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Abstract. We compute the fundamental Dirac operator for the three-parameter-
family of homogeneous Riemannian metrics and the four different spin structures
on SUz/Qs, where Qs denotes the group of quaternions. We deduce its spectrum
for the Berger metrics and show the sharpness of Christian Bar’s upper bound for
the smallest Dirac eigenvalue in the particular case where SU2/Qsg is a homoge-
neous minimal hypersurface of S4.
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Throughout this paper and unless explicitly mentioned we denote by M the
quotient of SUs by the right-action of the group of quaternions Qg, i.e., the group

with 8 elements defined by {£Is,+A;,+As, +A3} with 4; := ( BZ (z) ,
0 ¢ 0 1 . . . .
Ag = < i 0 ) and Az := ( 1 0 > The manifold M is a 3-dimensional

compact connected spin homogeneous space and at the same time the simplest
example of homogeneous hypersurface in the round sphere with 3 different prin-
cipal curvatures, see e.g. [6] and end of Section 2.

Using classical techniques (see e.g. [2]) we first compute the Dirac operator of
M for any homogeneous metric and any spin structure:

Theorem 0.1

i) The manifold M carries a 3-parameter family of homogeneous Riemannian
metrics which are given by the orthonormal bases {X; = a1 A1, Xo =
ag Az, X5 = azAs} of su(2), where a1,a2,a3 € R*. Conversely, every
homogeneous metric on M is of that form.

it) The isotropy representation « of M is given in the basis (X1, X2, X3) of
su(2) by

a(xly) =13 a(+A,) = diag(1,—1,-1)
a(+As) = diag(—1,1,—-1) «a(£A43) =diag(—1,—-1,1).
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iii)

In particular the manifold M is orientable.

The manifold M is spin and carries exactly 4 spin structures, each one cor-

responding to one of the following group homomorphisms Qg N {-1,1}:
g0 =1 and Ker(e;) = {£Is, £A;} for j € {1,2,3}.

The finite dimensional Dirac operator D, corresponding to the irreducible
representation of SUy on the space V,, of homogeneous polynomials of de-
gree n in two variables is non-trivial only if n is odd. In that situation
D _p _ 163 +aia3 +ala3
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0) in case M carries the spin structure given by go,

D) = (=1)*ai(n —2k)op + (k + 1)(az + (=1)*az)vps
—1
tn—k+1(as — (~Drag)op_y, 0<k< ”T
+1 +3
D;(v%) = <a1 + 5 (az + CL3))U% + (ag — a3)v%
ifn=1(4) and
D) = —(=D*ai(n—2k)o + (k +1)(az — (=1)"a3)vp1
—1
+(n—k+1)(az + (=1)*az)vp_1, r
1 3
D;L(vanl) = <a1 _nt (a2 +a3)>vnT4 + nt (ag — ag)vana
if n=23(4).
1) in case M carries the spin structure given by €1,
D! () = (=1)*ai(n—2k)v, + (k+1)(az + (=1)*a3)vp 1
1
+(n—k+1)(ag — (=1)*az)vp_1,
n+1 n+3
D;L(vanl) = <a1 - (a2 + a3)> n-1 (ag — ag)vana
ifn=1(4) and
D;L(Uk) = —(—l)kal(n - 2]€)’Uk + (k + 1)(0,2 - (—1)ka3)vk+1
—1
H(n—k+1)(az + (=1)Faz)vp_1, 0§k<25—
1 3
D;('UnT—l) = <a1 s (as —|—a3))vnT_1 + 2t (a2 — ag)vas

ifn=3(4).



2)

az = az. Then the spectrum of the operator D + =}~
induced by ai,a> and the spin structure given by €; Zj € {0,1,2,3}) consists of
the following family of eigenvalues:

in case M carries the spin structure given by ea,

D;L(’Uk) = —(—1)ka1(n - 2/43)1% + (k’ + 1)(&2 - (—1)ka3)vk+1
-1
Fn—k+D(az + (~DFag)vey, 0<k< =
1 3
D;L(van) = (fa1+n+ (agfag))vanl+n;_ (ag + a3)va—s

ifn=1(4) and

D! () = (=1)*ai(n—2k)v, + (k+ 1) (a2 + (=1)*a3)ve1
-1
+n—k+1)(as — (~1)*az)vp_1, 0<k< ”T
n+1 n+3
D;L(vnT_l) = (— a - —5 (ag — ag))vnT_l +— (a2 + ag)vas
if n=3(4).
i case M carries the spin structure given by es,
Dy(ve) = —(=1)*ai(n— 2k} + (k + 1)(az — (=1)*az)v41
—1
tn—k+D(az+ (~Draz)oey, 0<k<’
1 3
D;(U%) = (—al _ ’I’L—2|— (a2—a3))1}n7,1 + n+ (a2+a3)v?

ifn=1(4) and

Dh(vg) = (=DFay(n—2k)vg + (k+ 1)(az + (=1)*az)vg41
-1
tn—k+D(az — (~Drag)oe_y, 0<k< nT
+1 +3
D;(U%) = (—a1+ n (a2—a3))v% + n2 (a2+a3)v%

ifn=3(4).

We deduce the spectrum of the Dirac operator D of M for the so-called Berger
metrics, which form a 2-parameter subfamily of homogeneous metrics:

Corollary 0.2 With the notations of Theorem 0.1, assume furthermore that

2, 2
2ai+aj

3o, 21d on M for the metric

0. for j =0,

U {a+ V(0 =2k — 1)2a3 + 4(n — k)(k + 1)a3
neN
n=1(4)

-5
|l€6{O,...,nT}even,a1+(n+1)a2}



U U {m=+ V(0 — 2k — 122 + 4(n — k)(k + 1)a3

neN
n=3(4)

|k € {1,...,%_5} odd,a; — (n+ 1)a2,fna1},

each eigenvalue having multiplicity n + 1 for the corresponding n.

1. forj=1,

U {m+ V(0 =2k — 1)2a3 + 4(n — K)(k + 1)a3
neN
n=1(4)

|k € {O,...,nT_E)} even,a; — (n + 1)a2}
U U {m=+ V(0 — 2k — 122 + 4(n — k)(k + 1)a3

neN
n=3(4)

-5
|k e {1,...,%} odd, a; + (n—i—l)ag,—nal},

each eigenvalue having multiplicity n + 1 for the corresponding n.

2. forj =2 and j =3,

U {al + \/(n — 2k —1)2a% + 4(n — k)(k + 1)a3
neN
n=1(4)

n—3
|k e {1,...,T} odd,fnal}
U U {m=+ V(0 =2k = 1)2a3 +4(n — k)(k + 1)a3

neN
n=3(4)

-3
|k€{0,...,nT}even},

each eigenvalue having multiplicity n + 1 for the corresponding n.

In the case where a1 = as = ag, i.e., M is a space-form with positive curvature,
we reobtain the Dirac spectrum computed by Christian Bar in [3, Thm. 2], see
Corollary 3.2.

