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Abstract: We describe the standard CW-structure of the Grassman-

niansGn(Rn+k) andGn(R∞). We stick to [1, App. pp. 519-523] for basics

on CW-complexes and to [2, Sec. 1.2 pp. 27-34] for the CW-structure

itself.

1 CW-complexes

Definition 1.1 (inductive definition) A CW-complex is a Hausdorff topo-
logical space X which can be written as X =

⋃
n∈NXn, where:

i) for n = 0 the subset X0 is a discrete set (collection of points with the
discrete topology);

ii) for each n ≥ 1 the subset Xn arises as Xn = Xn−1
⋃
fn

∐
α∈In D

n
α,

where In is an arbitrary set, Dn
α := Dn := {x ∈ Rn | |x| ≤ 1} is the

usual closed n-dimensional ball and fn :
∐

α∈In ∂D
n
α −→ Xn−1 is a

continuous map; the topology of Xn is the quotient topology induced by
fn, the standard topology on Dn

α and that of Xn−1;

iii) the space X has the topology induced by the direct limit of the non-
decreasing family (Xn)n (with inclusions as maps), that is, a subset Ω
of X is open in X if and only if Ω ∩Xn is open in Xn for all n.

Recall that, for two topological spaces X, Y and a map f : A −→ X defined
on a subset A of Y , the space X

⋃
f Y is the quotient set X

∐
Y/a ∼ f(a)

endowed with the quotient topology.
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The subspace Xn is called n-dimensional skeleton of X. An n-dimensional
(open) cell of X is the homeomorphic image under the quotient map of
int(Dn

α) := Dn
α \ ∂Dn

α for some α ∈ In. We shall denote that cell by enα.
Each cell enα has a so-called characteristic map φnα : Dn

α −→ X, which is

the composition Dn
α

incl.→
∐

β∈In D
n
β

incl.→ Xn−1
∐∐

β∈In D
n
β

proj.→ Xn
incl.→ X. By

construction, φnα is continuous and maps int(Dn
α) homeomorphically onto the

open cell enα.

By definition, each CW-complex can be written as the disjoint union of its
open cells (of different dimensions). Note that this decomposition into cells
need not be unique; e.g. a circle can be written as a CW-complex with one
0- and one 1-cell or with two 0- and two 1-cells. A finite CW-complex is a
CW-complex having only a finite number of cells (in that case, X = Xn for
some n ∈ N). A subcomplex of a CW-complex X is a closed subset A ⊂ X
which the union of cells of X.

Standard examples of CW-complexes include spheres, (real or complex) pro-
jective spaces and... Grassmannians, see Section 2.

A CW-complex can be completely described by its cells and the correspon-
ding characteristic maps:

Proposition 1.2 (direct definition) Let X be a Hausdorff topological space
and φnα : Dn

α −→ X be a family of maps, where α ∈ In for some (possibly
empty) set In and n runs over N1. Then the (φnα)α,n are the characteristic
maps of a CW-structure on X if and only if the following conditions are
fulfilled:

1. each φnα is continuous and maps int(Dn
α) homeomorphically onto its

image, which we denote enα;

2. the enα’s are disjoint from each other and their union is X;

3. for all α, n the subset φnα(∂Dn
α) lies in a finite union of ekβ’s, where

k ≤ n− 1;

4. a subset A ⊂ X is closed in X if and only if A ∩ enα is closed for all
α, n.

The proof uses the fact that a subset A ⊂ X is closed in X if and only if
(φnα)−1(A) is closed in Dn

α for all α, n. We refer to [1, App. pp. 519-523] for

1Note this N0 if you prefer.
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a proof of Proposition 1.2 and further basic or less basic remarks on the to-
pology of CW-complexes (e.g. that CW-complexes are always paracompact
and locally contractible).

Further on in this seminar we shall make use of the following

Theorem 1.3 (Whitehead) Let f : X −→ Y be a continuous map between
connected CW-complexes. Assume πn(f) : πn(X) −→ πn(Y ) to be a group-
isomorphism for all n ∈ N. Then the map f is a homotopy equivalence.

