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Abstract. We introduce the biharmonic Steklov problem on differential

forms by considering suitable boundary conditions. We characterize its

smallest eigenvalue and prove elementary properties of the spectrum. We

obtain various estimates for the first eigenvalue, some of which involve eigen-

values of other problems such as the Dirichlet, Neumann, Robin and Steklov

ones. Independently, new inequalities relating the eigenvalues of the latter

problems are proved.
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1 Introduction

Let (Mn, g) be an n-dimensional compact Riemannian manifold with nonempty smooth boundary
∂M . Denote by ν the inward unit vector field normal to the boundary and by ∆f := −tr(∇2f)
the Laplace operator applied to a smooth function f on M . The following fourth order eigenvalue
boundary problem 

∆2f = 0 on M
f = 0 on ∂M

∆f − q ∂f
∂ν = 0 on ∂M,

(1)

also called biharmonic Steklov problem I, or biharmonic Steklov for simplicity, was first introduced
by Kuttler and Sigillito [16] and Payne [19]. Its physical interpretation in terms of the deformation
of an elastic plate under the action of transversal forces can be found in e.g. [6, p. 316] and [26, p.
2637]. When M is a bounded domain in Rn, the spectrum of this problem has been studied in [6]
and proved to be discrete consisting of positive eigenvalues of finite multiplicities (see also [2] for
the case when the boundary is not smooth). Variational characterizations of the first eigenvalue q1
have been also given in [6] (see also [15]). Moreover, in the case of a ball, the spectrum has been
calculated explicitly.
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In the case of a compact n-dimensional Riemannian manifold M with smooth boundary ∂M , sharp
estimates for the first eigenvalue q1 of the biharmonic Steklov operator are given in [26] and [22].
It is shown that

q1 ≤
Vol(∂M)

Vol(M)
. (2)

In [22, Thm. 2], Raulot and Savo proved that, if M is a geodesic ball in a space form, then (2) is
an equality (see also [26, Thm. 1.3]). Under some assumptions on the Ricci curvature of M and
if the mean curvature of the boundary is bounded below by a positive constant H0, then the first
eigenvalue q1 also satisfies

q1 ≥ nH0.

Moreover, equality holds if and only if M is isometric to a ball of radius 1
H0

in Rn (see [26, Thm.
1.2] and [22, Thm. 2]). For other recent results on the biharmonic Steklov eigenvalue problem, we
refer to [8, 10] and the references listed therein.

On the other hand, recall that a compact Riemannian manifoldM with smooth nonempty boundary
∂M is called a harmonic domain [21, p. 893] if and only if it supports a (necessarily unique) solution
f to the Serrin boundary value problem

∆f = 1 on M
f = 0 on ∂M

∂νf = c on ∂M
(3)

for some constant c ∈ R. From [25, 27], we know that the only harmonic domains in Rn are the

Euclidean balls of radius nc = nVol(M)
Vol(∂M) . Independently, it is not difficult to check that a solution to

the Serrin problem (3) is an eigenfunction of (1).

The aim of this paper is first to extend the biharmonic Steklov problem (1) to the context
of differential forms. As we mentioned above, there is a relationship between problems (1) and
(3), hence the idea is to also define the Serrin problem on differential forms. For this purpose, we
assume that the manifold M carries a non-trivial parallel form and introduce the generalization of
(3) (see (4)). In this case, we show that M is a harmonic domain if and only if there exists on M
a solution to (4). Also in Section 2, we provide a natural extension of problem (1) to the case of
differential forms (problem (5)). Applying the techniques used in [6] by Ferrero, Gazzola and Weth,
we show in Theorem 2.3 that problem (5) has a discrete spectrum consisting of a countable number
of positive eigenvalues of finite multiplicities. This involves proving the ellipticity of problem (55)
(see Lemma 6.1 in the appendix). Moreover, we give two variational characterizations of the first
eigenvalue of this problem (Theorem 2.6) which will be useful to establish inequalities in the
sequel.