On the other hand, considering M as embedded homogeneous hypersurface in
the 4-dimensional round sphere S* one could ask if the following inequality due
to Christian Bér [5, Cor. 4.3] is an equality:

9
M(D?) < T2+ 1), 1)
where \;(D?) is the smallest eigenvalue of the Dirac Laplacian on M (for the

induced metric and spin structure) and H is the mean curvature of M in S*.
This question takes its origin in the study of the equality case in Christian Bar’s



estimate [5, Cor. 4.3] for the smallest eigenvalue A;(D?) of the Dirac Laplacian.
If this inequality is an equality, then the mean curvature of the hypersurface has
to be constant, nevertheless the reverse statement has up to now neither been
proved nor been contradicted. We give a partial answer to that question for M:

Corollary 0.3 With the notations of Theorem 0.1, assume furthermore that
M carries a homogeneous metric coming from a minimal embedding in S* and
the spin structure described by 9. Then (1) is an equality.

The paper is organized as follows. In the first section we describe the metrics
and spin structures on M and thus prove Theorem 0.1 i) —i4i). In the second one
we compute the Dirac operator of M (Theorem 0.1 7v)) and the eigenvalue of
D; (Corollary 2.9), which in the case where M is a hypersurface of S* turns out
to coincide with the upper bound in (1), see Corollary 2.11. In the third section
we prove Corollary 0.2 and derive the Dirac spectrum of M in case its metric
either is of constant sectional curvature or comes from a minimal embedding in
5S4, see Corollary 3.2. We deduce in Corollary 3.3 the existence of non-zero real
Killing spinors in the first case and Corollary 0.3 in the other one.

Acknowledgement. This work provides a partial answer to a question set by
Christian Bar, whom the author would like to thank for his interest and support.
It’s also a pleasure to thank Christian Bar and Bernd Ammann for their remarks.

1 Metrics and spin structures on M

The Lie-algebra of Qg being trivial the adjoint representation « of the homo-
geneous space M is nothing but the restriction of the adjoint map SU; —
Aut(su(2)) to Qs, where su(2) denotes the Lie-algebra of SU;. We define the
scalar product (-, -) on su(2) by declaring the following basis to be orthonormal:

X1 = a1A1
X2 = a2A2
X3 = azAs,

where aj,as,a3 € R* are fixed parameters. The map « is given in the basis
(X17X2,X3) of 511(2) by

a(xly) = I3

a(x4;) = diag(l,—1,-1)
a(+A;) = diag(—1,1,-1)
a(+A;) = diag(-1,-1,1),

therefore it obviously preserves (-, -) which hence induces a homogeneous metric
on M. Using the form of «v in the basis (A1, A2, A3) computed above it is easy to
prove that every homogeneous metric on M comes from such a scalar product
on su(2), i.e., it admits {a1A41,a242,a3As} as orthonormal basis for suitable



ai, a2, a3 € R*. Note also that «a preserves the orientation of su(2), so that if we
choose (X7, X5, X3) as positively-oriented orthonormal basis of su(2) then « is
expressed in that basis by a map Qg — SOs.

We now examine the spin structures on M considering the metric and the o-
rientation given by (X1, X2, X3). From [2, Lemma 3] the manifold M is spin if
and only if its isotropy representation « lifts to Sping through the non-trivial

two-fold covering Spins £, SOs3, and in that case spin structures on M are
in one-to-one correspondence with those lifts, each one of those being uniquely
determined by a group homomorphism Qg — {—1,1}. Here Qg already lies in
SUs 2 Sping so that M is obviously spin. Denoting by & the inclusion Qg C SUs,
every spin structure on M is uniquely described by a map a : Qs — SUs of
the form a(h) = e(h)a(h) for every h € Qg, where ¢ : Qg — {—1,1} is a
group homomorphism. But there are exactly 4 such homomorphisms: the trivial
one g9 = 1 and the ¢;’s, j = 1,2,3, with Ker(e;) = {£I,+A;}. This proves
Theorem 0.1 ¢) — 4i3).

In the following we shall call the spin structure corresponding to €, -& the €,-spin
structure on M.

2 The Dirac operator on M

Let us denote by Spin,, L, Aut(X,,) the spinor representation in dimension n.
We recall the following theorem allowing the representation-theoretical compu-
tation of the fundamental Dirac operator on a homogeneous space, see e.g. [2,
Thm. 2 & Prop. 1]:

Theorem 2.1 Let M := G/H be an n-dimensional Riemannian homogeneous
spin manifold with G compact and simply-connected. Let p be a supplementary
subspace of b in g. Fix a p.onb (X1,...,X,) of p and let o« : H — SO,
be the isotropy representation of M expressed in the basis (X1,...,Xn). Let
a : H — Spin, be the lift of a to Spin,, induced by the given spin structure
of M and XgM — M be the spinor bundle of M associated with . Let G be
the set of equivalence classes of irreducible unitary representations of G (in the
following we shall always identify an element ofé with one of its representants).

i) The space L?*(M,%5M) splits under the unitary left action of G into a
direct Hilbert sum

P v, ® Homp(V,, £,) (2)
"/6@

where V., is the space of the representation v (i.e., v: G — U(V})) and
Homy (V,, 5,) = {f € Hom(V,,3,) s.t.

Vhe H, for(h) = (6,08) (R)o f}.

1i) The Dirac operator D of M preserves each summand of (2); more pre-
cisely, if (e1,...,e,) denotes the canonical basis of R™, then for every



v E CA;, the restriction of D to Vo, ® Hompy(V,,%,,) is given by Id ® D.,
where, for every A € Hompg (Vy,%,),

Doy(A) = — ek.AoTey(Xk)+(Z@ei+ 3 aijkei.ej.ek).A, (3)
k=1 i=1 i<j<k
and
1 n
Bi = §Z<[Xj>Xi]p7Xj>
j=1
1
aie = 7 (1Xi Xl X + ([X, Xalp, Xi) + ([Xk, Xilp, X))

(here and henceforth X, will denote the image of X € g under the projec-
tion g — p with kernel ).

The following statement will be useful for taking the symmetries of M into ac-
count, see Examples 2.4 below.

Lemma 2.2 Under the hypotheses of Theorem 2.1 let (-,-)' be a further ho-
mogeneous metric on M and f : G — G be a Lie-group-homomorphism
such that f(H) C H and f. := [T.f] is an orientation-preserving isometry
(T[E]M? < ’ >) - (T[e]M7 < ’ >/)

Then the pull-back spin structure f*Sping(TM) is described by

H — Spin,
h s [ le@of(h)-f

~

where J/‘\E Spin,, satisfies E(f) = fu.

Proof. The proof relies on the identity f. o Ad(g) = Ad(f(g)) o f« for every
g € G, which implies in particular

a(h) = f7 o a(f(h)) o f.

for every h € H.

