it is diffeomorphic to the connected sum of finitely many
copies of S1×S2’s and of quotients of S3 by (finite) fixed-point-free subgroups
of SO4, that is, iff

M3 ∼= S3
/Γ1

] . . . ] S
3
/Γp

] (S1 × S2) ] . . . ] (S1 × S2)︸ ︷︷ ︸
q times

for p, q ∈ N, where Γj ⊂ SO4 is finite and fixed-point-free, for all 1 ≤ j ≤ p.

We refer to [1, Ch. 4] for the classification of the finite subgroups of SO4.
2

2It would remain to identify those which are fixed-point-free!
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