The classification of 3-manifolds admitting positive scalar curvature

Nicolas Ginoux

Seminar on spectral geometry - University of Regensburg

January 22, 2013

Abstract: Following [5, Sec. IV.6] and Perelman's solution to the geometrisation conjecture, we present the classification of those closed 3manifolds admitting a Riemannian metric with positive scalar curvature.

The classification is two-step: first we show that a 3-manifold admitting a K(G, 1)-factor cannot carry any metric with positive scalar curvature (PSC); then we use the geometrisation for 3-manifolds to deduce that, in the connected-sum-decomposition of a 3-manifold carrying PSC into prime factors, only $S^1 \times S^2$'s or quotients of S^3 can appear.

1 Closed 3-manifolds with a K(G, 1)-factor

Definition 1.1 Given a group G, a K(G, 1)-space is a topological space X such that $\pi_1(X) = G$ and $\pi_k(X) = 0$ otherwise.

For instance, the circle S^1 is a $K(\mathbb{Z}, 1)$ -space and more generally, the *n*-torus $\mathbb{T}^n := (S^1)^n$ is a $K(\mathbb{Z}^n, 1)$ -space. Any path-connected covering of a K(G, 1)-space is a K(G', 1)-space for some subgroup $G' \subset G$. The homotopy- (in particular the homology-)type of a K(G, 1)-CW-complex is uniquely determined by G, see [4, Thm. 1B.8]. Moreover, a CW-complex X is K(G, 1) iff its universal covering is *contractible*.

If an $(n \geq 1)$ -dimensional closed manifold M^n is K(G, 1), then G is infinite, since otherwise the universal covering \widetilde{M}^n of M^n would be *compact* and contractible, in particular orientable; but then $H_n(\widetilde{M}^n; \mathbb{Z}) \cong \mathbb{Z} \neq 0$, contradiction. Actually a much stronger statement holds: if a (finite-dimensional but non-necessarily compact) manifold M^n is K(G, 1), then G has no nontrivial element of finite order: since otherwise there would exist $g \in G$ with $\langle g \rangle \cong \mathbb{Z}_k$ for some $k \in \mathbb{N} \setminus \{0, 1\}$ and, corresponding to $\langle g \rangle$, a covering $\widehat{M} \to M$ of Mwith $\pi_1(\widehat{M}) = \langle g \rangle$, in particular \widehat{M} would be $K(\langle g \rangle, 1) = K(\mathbb{Z}_k, 1)$; but for all $l \in \mathbb{N}$, one has $H^{2l}(K(\mathbb{Z}_k, 1); \mathbb{Z}_k) \cong \mathbb{Z}_k$ (see [4, Ex. 1B.4] for a concrete description of a $K(\mathbb{Z}_k, 1)$ -space), in particular $H^{2l}(\widehat{M}; \mathbb{Z}_k) \cong \mathbb{Z}_k \neq 0$ for any l with $2l > \dim(\widehat{M})$, contradiction. Therefore g has to be of infinite order, i.e., $\langle g \rangle \cong \mathbb{Z}$.

Another important feature of K(G, 1)-spaces is the following "classifying" property [4, Prop. 1B.9]: if X is a connected CW-complex, Y a K(G, 1)space and $(x_0, y_0) \in X \times Y$ arbitrary points, then any group homomorphism $\pi_1(X, x_0) \to G = \pi_1(Y, y_0)$ is induced by a continuous map $(X, x_0) \to (Y, y_0)$ which is unique up to homotopy fixing x_0 .

The main result of this section if the following theorem [5, Thm. IV.6.18], originally stated and proved in [3] (see [3, Thm. 8.1]).

Theorem 1.2 (Gromov-Lawson [3]) Any closed smooth 3-manifold M^3 which can be written as the connected sum with a (closed smooth) $K(\pi, 1)$ manifold cannot carry any metric with positive scalar curvature. Moreover, any metric with non-negative scalar curvature on M^3 must be flat.