Notes 2.3

1. Of course the homomorphism describing the pull-back spin structure in
Lemma 2.2 is well-defined since f is uniquely determined up to a sign.

2. One should pay attention that Lemma 2.2 can only be applied once p.o.n.b.
(X1,...,Xp)and (X1,..., X]) of pw.r.t. (-,-) and (-, -)’ respectively have
been chosen. Then all the objects above should be expressed in those bases,
see Examples 2.4 below.



Examples 2.4 Counsider again M := SU3/Qg, fix a1, as,a3 € R* and as above
set X = apAy for k € {1,2,3}. We write (M, (-, )a;,a2,a5.€;) for M endowed
with the metric and the orientation given by (X1, X, X3) and the ¢;-spin struc-
ture (5 € {0,1,2,3}).

1. Set X{ = Xl, Xé = —X2 and Xé = —Xg. Let f(Al) = Al, f(Ag) =
—Ay and f(As) := —Ags. Setting f(I2) := Iy and extending f linearly one
obtains a Lie-group-homomorphism SU; — SUs inducing an orientation-
preserving isometry (M, (-, )a;1 .a2,a5) — (M, (-, Va1, —as,—as)- The matrix
of f. = f in the bases (X1, X2, X3) and (X7, X}, X4) respectively is the
identity so that f: 1 can be chosen. Applying Lemma 2.2 the pull-back
of the e;-spin structure by f is then described by

Qs — SUs, h+—— ¢g;(h)f(h)

(remember that —I, € Ker(e;)), i.e., the pull-back of the o- (resp. €2-)
spin structure is the £1- (resp. £3-) one. In other words, changing the sign
of both as and a3 changes neither the metric nor the orientation, however
it permutes the go- (resp. €2-) spin structure with the - (resp. €3-) one.
In particular the Dirac operator on e.g. (M, (-, )4, ,az,a5, €0) coincides with
that of (M, (-,)a1,—as,—as>€1)-

2. Let o be a permutation of {0, 1,2,3} with ¢(0) = 0 and set X}, := a, (1) Ax
for k € {1,2,3}. Let f(Al) = Aa-—l(l), f(Ag) = A071(2) and f(Ag) =
g(0)As-1(3) where e(o) € {—1,1} is the signature of o. Setting in the
same way as just above f(I2) := I and extending f linearly one obtains a
Lie-group-homomorphism SUy; — SUs inducing an orientation-preserving
isometry (M, (-, Va1 ,a9.a5) — (M, (-, '>aa<1),aa(2>,aa(3))~ This time the ma-
trix of f. = f in the bases (X1, X, X3) and (X7, X}, X4) respectively is
not the identity, however it coincides with the matrix of f in the basis
(A1, A, As) so that, per definition of the universal 2-fold covering map,

~

FUfth) - f=h

for any lift fof f to SUy and every h € Qg. The pull-back through f of
the e;-spin structure is therefore the (¢; o f)-one, that is, the &, ;)-one. In
other words, permuting the coefficients a1, a2, a3 induces an orientation-
preserving isometry permuting the spin structure in the reverse way, the
€p-one staying unchanged under that transformation. In particular the
Dirac operator on (M, (-,)a;,a2,a5,€;) coincides with that of

(M, (-, '>an(1)7aa<2)»aa(3) ) 50_1(j))~

3. It is well-known that, for any fixed metric and spin structure on M,
the Dirac operators for the two different orientations are just opposite
from one another (this is always the case in odd dimensions). For exam-
ple, if one turns a; into —a; and lets as and a3 unchanged, then the
Dirac operator on e.g. (M, (-, ) —ay,a2,a3,€0) coincides with minus that of
(M,{-,")a1,—as,—as,€0), i.e., with minus that of (M, (-, )a;.a2,a5,€1)-



Note that Examples 2.4 essentially exhausts all possible isometric transforma-
tions of M since the only Lie-group-automorphisms f of SUs preserving Qg are
characterized by f(Ax) = €(k)Ag ) for some permutation o of {1,2,3} and
e(k) e {-1,1}.

We come now to the computation of the Dirac operator on M = SU3/Qg. We
begin with the part of the Dirac operator that does not depend on the repre-
sentation v of SUs. Note also that this part only depends on the metric chosen
on M and not on its spin structure.

Proposition 2.5 For the metric on M given by ai,a2,as we have 3; = 0 for

2 2 2 2 2 2
every j € {1,2,3} and aj23 = % In particular
3
a%a% + a%ag + a%a%
E Bjej - +aiazer - ez - ez = — Id.
=1 2(11&2(13

Proof: We compute the Lie-brackets [X;, Xj] for all 1 < j < k < 3. Since
A1A2 = —A2A1 = A3 we have

(X1, X2] = aias]Ar, As)

= 2(110,2143
2@1&2
= X37
as

and analogously [Xo, X3] = 229 X, [X3, X] = 24% X, We straightforward

deduce that B = 2 = 3 = 0. Furthermore, "
Q123 = (([X1, Xo], X3) + ([X2, X3], X1) + ([ X3, X1], X2))
_ 1 <2a1a2 + 2@2(13 + 2(110,3)
4 as aq as
2

a%a% + a%ag + a%a3

| =

2&1 asas
It remains to notice that, by convention, the complex volume form i[%]el -eg -
e3 = —ej - es - eg acts by the identity on X3. This concludes the proof.

O

We next determine the space of equivariant homomorphisms for each vy € S/\Ug
and each ¢;-spin structure on M. First recall that the irreducible unitary repre-
sentations of SUq are given by its natural action on the n+ 1-dimensional vector
spaces of all n-graded homogeneous complex polynomials in two variables: set,
for any n € N (we include n = 0)

Vi :={P € C|z1,22], P =0 or P homogeneous and d°P = n}.



Then SUs; acts on V,, through

Tn & SU2 — Aut(Vn)
A +—— (m(A): P PoRy),

where P o Ra(z) := P(zA) for every z = (21 22) € C2. From now on we shall
always work with the following basis of V,,:

(Pe(z1,22) == 20728 0<k <n).

Identifying Sping to SUs the spinor representation Sping s, Aut(X3) is equi-
valent to the standard representation SUy — Aut(C?). For every lift ¢; - @ of
the isotropy representation a of M the space of equivariant homomorphisms for
7, and for the e;-spin structure - that we shall denote by Homq, ., (Vy,, C?) - is
then given by

Homgq, «, (Vn, C*) = { f € Hom(V,,,C?) s.t. fom,(h) =¢c;(h)ho f VheEQs}.

We fix the following basis (Fy,..., F,,Go,...,Gy) of Hom(V,,C?) (which is
that of [2, p.73]): set, for every k € {0,...,n},

(1 0) ifl=Fkandk even

Fp.(P):=< (01) ifl=Fkandk odd
0 otherwise,
and
(01) ifl=kandk even
Gp(P):=<¢ (10) ifl=kandkodd

0 otherwise.

