Übungen zur Analysis II

Universität Regensburg, Sommersemester 2014

Prof. Dr. Bernd Ammann / Dr. Nicolas Ginoux

Abgabe am 16.4.2014 bis 12 Uhr

Bitte jedes Blatt mit Ihrem Namen und der Nummer Ihrer

Übungsgruppe versehen und alle Blätter zusammenheften.

Übungsblatt 2

1. Aufgabe (4 Punkte)

Seien f und g zwei Riemann-integrierbare Funktionen auf einem Intervall [a;b] und $\lambda, \mu \in \mathbb{R}$. Zeigen Sie, dass dann die Funktion $\lambda f + \mu g : [a;b] \to \mathbb{R}, x \mapsto \lambda f(x) + \mu g(x)$, Riemann-integrierbar ist.

2. Aufgabe (4 Punkte)

Seien f und g zwei nichtnegative Riemann-integrierbare Funktionen auf einem Intervall [a;b]. Zeigen Sie, dass dann die Funktion $f\cdot g:[a;b]\to\mathbb{R}$ Riemann-integrierbar ist.

3. Aufgabe (4 Punkte)

Für a < b betrachte man die Abbildung

$$\|\cdot\|_1 : \mathcal{R}[a;b] \longrightarrow \mathbb{R}$$

$$f \longmapsto \|f\|_1 := \int_a^b |f(x)| dx.$$

Zeigen Sie:

- (a) Für alle $f \in \mathcal{R}[a;b]$ gilt $||f||_1 \ge 0$. Gibt es $f \in \mathcal{R}[a;b]$, $f \ne 0$, mit $||f||_1 = 0$? Begründen Sie Ihre Antwort.
- (b) Für alle $\lambda \in \mathbb{R}$ und $f \in \mathcal{R}[a; b]$ gilt $\|\lambda f\|_1 = |\lambda| \cdot \|f\|_1$.
- (c) Für alle $f \in \mathcal{R}[a; b]$ und $g \in \mathcal{R}[a; b]$ gilt $||f + g||_1 \le ||f||_1 + ||g||_1$.

Bitte wenden

4. Aufgabe (4 Punkte)

Sei $(f_n)_n$ eine Folge reellwertiger Riemann-integrierbarer Funktionen auf einem Intervall [a; b].

- (a) Angenommen, die Funktionenfolge $(f_n)_n$ konvergiere gleichmäßig gegen eine Funktion $f:[a;b]\to\mathbb{R}$. Zeigen Sie, dass dann f Riemann-integrierbar ist und dass $\int_a^b f_n(x)dx \xrightarrow[n\to\infty]{} \int_a^b f(x)dx$ gilt.
- (b) Für jedes $n \in \mathbb{N}$ betrachte man die Funktion

$$f_n : [0;1] \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} n & \text{für } 0 < x < \frac{1}{n} \\ 0 & \text{sonst} \end{cases}.$$

Ist $f_n \in \mathcal{R}[0;1]$? Zeigen Sie, dass $(f_n)_n$ punktweise auf [0;1] gegen die Nullfunktion konvergiert. Gelten die Aussagen des ersten Aufgabenteils für diese Folge? Begründen Sie Ihre Antwort.