Proof: W.l.o.g. we may assume that M is connected and, up to taking a twofold-covering of M, that M is orientable. We first assume that the closed manifold M itself is a $K(\pi, 1)$ -manifold. Since any orientable 3-manifold is already spin, M is spin. Since $\pi \neq 1$, there exists a loop – which, up to homotopy, may be assumed smooth and embedded – γ such that $1 \neq [\gamma] \in \pi$. Consider the covering $\widehat{M} := \widetilde{M}/\langle [\gamma] \rangle \to M$, where $\widetilde{M} \to M$ is the universal covering of M and $\langle [\gamma] \rangle \subset \pi$ is the subgroup of π generated by $[\gamma]$. Then the loop γ lifts to \widehat{M} as a curve $\widehat{\gamma}$ which, by construction of \widehat{M} , is actually a loop in \widehat{M} and whose homotopy class generates $\pi_1(\widehat{M})$; in an equivalent way, $[\widehat{\gamma}] \in \pi_1(\widehat{M})$ is the preimage of $[\gamma]$ via the canonical isomorphism $\pi_1(\widehat{M}) \cong \langle [\gamma] \rangle$ provided by the lifting property for curves and homotopies to coverings. Note that $\langle [\gamma] \rangle \cong \mathbb{Z}$ by the preliminary remarks above, in particular \widehat{M} is a $K(\mathbb{Z}; 1)$ space and therefore cannot be compact (for \widehat{M} is homotopy-equivalent to the $K(\mathbb{Z}, 1)$ -space S^1 , for which $H_3(S^1; \mathbb{Z}) = 0$ holds).

Now if M carried a metric with positive scalar curvature, then the pull-back metric on the spin manifold \widehat{M} would be *complete* (as is the pull-back of any complete metric on a covering), would have *uniformly* positive scalar

curvature and bounded Ricci curvature (since M is compact and the ranges of Scal and |Ric| do not change when passing to coverings). Choose a sufficiently small open tubular neighbourhood U of $\widehat{\gamma}$ in \widehat{M} and consider the (noncompact complete) manifold $X := \widehat{M} \setminus U$ with boundary $\partial X = \partial U \cong S^1 \times S^1$. If we show that X is a bad end for \widehat{M} in the sense of [5, Def. IV.6.16], that is, if there exists a smooth map $F : X \to Y$ with Y enlargeable¹ and $\deg(F_{|\partial X}) \neq 0$, then [5, Thm. IV.6.17] ("Any non-compact spin manifold containing a bad end cannot carry any complete metric with uniformly positive scalar curvature and bounded Ricci curvature") implies a contradiction for \widehat{M} .

To prove that X is a bad end, we first notice that the inclusion $\iota : \partial X \to X$ induces an isomorphism $H_1(\partial X; \mathbb{Z}) \to H_1(X; \mathbb{Z})$: indeed since both U and $X = \widehat{M} \setminus U$ have small neighbourhoods which deformation retract onto them, one may write the Mayer-Vietoris long exact homology sequence for $(\widehat{M} = X \cup \overline{U}, X, \overline{U})$ down and obtain (with $\overline{U} \cap X = \partial X$)

$$\dots \to H_2(\widehat{M}; \mathbb{Z}) \to H_1(\partial X; \mathbb{Z}) \to H_1(X; \mathbb{Z}) \oplus H_1(U; \mathbb{Z}) \xrightarrow{j} H_1(\widehat{M}; \mathbb{Z}) \to H_0(\partial X; \mathbb{Z}) \to \dots,$$

where $H_1(\widehat{M}; \mathbb{Z}) \to H_0(\partial X; \mathbb{Z})$ is the zero-map since both $H_0(\partial X; \mathbb{Z}) \to H_0(X; \mathbb{Z}) \cong \mathbb{Z}$ and $H_0(\partial X; \mathbb{Z}) \to H_0(U; \mathbb{Z}) \cong \mathbb{Z}$ are isomorphisms, and where $H_2(\widehat{M}; \mathbb{Z}) = 0$ since the $K(\mathbb{Z}; 1)$ -space \widehat{M} is homotopy equivalent to S^1 . Moreover, the inclusion $U \subset \widehat{M}$ is a homotopy equivalence since all induced group homomorphisms $\pi_k(U) \cong \pi_k(\widehat{\gamma}(S^1)) \to \pi_k(\widehat{M})$ are isomorphisms (see e.g. [4, Thm. 4.5] for Whitehead's theorem characterising homotopy equivalences between connected CW-complexes), in particular $H_1(U; \mathbb{Z}) \to H_1(\widehat{M}; \mathbb{Z})$ must be an isomorphism, which implies that the injective homomorphism $H_1(\partial X; \mathbb{Z}) \to H_1(X; \mathbb{Z})$ also has to be surjective: for any $c \in H_1(X; \mathbb{Z})$, there exists a unique $c' \in H_1(U; \mathbb{Z})$ with $\iota_X(c) = \iota_U(c') \in H_1(\widehat{M}; \mathbb{Z})$, so that $(c, c') \in \ker(j) = \operatorname{im}(\iota_{\partial X}^X \oplus \iota_{\partial X}^U)$ and thus $c \in \operatorname{im}(\iota_{\partial X}^X)$, as claimed. Hence, $H_1(\partial X; \mathbb{Z}) \to H_1(X; \mathbb{Z})$ is an isomorphism and therefore $H_1(X; \mathbb{Z}) \cong H_1(S^1 \times S^1; \mathbb{Z}) = \mathbb{Z}^2$.