W.r.t. the bases (P,...,P,) and ((1 0),(0 1)) of V,, and C? respectively the
elements Fj, and G are described by matrices of the form:

0 ... 010 ...0 0 ... 000 0
Fk_(o...ooo...o)’ G’“_(o...()lo 0)
if k is even and

0 ... 000 ... 0 0 ... 010 ...0
Fk(o...010...0>’ G’“(o...ooo...o)

if k is odd, where the “1” always stands in the (k 4 1)S* column.
Lemma 2.6 Let M carry the €;-spin structure for j € {0,1,2,3}. Then

Homgqy ¢, (Vn, C?) = {0} if n is even. Moreover

0. for j =0 we have

P20 C(Fr+ Fu ) ifn=1(4)
Homqy e, (Vna(CQ) =

@;ﬁ C(Gr —Gn—k) ifn=3(4).

10



1. for j =1 we have

D12 C(Fi — Fuy)  ifn=1(4)
Homg, ¢, (Vi, C?) =

D2 C(Gy + Gi) ifn=3(4).
2. for j =2 we have

B2 C(Gr + Guy) ifn=1(4)
Homqy e, (Vn7(c2) =

P2y C(F — Fu_t) ifn=3(4).
3. for j =3 we have

EB;Z C(Gr —Gny) ifn=1(4)
Hoszy’Ss (Vna(CQ) =

EB,E C(Fg + Fo—k) ifn=3(4).

Proof: Since —I, € Ker(g;) any element f € Homgq,e,(Vy,C?) must satisfy
fomy(=I2) = —f, with 7, (=I3) = (=1)"Idy;,,, so that the condition reads

which requires f = 0 as soon as n is even.
From now on, we assume that n is odd. We compute m,(A4;) for j = 1,2 (re-
member that A; and Ay generate Qg): for every k € {0,...,n} and z € C?,

e =A@ ()

7
= Pk(—izl,izg)
= (—iz1)"M(ize)"
= (DR Rh

ie., {m, (A1)} (Py) = (—1)"%i" P,. Analogously,

(M4} P() = P (<Zl 22"(? 0>>
Py(izg,i21)

= (iz2)" " (i21)",

ie., {mp(A2)}(Px) = i"P,_k. The conditions f o m,(A4;) = €;(A1)A; o f for
[l =1, 2 then read

(

Pe) = ()M e (An)(Ar o £)(P)
(Pn

) = (1) i (Aa) (A o )(Py) @

f
f

11



for every k € {0,1,...,n}. From now on we denote by ( ?k ) = f(P) € C2
2k

We examine each case separately.
e Case j = 0: In that case the conditions (4) are equivalent to

(P = (=DM iAo f)(Py)
F(Pack) = (1) i(Ay 0 f)(Py),
that is,
fik = (- 1)]C En
foo = (=1 %
finok = (=1)"T for
fon—r = (— 1)n 1f

If n =1 (4) then those identities become

fik = (=1)* fix

for = —(=1)% fo
flnfk = f2k
fon—r = fik,

hence fix = 0 if k is odd (resp. for = 0 if k is even) and (fin_k, fon_k) =
(fak, f1x) for every 0 < k < an We deduce that

f=f10(Fo+Fn)+f21(F1+Fn—1)+-.-+f1%(FnT—1 +F%)

and the result in that case.
If n =3 (4) then those identities become

fik = —(=1)"fix
foe = (=D far
fin—x = —fox
anfk = _flka

hence fi = 0 if k is even (resp. for = 0 if k is odd) and (fip—k, fon—k) =
(= fok, —fix) for every 0 < k < 251, We deduce that

[ = fa0(Go — Gn) + f11(G1 — Gp—1) + ... + flnT—l(GnT—l — Gas1)

2

and the result in that case.
e Case j = 1: In that case the conditions (4) are equivalent to

F(P) = (=DM i(Ay o f)(Py)
F(Paer) = (=) T i(Az 0 f)(Py),
that is,
fik = (-1)k" " fuk
for = (F)FEE fyy
finek = (1" fop
fon—x = (1" fus.



If n =1 (4) then those identities become
fik = (=D* fux

for = —(=1)% fo
fin—k = —fo
fon—k = —fir,

hence fi = 0 if k is odd (resp. for = 0 if k is even) and (fin—&k, fon—k) =
(= fak, — f1x) for every 0 < k < ”T_l We deduce that

f=folFo=F) + fa(Fr = Fooa) + o+ froo (Feoy = Fap)

and the result in that case.
If n =3 (4) then those identities become

fik = —(=D*fux
for = (=1)" for
Sfinek = for

fon—k = fik,

hence fi1p = 0 if k is even (resp. for = 0 if k is odd) and (fip—k, fon—k) =
(fak, f1x) for every 0 < k < ”7*1 We deduce that

f= f20(G0 +Gn) —|—f11(G1 +Gn—1) —|—...—|—f1nT—1(GnT—1 +GnT+1)

and the result in that case.
e Case j = 2: In that case the conditions (4) are equivalent to

f(Pe) = (=DM iAo f)(Py)
f(Pook) = (=1)"7"i(Az 0 f)(Pp),

that is,
fik = (DR
for = (1R fyy,
finex = (=1)"7 foi
foner = (=1)"F fux.
If n =1 (4) then those identities become
fue === fu
for = (—1)¥ fai
Jin—k = for
fon—k = fik,

hence f1, = 0 if k is even (resp. for = 0 if k is odd) and (fin_k, fon_k) =
(fak, f1x) for every 0 < k < "7’1 We deduce that

f = f20(Go+ Gpn)+ f11(G1 + Gr-1) +---+f2nT71(Ganl +GnT+1)

and the result in that case.
If n = 3 (4) then those identities become

fik = (=D*fix

foar = (=1  fa
fln—k = 7f2k
f2n7k = _flkv
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hence fip = 0 if k is odd (resp. for, = 0 if k is even) and (fin—k, fon—k) =
(= fak, — f1r) for every 0 < k < "T_l We deduce that

f=FolFo=Fo) + fa(Fr = Faoa) + o fonoa (Faca = Fus)

and the result in that case.
e Case j = 3: In that case the conditions (4) are equivalent to

f(B) = (DM iAo f)(P)
F(Pak) = (=) i(Az 0 f)(Pr),

that is,
n+1
fie = (DM i
for = (—1)FT fy,
fink = (_1)%:f2k
Jonr = (=1)"=2 fur.
If n =1 (4) then those identities become
fik = —(=1)* fix
for = (—=1)* far
fink = —fo
f2n7k = _flka

hence fi; = 0 if k is even (resp. for = 0 if k is odd) and (fip—k, fon-k) =
(— fok, — f1x) for every 0 < k < 2. We deduce that

f= fQO(GO —Gn) +f11(G1 —Gp-1) +---+f2nT—1(GnT—1 _G"TH)

and the result in that case.
If n = 3 (4) then those identities become

fik = (=1)* fix

for = —(=1)" far
fin—r = for
fon—t = fik,

hence fix = 0 if k is odd (resp. for = 0 if k is even) and (fin_k, fon_k) =
(foks fik) for every 0 < k < 21 We deduce that

f:fIO(FO+Fn)+f21(F1+Fn71>++f2anl(Fanl +FnT+1)

and the result in that case. This concludes the proof.