The reverse statement (“f homotopy equivalence =⇒ all πn(f) : πn(X) −→
πn(Y ) are group-isomorphisms”) is, of course, trivial. For the introduction of
higher homotopy groups and the proof of Theorem 1.3, we refer to [1, Sec.
4.1].

2 Real Grassmannians as CW-complexes

Recall that the (real) Grassmannian of n-dimensional vector subspaces in
Rn+k (where n, k ∈ N) is defined as

Gn(Rn+k) := {n-dimensional vector subspaces of Rn+k}.

It is a closed manifold which is homeomorphic to the nk-dimensional ho-
mogeneous space O(n+ k)/O(n)×O(k). In just the same way one can define

the Grassmannian Gn(R∞) as the collection of all n-dimensional vector sub-
spaces of R∞ :=

⊕
l∈N R. Notice that it can be written as the direct limit

Gn(R∞) =
⋃
k∈NGn(Rn+k) (with inclusions as maps). We endow Gn(R∞)

with the topology induced by that direct limit.

We begin by fixing n, k and look for a CW-structure on Gn(Rn+k). This
is done with the help of the so-called Schubert symbols of a matrix. Given
V ∈ Gn(Rn+k), choose a basis of V . W.r.t. the canonical coordinates of Rn+k,
this basis defines a matrix A ∈M(n+k)×n(R) of rank n. Elementary operations
on the columns of A (see below) allow for A to admit the following “echelon”
form: there exists an n-tuple (σ1, . . . , σn) ∈ {1, . . . , n + k}n with 1 ≤ σ1 <
. . . < σn ≤ n + k such that Aσjj = 1, Aij = 0 for all i > σj and Aσjk = 0
for all k 6= j [figure]. Namely the following algorithm can be implemented,
where the only allowed operations on the columns are permutations between
them or replacing a column by a “non-trivial” linear combination of them
(non-trivial so as to keep the rank maximal):
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• For each j ∈ {1, . . . , n} let mj := max({i |Aij 6= 0}) and j0 with
mj0 = max

1≤j≤n
(mj) (this j0 need not be unique of course). Up to permu-

ting the columns we can assume that j0 = n and, up to rescaling the
nth column by a non-zero scalar, we can assume that Amj0n = 1. We
set σn := mj0 and note that, by definition of σn, we have Aij = 0 for
all i > σn and all j. Replacing2 the column A·j by A·j − AσnjA·n for
all j < n (and this is an invertible transformation since in the basis
(A·j)j its matrix is upper triangular with only 1’s on the diagonal) we
can achieve Aσnj = 0 for all j < n.

• In the same way, we proceed inductively on the remaining columns
(A·j)1≤j≤n−1. Note that, at each step, necessarily σj < σj+1 holds be-
cause of Aσj+1k = 0 for all k < j + 1. One should also pay attention to
the elimination of the coefficients Aij for i 6= σj: namely for i < σj it
is the operation analogous to the one above, for i > σj we can still do
the same since the coefficients Akl remain unaffected whenever k > σj
and l > j (because of Akj = 0 for all k > σj) [figure].

• Obviously the number of σj’s we obtain at the end is the rank of the
matrix, which has not changed in the process, therefore we obtain the
desired tuple 1 ≤ σ1 < . . . < σn ≤ n+ k.

By the choice of operations on the columns of the original matrix, the columns
of the new echelon matrix still span V . However, it could be a priori possi-
ble for different echelon forms of A to exist. This is not the case. First, the
tuple (σ1, . . . , σn) has to be independent of the echelon form. To see this,
consider the family of canonical projections pj : Rn+k −→ Rn+k−j onto the
last n+ k− j coordinates, 0 ≤ j ≤ n+ k. Then the map {0, . . . , n+ k} → N,
j 7→ dj := dim(pj(V )), is obviously non-increasing with d0 = n and dn+k = 0
and the j’s with dj−1 > dj are exactly the σj’s. In particular those are
uniquely determined by V and not by the choice of echelon basis. Moreover,
two echelon bases (v1, . . . , vn) and (ṽ1, . . . , ṽn) have to coincide: for each j
decompose ṽj in the basis (v1, . . . , vn), then necessarily ṽj ∈ Span(v1, . . . , vj)
because of (ṽj)i = 0 for all i > σj; moreover ṽj has to be proportional to vj be-
cause of (ṽj)σi = 0 for all i < j; finally ṽj = vj because of (vj)σj = (ṽj)σj = 1.