The trick is now to reinterpret the Hurewicz group homomorphism $\pi_1(X) \to H_1(X; \mathbb{Z}) \cong \mathbb{Z}^2$ as a group homomorphism $\pi_1(X) \to \pi_1(K(\mathbb{Z}^2, 1))$; but then the "classifying property" of K(G, 1)-spaces yields the existence of a continuous (which we can probably assume to be smooth) map $F: X \to S^1 \times S^1 = K(\mathbb{Z}^2, 1)$ inducing that group homomorphism $\pi_1(X) \to \pi_1(K(\mathbb{Z}^2, 1))$. Since

¹A smooth manifold Y is called *enlargeable* iff, for any $\varepsilon > 0$, there exists an oriented covering $\hat{Y}_{\varepsilon} \to Y$ and an ε -contracting C^1 map $f_{\varepsilon} : \hat{Y}_{\varepsilon} \to S^n$ which is constant at infinity and of non-zero degree [5, Def. IV.5.2].

the diagramme

$$\pi_1(\partial X) \longrightarrow H_1(\partial X; \mathbb{Z})$$

$$\downarrow \cong$$

$$\pi_1(X) \longrightarrow H_1(X; \mathbb{Z}) \cong \pi_1(S^1 \times S^1)$$

commutes and the Hurewicz homomorphism $\pi_1(\partial X) \to H_1(\partial X; \mathbb{Z})$ is an isomorphism (the group $\pi_1(\partial X)$ is abelian), the group homomorphism $\pi_1(F_{|\partial X})$: $\pi_1(\partial X) \to \pi_1(S^1 \times S^1)$ must be an isomorphism. Since $\pi_k(F_{|\partial X})$: $0 = \pi_k(\partial X) \to 0 = \pi_k(S^1 \times S^1)$ is anyway an isomorphism for all $k \neq 1$, we deduce that $F_{|\partial X} : \partial X \to S^1 \times S^1$ is a homotopy equivalence (see again e.g. [4, Thm. 4.5]), which in turn implies that it must have degree ± 1 . Since $S^1 \times S^1$ is enlargeable, the subset X is a bad end for \widehat{M} and therefore we obtain a contradiction.

In the general case, the closed connected oriented manifold M can be written in the form $M = M' \sharp N$, where M' is $K(\pi, 1)$. Take any smooth map col : $M \to M'$ collapsing the N-factor to a point $p' \in M'$. As before, pick a smooth embedded loop γ in $M' \setminus \{p'\}$ such that $1 \neq [\gamma] \in \pi_1(M')$ (one may assume that γ does not run through p') and let $\widehat{M'} := \widetilde{M'}/\langle [\gamma] \rangle \xrightarrow{\operatorname{pr}'} M'$ be a covering of M' with $\pi_1(\widehat{M'}) \cong \langle [\gamma] \rangle \cong \mathbb{Z}$. Let $\widehat{\gamma}$ be the lifted loop in $\widehat{M'} \setminus \operatorname{pr}'^{-1}(\{p'\})$. Pulling the covering $\widehat{M'} \xrightarrow{\operatorname{pr}'} M'$ back via the map col provides a covering $\widehat{M} \xrightarrow{\operatorname{pr}} M$ making the diagramme