It remains to compute the map 11,7, for every (odd) n.

Lemma 2.7 The endomorphisms Tr,mn(X;), 1 < j < 3, are given in the basis
(Po, ..., Py) of Vi by:

{T,mn(X1)HPy) = —iai(n—2k)P
{T1,mn(X2)}(Pr) = dag((n—k)Pry1 +kPp1)
{T1,m(X3)}(Pr) = a3(—(n—k)Pey1 +kPr_1)

for every k € {0,...,n}, with the convention P_1 = P41 = 0.
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Proof: For every X € suy, P € V,, and z € C?, we have
d
{Tumn(X)}(P) (2) = —liss (Po Rexpex)) (2)

d
= %'t:o (PORexp(tX)(Z))

o (P(exp(1))
— d.P(zX)
oP oP
= X0 + g (2) (X,
Since zA; = (—iz1 iz2), 2As = (ize iz1) and zA3 = (—z2 2z1) we have, for every
ke{0,...,n}

{T,mn (X0)}(Pr) = an{Ti,mn (A1) }(Pr)
_ . aPk . 8Pk
= o <zzl%(z) + zzzaZQ(z)>
= —iar ((n—k)z12] "1 2E — ko2 R

= —iay ((n— k)zp Rk — sz‘kzg)

—ial(n — Qk)Pk
For X5 we have

{T,mn(X2)}(Pr) = ax{T1,mn(A2)}(Pk)
_ . aPk . 8Pk
= ay <zz2821(2) + 121322(2))
ias ((n — k)2 F 1At 4 ep R AT

= a3 ((n — k)Pk;Jrl + kPkfl) s
and for X3 we obtain

{Tr,mn(X3)}(Pr) = as{Tr,mn(A3)}(Pr)
0P 0P

= a3 <Zzazl(z) + 21822(2)>
= a3 (f(n — k)z?_k_lz;ﬁ'l + kz?_k"'lzg_l)
= az(—(n—k)Pxy1 +kPr_1).
Note that the above expressions for {11,7,(X2)}(Px) and {T1,7,(X3)}(Px) are

also valid for £k = 0 or k = n with the convention P_; = P, 11 = 0. The result
follows.

O

We now compute the component D, of the Dirac operator of M acting on
Homgy ., (Vi, C?), see (3). We adopt henceforth the following convention: Fj, :=
Gr:=0assoon as k ¢ {0,...,n}.
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The fix part of D,, has already been computed in Proposition 2.5, so that only
the endomorphism D), of Homgqy ¢, (V;,, C?) given by

3
D;LA = — Zej Ao TIQﬂ'n(Xj)

=1

for every A € Homgqy ¢, (Va, C?), remains to be made explicit.

First note that the Clifford product by e; can be identified with the matrix
multiplication by A; for j € {1,2,3}.

Furthermore, it is straightforward to show using Lemma 2.7 that, for every
ke{0,1,...,n},

FkOTIQWn(Xl) = —ial(n—2k)Fk
Fk [¢] TIQﬂ-n(XQ) = ?:CLQ ((n — k’ + 1)Gk_1 + (k’ + 1)Gk+1)
FkOleﬂ'n(Xg) = a3 (—(Tl—k‘-l—l)Gk_l —‘r(k‘-i—l)Gk_H).

Those identities still hold for £ = 0 or n using our convention above on the Fj’s
and Gy’s. To obtain the corresponding identities on the Gj’s one just has to
exchange the roles of F; and G| for every [:

Gk o T127Tn(X1) = —ial(n - 2/€)Gk
GkOTI27Tn(X2) = ag ((nfk+1)Fk_1 -+ (k’+1)Fk+1)
GkOleﬂ'n(X?,) = a3 (—(n—k}+1)Fk_1+(kj+1)Fk+1).

We deduce the following set of identities:
(Fi = Fyp) o Timn(X1) = —ias(n — 2k)(Ey F Fr_s)
(Fi + Fyp) o Timn(Xa) = das ((k: +1)(Grgr £ Grio1)
+(n—k+1)(Gpo £ Gn,kﬂ))
(Frp £ Frg) o Tr,mn(X3) = a3((k + 1)(Grg1 F Gr—i—1)
— (0= k+1)(Gro1 F Gnpr))
(Gr + G ) 0 Tiymn(X1) = —ias(n — 2k)(Gi T Go_sp) (5)
(G Gp) 0 Timn(X2) = iz ((k+ 1)(Fip + Fuop)
Fn—k+1)(Fpq+ Fn,kﬂ))
(Gr £Gp_p) o T1,mp(X3) =as ((k + 1) (Frg1 F Frok-1)
—(n—k+1)(Fe1 ¥ Fn_k+1)).

On the other hand, it is also a short calculation to show

Ay - (Fkiank) = (_1)k+17f.(Fk$Fn7k)

Ag - (Fp £ Fpog)  =i(Gr + Gny)

Az - (Fk: + ank) = (_1)k+1(Gk + ankr) (6)
A1 . (Gk + ank) = (—l)ki(Gk + ank)

Ay - (Gk + ank) = ’L(Fk + Fn,k)

As - (Gr £ Gpog) = (D Fy ¥ Fay)



Bringing (5) and (6) together we deduce that

3
D)(Fr & Foo) ==Y e+ (Fi & Fog) 0 T, ma(X;)
j=1

3
= —ZAJ(Fk:tank)oTizﬂn(Xﬂ)

j=1
2 ay(n — 2k)A; - (Fi F Fay)
—iagAs - ((k +1)(Grsr & Gpr) + (n— b+ 1)(Gry £ Gn,kﬂ))
a3y - (b +1)(Grsr F Gg1) = (0= k+1)(Gr1 F Goyi))
€ (“1)*ar(n — 28)(Fy £ Foop)
+az ((k + D) (Frp1 £ Fogo1) +(n =k +1)(Fr1 £ an/chl))

+(=1)*ay ((k F ) (Fsr £ Fupot) — (n— k+ 1)(Fpey £ Fn,kﬂ))
= (—l)kal(n — 2]€)(Fk + ank)
+(k -+ 1)((12 + (—1)ka3)(Fk+1 + Fn—k—l)
+(n—k+1)(az — (=1)*a3)(Fy_1 + Fy_p41)-
Similarly,

3
Dy (Gr+Grg) = =D Aj - (Gr + Gpy) 0 Ty ma (X))
j=1
G
= dai(n—2k)A1 - (Gk F Gn—k)

—iaz Ay - ((k+ 1)(Fisr & Faogr) + (0 — K+ 1)(Feor + Fupp) )

a3z - (k+ 1) (Pt F Faopr) = (0= b+ 1)(Feo1 F Faoisn))

@ —(=Dkar(n — 20)(Gr £ Gaor)

taz (k4 1) (Grsr & Go1) + (0 =k +1)(Gro1 % Grgsn))

(—1)ka3 ((k + 1)(Gk+1 + Gn—k—l) — (n —k+ 1)(Gk_1 + Gn—k-‘,—l))
(=D*ay(n — 2k)(Gy £ Gni)

+(k+1)(az — (=1)*a3)(Gry1 £ Gnor—1)

+(TL —k+ 1)(&2 + (—1)ka3)(Gk,1 + Gn,kJrl).