On the whole, we obtain the

Lemma 2.1 Each V ∈ Gn(Rn+k) has a unique echelon basis and in parti-
cular provides a unique (σ1, . . . , σn) as above.

2We thank Nikolai Nowaczyk for correcting a mistake here.
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The tuple (σ1, . . . , σn) is called the Schubert symbol of the vector subspace
V . Now fix such a tuple σ := (σ1, . . . , σn) and consider the set e(σ) of those
V ∈ Gn(Rn+k) having Schubert-symbol σ. Then e(σ) canonically stands in
one-to-one correspondence with Rl, where l is the number of free entries
in the echelon basis, thus l =

∑n
j=1 σj − j =

∑n
j=1 σj −

n(n+1)
2

. Using the

definition of the quotient topology on Gn(Rn+k), the subset e(σ) equipped
with the induced topology is even homeomorphic to Rl, hence to int(Dl).
The set e(σ) is called Schubert cell associated to σ. It is not called “cell”by
chance:

Proposition 2.2 The Schubert cells are the cells of a CW-structure on the
Grassmannian Gn(Rn+k). In particular Gn(Rn+k) is a finite CW-complex

with

(
n+ k
n

)
cells.

Proof: By Lemma 2.1, cells corresponding to different Schubert symbols are
disjoint. Obviously, the union of all cells is Gn(Rn+k). To describe the glu-
ing maps, we introduce a slightly different echelon form as the one above.
More precisely, given V ∈ Gn(Rn+k), we claim the existence of a unique
orthonormal basis of V (w.r.t. the standard inner product on Rn+k) and a
tuple 1 ≤ σ1 < . . . < σn ≤ n+ k such that, for the matrix A of that basis in
the canonical coordinates, we have Aij = 0 for all i > σj and Aσjj > 0. For
instance, the Gram-Schmidt process applied to the echelon basis of Lemma
2.1 provides such a basis. Notice in particular that the row indices where the
“steps” appear coincide with the components of the Schubert symbol of V .
Again, there is actually only one such orthonormal echelon basis for V : if
(w1, . . . , wn) and (w̃1, . . . , w̃n) are two such bases, then argueing inductively
on j one shows that first w̃j ∈ Span({wk, 1 ≤ k ≤ j}) using the echelon
form, second w̃j ∈ R · wj using the induction step, third w̃j = ±wj using
|w̃j| = |wj| = 1 and finally w̃j = wj because of (w̃j)σj , (wj)σj > 0.
Now, given a Schubert symbol σ, consider

E(σ) := {(w1, . . . , wn) ∈ R(n+k)n | 〈wi, wj〉 = δij and wj ∈ Sσj−1+ for all i, j},

where Sl+ := {x ∈ Rl+1 | |x| = 1 and xl+1 ≥ 0} is the l-dimensional closed
upper half-sphere. Here and as usual, we identify Rl ∼= Rl×{0n+k−l} ⊂ Rn+k.
The set E(σ) can be seen as the set of orthonormal echelon bases of all
V ∈ Gn(Rn+k) having Schubert symbol σ, enlarged by those having Schubert
symbol σ′ with σ′j ≤ σj for all j and σ′j0 < σj0 for at least one j0 (for in E(σ)
we allow for the component (wj)σj to vanish).

Claim: The set E(σ) - endowed with the topology induced from R(n+k)n - is
homeomorphic to the closed ball Dq, where q =

∑n
j=1 σj − j.
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Proof of the claim: We proceed inductively on n. For n = 1 the result is trivial
since then E(σ) = Sσ1−1+

∼= Dσ1−1 (this remains true if σ1 = 1). For the step
from n− 1 to n we consider the projection onto the first factor π : E(σ) −→
Sσ1−1+ and show that it is isomorphic (hence homeomorphic) to the trivial fibre
bundle Sσ1−1+ ×E(σ′) −→ Sσ1−1+ , where σ′ := (σ2−1, . . . , σn−1); the induction
assumption then shows that E(σ′) ∼= Dl′ with l′ =