$$\widehat{M} \xrightarrow{\widehat{\operatorname{col}}} \widehat{M}'$$

$$\downarrow^{\operatorname{pr}} \qquad \qquad \downarrow^{\operatorname{pr}}$$

$$M \xrightarrow{\operatorname{col}} M'$$

commute. Actually the map $\widehat{\operatorname{col}} : \widehat{M} \to \widehat{M'}$ collapses the copies of *N*-factors in \widehat{M} to points of $\operatorname{pr'}^{-1}(\{p'\})$ and its restriction to the complement of the *N*-factors is a diffeomorphism onto $\widehat{M'} \setminus \operatorname{pr'}^{-1}(\{p'\})$. As above, if a metric with positive scalar curvature is given on M, then it can be lifted to the spin manifold \widehat{M} as a complete metric with uniformly positive scalar curvature and bounded Ricci curvature. Now we can choose a sufficiently small tubular neighbourhood U' about the lifted loop $\widehat{\gamma}$ in $\widehat{M'}$ such that $U' \subset \widehat{M'} \setminus \operatorname{pr'}^{-1}(\{p'\})$, take the (relatively compact) preimage $U := \widehat{\operatorname{col}}^{-1}(U') \subset \widehat{M}$ and consider $X := \widehat{M} \setminus U$ and $X' := \widehat{M'} \setminus U'$ respectively. As before, there exists a smooth map $F' : X' \to S^1 \times S^1$ such that

 $F'_{|_{\partial X'}}: \partial X' \to S^1 \times S^1$ is of non-zero degree. Composing with $\widehat{\text{col}}$, one obtains a smooth map $F = F' \circ \widehat{\text{col}}: X \to S^1 \times S^1$ such that $F_{|_{\partial X}}$ is of non-zero degree since $\widehat{\text{col}}_{|_{\partial X}}: \partial X \to \partial X'$ is a diffeomorphism. Therefore X is a bad end for \widehat{M} and we obtain again a contradiction.

For the proof of the flatness of any metric with non-negative scalar curvature on M, we refer to [3, Thm. 7.48].

2 Classification

We are now ready to state the main result of this talk. Recall that any closed (orientable) 3-manifold M can be written as the connected sum of finitely many irreducible manifolds and of copies of $S^1 \times S^2$'s (Kneser's theorem). More precisely, J. Milnor [6] showed that the irreducible factors of M are either $K(\pi, 1)$ -manifolds or closed 3-manifolds Σ_j with finite fundamental group. If M carries PSC, then by Theorem 1.2, there is no $K(\pi, 1)$ -factor in the connected sum, so that only $S^1 \times S^2$'s or Σ_j 's can appear. But Perelman's solution to the geometrisation conjecture [7, 8, 9] implies that the universal covering of Σ_j , being simply-connected and closed, is diffeomorphic to S^3 and therefore $\Sigma_j \cong S^3/\Gamma_j$, where Γ_j is a finite subgroup of SO₄. Obviously, $S^1 \times S^2$ and each quotient of S^3 by a finite fixed-point-free subgroup of SO₄ carry a metric with PSC (even a homogeneous one); since PSC is preserved by codimension $k \geq 3$ -surgery [2, 10], the connected sum of any two closed 3-manifolds with PSC also admits PSC. Therefore, we obtain the following

Theorem 2.1 (Closed orientable 3-manifolds with PSC) A closed orientable 3-dimensional smooth manifold M^3 admits a metric with positive scalar curvature iff it is diffeomorphic to the connected sum of finitely many copies of $S^1 \times S^2$'s and of quotients of S^3 by (finite) fixed-point-free subgroups of SO₄, that is, iff

$$M^{3} \cong S^{3}/_{\Gamma_{1}} \# \dots \# S^{3}/_{\Gamma_{p}} \# \underbrace{(S^{1} \times S^{2}) \# \dots \# (S^{1} \times S^{2})}_{q \text{ times}}$$

for $p, q \in \mathbb{N}$, where $\Gamma_j \subset SO_4$ is finite and fixed-point-free, for all $1 \leq j \leq p$.

We refer to [1, Ch. 4] for the classification of the finite subgroups of SO_4 .²

²It would remain to identify those which are fixed-point-free!

References

- [1] J.H. Conway, D.A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, 2003.
- [2] M. Gromov, H.B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423–434.
- M. Gromov, H.B. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. No. 58 (1983), 83–196.
- [4] A. Hatcher, *Algebraic topology*, Cambridge University Press, 2002.
- [5] H.B. Lawson, M.-L. Michelsohn, *Spin geometry*, Princeton University Press, 1989.
- [6] J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1–7.
- [7] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159 (2002).
- [8] G. Perelman, *Ricci flow with surgery on three-manifolds*, arXiv:math/0303109 (2003).
- [9] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math/0307245 (2003).
- [10] R. Schoen, S.-T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159–183.