Note that, for k = ";1, Fyi1+F,_j—1 =+x(Fxy+ F,_) and the same holds for
the G}’s, so that

D;L(FL*I :tFL“)
2 2

= (-UnT_lal(Fg + Fui1)
2 2

n+1
2

oy (4 (<1)"F a3)(Faps + Faca)
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+— (a2 = (—1)"7 a)(Fazs + Fuss)
no 1 n—1
- ((—1)Tla1:|:n+ (4 + (~1) " 03) ) (Faza % Fun)
3 "
B @ = (1) ) (Fas & Fags)

and in the same way

D} (Guzr * Gusa)

n—

= —(_]_) )

“01(Gazs + G

1 0~ (1) ) (Gaps £ Ga)
+2 ;r 3(a2 + (—1)%1@3)(6'%3 + Gugs)

= (DT @ - (1) 0)) (G £ Gap)
— 2+ (~1) T 00) (Gos £ G,

Denoting by (vg, ... ,v%) the basis of Homqy ¢, (Vn, C?) computed in Lemma
2.6 we conclude the proof of Theorem 0.1 iv).

Note 2.8 From Theorem 0.1 iv) the matrix representing the operator D, in the
basis (vg, . . . ) Unct ) is not symmetric. Beware however that this basis does not
take Aq, As, A3 into account the same way and turns out not to be orthonormal.

We now make the eigenvalue of Dy explicit:

Corollary 2.9 Fiz j € {0,1,2,3} and let €1,e2,e3 € {—1,1} be defined by
€ = —(=1)%0F% for | € {1,2,3}. Then under the assumptions of Theorem 0.1
the following number is an eigenvalue of the Dirac operator of M for the spin
structure given by €; and the metric induced by a1, a2, a3:

—(62(12 — 63&3)204% + 2&2&3(62&2 + 63&3)@1 — a%a%

2&1 aza3

If in particular esesagas > 0 then there exists a; € R* such that for the corres-
ponding metric the Dirac operator of M has a non-zero kernel.

Proof: For n =1 the operator D!, can be expressed from Theorem 0.1 as
Dll = (61(11 + €209 + Egag)Id
for the ¢;’s defined above (beware that they depend on j). Therefore the corres-
ponding Dirac operator D,, is given by
a%a% + a%a% + a%a% )Id
2&1&2&3

Dy

(61(11 + €209 + €303 —

2.2 2,2
—(62&2 — 63(13) ai + 2(120,3(62(12 + 630,3)0,1 — asas d
2&1@2@3 ’
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from which the first statement follows.
An elementary computation shows that, if esezasaz > 0, then the numerator of
the eigenvalue vanishes for

CLQGg(EQ(LQ + 63(13) + 2(6263@2&3)%

(62612 - €3a3)2

a; =

in the case esas # e3as and
€203

4

if eaas = ezas. Note that none of those numbers can vanish because of asaz # 0.
This concludes the proof.

ap =

O

Notes 2.10

1. It follows from Corollary 2.9 that, for any given spin structure on M, there
exists a 2-parameter-family of Riemannian metrics for which M admits
non-zero harmonic spinors. This is not a surprise since the existence of
such metrics already follows from a purely theoretical result by Christian
Bér [4]. However we can make some of those metrics explicit here.

2. There may exist non-zero harmonic spinors for other metrics on M and
possibly without needing the condition esezazas > 0 from Corollary 2.9,
since we have up to now only studied the eigenvalue corresponding to one
particular representation.

3. In the same way the eigenvalue computed in Corollary 2.9 is not neces-
sarily the smallest one in absolute value. Choose for example the gyp-spin

4 2 3 2
structure, ag = az < 0 and a; €] -, —%[. Then m;;l %2 and — al;;j_az

are eigenvalues of the Dirac operator of M, the first one corresponding to
n = 1 (i.e., to the one computed in Corollary 2.9) and the second one
to n = 3, see Corollary 0.2. However one has from the assumptions on

8aiaz+aj
mgar] <

da1a2—a?
ai,as,as that | — 22,

2a1

We end this section with an important remark which actually constitutes the
main motivation for this work. The manifold M can be seen as hypersurface
of the 4-dimensional round sphere S* (with sectional curvature 1): consider the
manifold {4 € M3y 3(R), 'A = A, tr(A) =0 and tr(A?) = 2} = $* with metric
(A,B) — (A, B) := 1tr(AB). Let B := diag(\, —A—p, 1) € S* where A\, n € R
satisfy A+ 2 # 0, A # g, o+ 2X # 0 and A2 + (A + p)? + p? = 2. Set

N :={n(P)-B-n(P)™}, PeSU,} c S%

where SUy —— SOj is the universal 2-fold covering map. Then it is an elemen-
tary exercise to show that N is a hypersurface of S* which is diffeomorphic to
SU»/Qg, that the homogeneous metric induced by the inclusion map N C S4
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is given by a; := fm, ag = m, az = m and that choosing
vp = %diag(zu—l— M A=, —2X—p) € TpS* as unit normal vector field the in-
duced spin structure on N is the eg-one. Here beware that the metrics obtained
form a one-parameter strict subfamily of that of all homogeneous metrics on M.
Furthermore, the Weingarten endomorphism-field of N w.r.t. vp - seen as en-
domorphism of su(2) - is given in the basis (X7, X2, X3) of su(2) by

A LA !

Mat(.A) =\/g-diag(zu_'_)\,M_)\,—Z)\_'_’u

).
In particular, the mean curvature H := $tr(A) of N in $* wr.t. vp is

3V3 - (A + p)
Zp+ N (=N N+ )

Corollary 2.11 Under the hypotheses of Theorem 0.1 assume furthermore that
M sits in S*, i.e., that a1 = _2(Ai2;t)’a2 = Q(HI_/\),ag = m for some
A 1 € R satisfying A+ 2 # 0, X # p, p+2X# 0 and A% + (A + p)? + pu? = 2.
Then %(H2 + 1) is an eigenvalue of the Dirac Laplacian of M for the induced
(e0-)spin structure.

Proof. The result follows straightforward from Corollary 2.9 in the case j = 0
and from an elementary computation giving

9
(A+20)% (1 — AP (p+ 27)?