∑n
j=2 σj − 1 − (j − 1) =∑n

j=2 σj − j, hence E(σ) ∼= Dq with q = σ1 − 1 + l′ =
∑n

j=1 σj − j, which
is the result. To prove that π is isomorphic to the above trivial fibre bundle,
we construct as in [2] a continuous map p : E(σ) −→ π−1({nσ1}) which
maps each fibre π−1({x}) homeomorphically onto π−1({nσ1}) and such that
p|π−1({nσ1})

= id. Here nσ1 := (0, . . . , 0, 1) ∈ Sσ1−1 denotes the North pole of

Sσ1−1. Note that

π−1({nσ1}) = {(nσ1 , w2, . . . , wn) ∈ E(σ)}

∼= {(w2, . . . , wn) ∈
n∏
j=2

Sσj−1+ | (wj)σ1 = 0 and 〈wi, wj〉 = δij}

∼= {(ŵ2, . . . , ŵn) ∈
n∏
j=2

Sσj−2+ | 〈ŵi, ŵj〉 = δij}

∼= E((σ2 − 1, . . . , σn − 1)).

The map p can be defined as follows. Given v ∈ Sσ1−1, let rv ∈ O(n + k)
denote an3 orthogonal map sending v on nσ1 and restricting to the iden-
tity on {v, nσ1}⊥ (for example the direct sum of a rotation in the plane
Span(v, nσ1) with id{v,nσ1}⊥ does the job). In case v = nσ1 just take rv = id.
Then set p(v1, . . . , vn) := (nσ1 , rv1(v2), . . . , rv1(vn)) for all (v1, . . . , vn) ∈ E(σ).
Note that p(v1, . . . , vn) is orthonormal because of rv1 ∈ O(n + k) and that

rv1(S
σj−1
+ ) ⊂ Sσj−1+ for all j ≥ 2 because of nj ∈ {v1, nσ1}⊥ for all j > σ1;

in particular p(v1, . . . , vn) ∈ π−1({nσ1}). The map p : E(σ) −→ π−1({nσ1})
can be shown to be continuous and fibrewise bijective (since rv1 is bijective

Sσj−1+ → Sσj−1+ for each j ≥ 2). Since all fibres of π are compact and Haus-
dorff, the map p induces a homeomorphism π−1({v1})→ π−1({nσ1}) for each
v1 ∈ Sσ1−1+ . Now π× p : E(σ) −→ Sσ1−1+ × π−1({nσ1}) is continuous, bijective
(since p is fibrewise bijective) and because of E(σ) being compact (it is a
closed subset of a compact set) the map π× p is actually a homeomorphism.
This concludes the proof of the claim.

√

The map φσ : E(σ) −→ Gn(Rn+k), (v1, . . . , vn) 7−→ Span(v1, . . . , vn), is con-
tinuous by definition of the quotient topology on Gn(Rn+k). Its restriction
to int(E(σ)) induces a bijective map int(E(σ))→ e(σ) by the existence and

3Actually the map rv can be constructed so as to continuously depend on v.
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uniqueness of orthonormal echelon bases and the coincidence of the row in-
dices where the “steps” appear. By Brouwer’s theorem on the invariance of
the domain, φσ |int(E(σ))

must be a homeomorphism int(E(σ)) → e(σ). More-
over, φσ(∂E(σ)) is contained in a finite union of e(σ′) with σ′j ≤ σj for all j
and σ′j0 < σj0 for at least one j0, see definition of E(σ) above. On the whole,
Gn(Rn+k) can be constructed inductively (as in Definition 1.1) by beginning
with a point (take σ = (1, . . . , n)) and by attaching at each step finitely many
cells of the next possible dimension using the φσ above. This concludes the
proof of Proposition 2.2. �

Since Gn(R∞) can be obtained as the (topological) direct limit of the CW-
complexes Gn(Rn+k) and each inclusion Gn(Rn+k) ⊂ Gn(Rn+k+1) obviously
mapsGn(Rn+k) onto a subcomplex ofGn(Rn+k+1), the GrassmannianGn(R∞)
has a unique CW-structure such that all inclusions Gn(Rn+k) ⊂ Gn(R∞) are
again inclusions of subcomplexes.
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