Übungen zur Analysis II

Universität Regensburg, Sommersemester 2014

Prof. Dr. Bernd Ammann / Dr. Nicolas Ginoux

Abgabe am 11.7.2014 bis 12 Uhr

Bitte jedes Blatt mit Ihrem Namen und der Nummer Ihrer

Übungsgruppe versehen und alle Blätter zusammenheften.

Übungsblatt 14

1. Aufgabe (4 Punkte)

Bestimmen Sie die Lösungen folgender Differentialgleichungen und geben Sie jeweils das maximale Lösungs-Intervall an.¹

(a)
$$x'(t) = a \frac{x(t)}{t}, x(1) = 1 \text{ für } a \in \mathbb{Z}.$$

(b)
$$x'(t) = \frac{x(t)}{t} + t^2$$
, $x(1) = 2$. Tipp: Ansatz $x(t) = f(t)t$

(c)
$$x'(t) = \frac{\sqrt{2-x(t)^2}}{x(t)}$$
, $x(0) = 1$. Tipp: Umformen und $y(t) = 2 - x(t)^2$ substituieren.

2. Aufgabe (4 Punkte)

Für $a, b \in \mathbb{R}$ mit a < b sei $h: [a; b] \to \mathbb{R}$ eine differenzierbare Funktion. Man nehme an, dass ein $\omega \in \mathbb{R}$ existiere mit $h'(t) \leq \omega h(t)$ für alle $t \in [a; b]$. Zeigen Sie, dass

$$h(t) \le h(a)e^{\omega(t-a)}$$

für alle $t \in [a; b]$ gilt.

(Hinweis: Betrachten Sie die Funktion $t \mapsto h(t)e^{-\omega t}$.)

3. Aufgabe (4 Punkte)

Sei $f \colon \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ eine lokal Orts-Lipschitz-stetige und stetige Abbildung mit

$$f(-t,x) = -f(t,x)$$

für alle $(t,x) \in \mathbb{R} \times \mathbb{R}^n$. Für ein $T \in (0,\infty)$ sei $\varphi \colon (-T,T) \to \mathbb{R}^n$ eine Lösung der Differentialgleichung $\varphi'(t) = f(t,\varphi(t))$. Zeigen Sie, dass

$$\varphi(-t) = \varphi(t)$$

für alle $t \in (-T; T)$ gilt.

(Hinweis: Betrachten Sie die Abbildung $t \mapsto \varphi(-t)$.)

Bitte wenden

¹Wenn eine Aufgabe in dieser Form gestellt ist, müssen Sie immer begründen, wieso es keine weiteren Lösungen gibt.

4. Aufgabe (4 Punkte)

Für $\alpha \in \mathbb{R} \setminus \{0,1\}$, ein offenes Intervall $I \subset \mathbb{R}$ und stetige Funktionen $g,h \colon I \to \mathbb{R}$ betrachten wir die Differentialgleichung

$$\varphi'(t) = g(t) \cdot \varphi(t) + h(t) \cdot \varphi(t)^{\alpha}$$

auf I, wobei $\varphi(t) > 0$ vorausgesetzt wird.

(a) Zeigen Sie, dass eine positive Funktion φ genau dann eine Lösung dieser Differentialgleichung ist, wenn die Funktion $\psi:=\varphi^{1-\alpha}$ die Differentialgleichung

$$\psi'(t) = (1 - \alpha)(g(t) \cdot \psi(t) + h(t))$$

löst.

(b) Bestimmen Sie eine positive Lösung der Differentialgleichung $x' = \frac{x}{3t} + tx^4$ mit x(1) = 1.