B —(as — a3)?a? + 2azaz(as + asz)a; — a%a% 2
o 2@1&2@3 ’

9 .9 _
Y =

d

Corollary 2.11 confirms what had been already noticed since Christian Bar’s
work [5] on extrinsic upper eigenvalue bounds for the lower part of the Dirac
spectrum: for any compact orientable hypersurface M™ with constant mean
curvature H (and carrying the induced metric and spin structure) in the (m+1)-
dimensional round sphere the number mTQ(H2 + 1) is an eigenvalue of its Dirac
Laplacian. However the question still remains open whether this eigenvalue

should be the smallest one or not.

3 Computation of the spectrum of the Dirac o-
perator on M for particular metrics
Although the matrices representing the Dirac operator D of M have a “simple”

shape (they are tridiagonal, see Theorem 0.1), their spectrum is still hard to
compute explicitly since there does not exist any general formula giving the
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eigenvalues of such matrices. It is however possible to compute them for parti-
cular values of the parameters a1, as, as € R*, i.e., for particular metrics on M.
In Corollary 0.2 we do it for the so-called Berger metrics on M (compare with
[2, p.71] where the author chooses a3 =1 = —a3 and a; = —% with T' > 0).
Namely, if we assume that as = a3 then the identities for D] (Fj + F,,_x) and
D! (G + G,,—i) become

D (Fy+F, ) = (=1)*ai(n—2k)(Fy+F,_;)
+(k+ 1)1+ (=1)*)ao(Fryp1 = Fr_p_1)
+(n—k+1)1 - (-1)"az(Fi—1 £ Fy_g41)

and
Dl (G £ Gyoy) = —(=Dai(n—2k)(Gy, £ Gy—y)

+(k+ 1)1 = (=DM az(Gry1 £ Gnog-1)
+(n—k+ 1)1+ (=1)")az(Gr1 £ Gnp11)

for every k € {0,..., ”Tfl} In particular, if k is even, then

D (Fx £ F, k) = ai(n—2k)(Fy+ F,_x)
+2(k 4+ Vag(Fry1 £ Frg—1)
and

D (G +Gn k) = —ai(n—2k)(Gr £Gp_y)
+2(n — k4 1)az(Gr-1 £ Gn—t+1)-
If k£ is odd then
D) (Fy+F,—) = —ai(n—2k)(Fx+F,_x)
+2(n — k4 1)ag(Fr—1 = Fr_g+1)
and
D (Gr £ Gn) = ai(n—2k)(Gr+Gh_k)
+2(k + 1)az(Gr+1 £ Gp_k—1).
We now consider each case separately. Remember that from Theorem 2.1 the

Dirac operator D restricted to V;, @ Homgg ¢, (Va, C?) is given by Id ® D,, where
2 2 2 2 2 2

D, = D/, — (Wﬂd. In particular the multiplicity of each eigenvalue

of D,, should be counted n + 1 times for the spectrum of D.

e Case j =0:

* Ifn=1(4): It follows from the identities just above and from Lemma 2.6

that the matrix of D), consists of 2! blocks on the diagonal of the form

( (n —2k)ay 2(n — k)as >
2(k+1)as —(n—2(k+1))ay

where k € {0,..., 252} is even and of the isolated eigenvalue a; +(n+1)as

(corresponding to k = Z231). The eigenvalues of each such 2 x 2-matrix
are simple and given by

ar £ 1/((n = 26)(n —2(k + 1)) + 1)a3 +4(n — k)(k + 1)a3
with ((n —2k)(n —2(k+ 1)) + 1) = (n — 2k — 1)2.
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* If n = 3 (4): It follows from the identities just above and from Lemma 2.6
that the matrix of D/, consists of 252 blocks on the diagonal of the form

( (n —2k)a; 2(n — k)asg )
2(k+1)as —(n—2(k+1))ay

where k € {1,..., 252} is odd and of the isolated eigenvalues —na; (cor-
responding to k = 0) and a; — (n + 1)ay (corresponding to k = 251).

This shows 0.
e Case j =1:

* If n =1 (4): It follows from the identities just above and from Lemma 2.6
that the matrix of D!, consists of ”T_l blocks on the diagonal of the form

( (n —2k)a; 2(n — k)asg )
2(k+1)as —(n—2(k+1))a;

where k € {0,..., "T*E’} is even and of the isolated eigenvalue a; —(n+1)as

(corresponding to k = Z251). The eigenvalues of each such 2 x 2-matrix

have already been computed in the case j = 0 above.

If n =3 (4): It follows from the identities just above and from Lemma 2.6
that the matrix of D], consists of 272 blocks on the diagonal of the form

(n —2k)a; 2(n — k)as
( 2(k+1las —(n—2(k+1))ay )

where k € {1,..., "T_‘L”} is odd and of the isolated eigenvalues —nay (cor-
n—1

responding to k = 0) and a; + (n + 1)as (corresponding to k = 25=).

2
This shows 1.
e (Case j =2 or j = 3: Since as = ag the Dirac spectra for the e5- and €3- spin
structures coincide, see Examples 2.4.2 with o = (2 3).

* If n =1 (4): It follows from the identities just above and from Lemma 2.6
that the matrix of D], consists of 2% blocks on the diagonal of the form

(n —2k)a; 2(n — k)as
( 2k+1)as —(n—2(k+1))ar )

where k € {1,..., 252} is odd and of the isolated eigenvalue —na; (cor-
responding to k = 0).

* If n = 3 (4): It follows from the identities just above and from Lemma 2.6

that the matrix of D/, consists of ! blocks on the diagonal of the form

( (n —2k)ay 2(n — k)asg )
2(k+1)as —(n—2(k+1))ay

where k € {0,..., 252} is even.

This shows 2. and concludes the proof of Corollary 0.2.
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Note 3.1 Of course one should understand each upper bound (e.g. 252) for
the possible values of & in Corollary 0.2 as follows: if for a given n it is negative
then the corresponding eigenvalues do not appear. For example if M carries the
€p-spin structure and n = 1 then D, + %Id has only one eigenvalue, namely
a1 + 2ao (with multiplicity 2). Similarly, if j = 2,3 and n = 1, then only —a,
appears with multiplicity 2.

One could in a similar way compute the spectrum of the Dirac operator for
as = —ag, in which case the spectra would coincide for the €g- and the &1-spin
structure on M (use Examples 2.4).

We end this section with deriving from Corollary 0.2 the spectrum of the Dirac
operator on M for any of the 4 spin structures and the following metrics: for one
of the metrics with constant sectional curvature and for one of the 6 metrics
induced by minimal isometric embeddings into S* (i.e., for (A = 0,u = +1),
(A=41,p=0) or (A, ) = £(1,—1), see end of Section 2). In the first case
the spectrum has already been computed by Christian Bér in [3, Thm. 2] and
it can be easily checked that his results coincide with ours.

Corollary 3.2 Under the hypotheses of Theorem 0.1, assume furthermore that

i) a1 = ag = ag = 1. Then the spectrum of the Dirac operator of M w.r.t.
the eg-spin structure consists of the family

3+ 4k with multiplicity 2(k + 1)(2k + 1)
S 4+4k+2  with multiplicity 4k(k + 1)

—3 — 4k —1 with multiplicity 2k(2k + 1)

—3 — 4k — 3  with multiplicity 4(k + 1)(k + 2)

where k runs over N and w.r.t. any of the other spin structures €; of the
family

3 +4k with multiplicity 2k(2k + 1)
S+4k+2  with multiplicity 4(k + 1)

—3 — 4k — 1  with multiplicity 2(k + 1)(2k + 1)

—3 — 4k —3  with multiplicity 4(k + 1)
where k runs over N.

ii) a1 = —3,a2 = az = % Then the spectrum of the Dirac operator of M
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* w.r.t. the eg-spin structure is given by

U {% + i\/(n—Qk‘ —1)2+16(n—k)(k+1)

neN
n=1(4)

|k€{0,...,nT_5}even,g+1}

g U {%ii\/(n_Qk—l)2+16(n—k)(k+1)

|ked{l,...,

n—>5 n n+3
5 Jodd =5, = }

each eigenvalue having multiplicity n + 1 for the corresponding n.

* w.r.t. the e1-spin structure is given by

U {% + i\/(n—Qk— )24+ 16(n —k)(k + 1)

neN
n=1(4)

\kG{O,...,nT_E)}even,f%}

U U { +2 \/n—2k—1) F16(n—k)(k+1)
s (a)

ntdy

n
kedl,...
kel -

each eigenvalue having multiplicity n + 1 for the corresponding n.

* w.r.t. the eo- or e3-spin structure is given by

U { + 2 \/ 2k —1)2+16(n—k)(k+1)
et

ke {l,...,

n+3}

U U {%ii\/(n—%—1)2+16(n—k)(k+1)
S (a)

|k€{0,...,nT_3}even},

each eigenvalue having multiplicity n + 1 for the corresponding n.

Proof: In case a; = az = az = 1 one has on the one hand

(n—2k —1)%a? +4(n — k)(k+ 1)a2 = (n+ 1)?
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2 2
for every possible k£ and on the other hand %}% = % The result in i) straight-
forward follows using Corollary 0.2 and Examples 2.4.
Assuming now a; = —% and ag = az = 3, one has

ar £ \/(n— 2k — 122 + 4(n — k)(k + 1)a3

1 V(n—2k—1)2+16(n — k)(k + 1)
4

2, 2
2a7+a3

32 = —%. This concludes the proof.

and
O

One can deduce from Corollary 3.2 and Examples 2.4 the spectrum of the Dirac
operator of M for any spin structure and any metric induced by (a1, a1, a1) with
a; € R* or any metric induced by a minimal embedding into S*: in the first
case rescale by a1, in the second one exchange the roles of a1, as, ag and possibly
multiply all of them by —1.

For the next corollary recall that, for a given § € C, a (-Killing spinor on a
spin manifold N is a smooth section ¥ of the spinor bundle of N such that
Vxi¢ =X - for every X € TN.

Corollary 3.3 Under the hypotheses of Theorem 0.1 the following holds:

i) If a1 = as = ag = 1 then the eo-spin structure is the only one for which M
admits a non-zero space of Killing spinors, which is then 2-dimensional
and associated to the constant 3 = —%. In particular % is in absolute
value the smallest eigenvalue of the Dirac operator of M for the €q-spin
structure.

i) If a1 = —%,ag = a3 = % and M carries the eg-spin structure then % 18
in absolute value the smallest eigenvalue of the Dirac operator of M. In
particular inequality (1) is an equality on M for the induced metric and

spin structure.

Proof. If a3 = as = a3 = 1 then on the one hand the metric induced on M
has constant sectional curvature 1; on the other hand Corollary 3.2 7) implies
that the smallest eigenvalue in absolute value of the Dirac operator of M is
% with multiplicity 2 w.r.t. the g¢-spin structure and —% with multiplicity 2
w.r.t. any of the other spin structures (both obtained for n = 1, i.e., they are
the eigenvalues computed in Corollary 2.9). Now M carries a non-trivial Killing
spinor if and only if the smallest eigenvalue of its Dirac Laplacian coincides with
T. Friedrich’s lower bound ﬁ inf s (Scalys) in terms of the scalar curvature

of M, see [7]. Here 4(33_1) Scaly = % so that M carries a 2-dimensional space of
non-zero Killing spinors only for the gp-spin structure; in that case the corres-

ponding constant 3 should obviously be —%. This shows i)
1

Ifa; = *i’ az = az = 5 and M carries the go-spin structure then from Corollary
3.2 ii) the eigenvalues corresponding to n = 1 and n = 3 are % and f%, % with

25



multiplicities 2, 4 and 4 respectively. Next we show that all eigenvalues corres-
ponding to n > 5 are greater than % in absolute value. Since this is obviously
the case for 5§ + 1, —5 and ”T'H” we just have to deal with the eigenvalues
1+1,/(n—2k —1)2+16(n — k)(k + 1), of which absolute value is greater than

% if and only if

(n—2k—-1)2+16(n—k)(k+1)—64>0 (7)

for every k € {0,...,252}. The Lh.s. of (7) is a trinomial in k with negative
dominant coefficient and of which roots are given by ”T_l + \/M?w. If

n25then%f\/w<0<%<%+ w,whichshows

that (7) is satisfied. Hence % is in absolute value the smallest eigenvalue of the

Dirac operator. Apply Corollary 2.11 to the case A =0 and g = 1 to conclude.

|

That M admits a 2-dimensional space of Killing spinors w.r.t. its gg-spin struc-
ture and any normal metric is also not a surprise, see [1, Cor. 5.2.5 (1b)]. More-
over, following the symmetry arguments already used above (see Examples 2.4)
Corollary 3.3 ii) actually holds for any of the metrics induced by a minimal
embedding into S*. This proves Corollary 0.3.

Corollary 0.3 provides a further example (after geodesic spheres [5] and gene-
ralized Clifford tori [8]) of homogeneous hypersurface of the round sphere for
which Christian Bér’s inequality [5, Cor. 4.3] is an equality for the smallest Dirac
eigenvalue. Here it should furthermore be noticed that, still under the assump-
tions of Corollary 0.3, the multiplicity of the smallest eigenvalue of the Dirac
Laplacian on M is greater than the corresponding one on the 3-dimensional
round sphere. This shows an analogy with the generalized Clifford tori tested in
[8], on which the multiplicity of the smallest eigenvalue of the Dirac Laplacian
is also greater than or equal to the corresponding one on the round sphere of
same dimension.

We conjecture that the inequality in [5, Cor. 4.3] for the smallest Dirac eigen-
value is an equality for every homogeneous hypersurface in the round sphere.
We refer to [9] for further work in this direction.
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