In Section 3, we obtain different estimates regarding the eigenvalues of problem (5). As a preliminary
step, we prove an interesting property of that problem, namely its invariance by the Hodge star
operator. On the other hand, under curvature assumptions, using a previous result by Raulot and
Savo [22, Thm. 10], we derive a lower bound (15) for the first eigenvalue q1,p, which generalizes the
estimates [26, Thm. 1.2] and [22, Thm. 2]. On the other hand, when the manifold M supports a
non-trivial parallel p-form, we show that

q1,p ≤
Vol(∂M)

Vol(M)
,

with equality if and only if M is a harmonic domain. Surprisingly, when M is a domain of Rn, the
eigenvalues of the biharmonic Steklov problem on differential forms are the same as those of the
scalar problem, without taking into consideration their multiplicities. It should be noted that the
same type of result is true for the eigenvalues of the Dirichlet problem. We end Section 3 with an
inequality relating the eigenvalues corresponding to degrees p− 1, p and p+1 on the sphere. That
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inequality is established by first proving a more general result when M is isometrically immersed
in a Euclidean space and by using the variational characterization (12) of the first eigenvalue. The
computations involved in these results being rather technical, we place the details in the appendix
(Lemma 6.2 and Proposition 6.3) to lighten the text.

In Sections 4 and 5, we establish several bounds concerning the eigenvalues of various differential
operators, again using variational characterizations. For example, we give estimates involving the
eigenvalues of the Robin eigenvalue problem (38) introduced in [4] and those of Neumann (40),
Dirichlet (41), biharmonic Steklov (5) eigenvalue problems on differential forms (Theorems 4.1 and
5.1). Note that similar results are known in the case of scalar problems (see [13, Thm. 1.17]). In
Theorem 4.2, we also give an estimate, under some curvature condition along the boundary, for the
difference between the first eigenvalues of the Robin problem on q and (q − p)-forms, for some p
and q such that p ≤ q.
Other inequalities involving eigenvalues of the Steklov problem on forms (see Section 5) are obtained
using properties already established for the eigenvalues and eigenforms of problem (5).

Acknowledgment: We thank Alberto Ferrero for his skilled guidance in the theory of elliptic
boundary value problems and for important references. The first, third and fourth named benefited
from a grant of the Lebanese University. The second named author thanks the Agence Universitaire
de la Francophonie (AUF) for its financial support and the Lebanese University for its warm
welcome during his stay. The third named author also thanks the Humboldt Foundation for its
support.

2 Biharmonic Steklov operator on differential forms

2.1 Serrin problem

In this subsection, we extend the Serrin problem to differential forms. This extension will motivate
us to define the biharmonic Steklov problem on differential forms.

Recall that the Serrin problem is given by the following [25]: Let M ⊂ Rn be a bounded domain
and let f be a solution to the problem{

∆f = 1 on M
f = 0 on ∂M.

If the inner normal derivative of the function f is a constant c, then the domain M must be a ball
of radius nc and the function f has the form (n2c2 − r2)/2n. Here c is equal to Vol(M)

Vol(∂M) . The proof
that the Euclidean ball is the unique domain in Rn supporting a solution to the Serrin problem was
given in [25, Thm. 1] by using the method of moving planes, which is based on Hopf’s maximum
principle. In [27], H.F. Weinberger suggested an elementary proof introducing so-called P -functions
for the Laplacian. Since then, the Serrin problem has been generalized to several contexts and when
the ambient space is a simply connected space form [14, 18, 3].

A natural question to ask in this set-up is whether the Serrin problem can be extended to differential
forms on a domain in Rn. For this purpose, we fix p ∈ {0, · · · , n} and consider, on the set of
differential p-forms Ωp(M), a solution to the system

{
∆ω = ω0 on M
ω = 0 on ∂M,

where ω0 is a given parallel form on Rn assumed to be of norm 1. We now set the following question:
If the conditions ν⌟dω = cι∗ω0 and ι∗(δω) = −cν⌟ω0 are satisfied on ∂M for some constant c and
where ν is the inner unit normal vector field to ∂M , can one deduce that the manifold M is a ball
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of radius nc? Here, ι : ∂M → M denotes the inclusion map. Notice that for p = 0, the problem
that we propose reduces to the usual one on functions. The answer of this question is given in
Proposition 2.1 below.

Proposition 2.1 Let M be a compact manifold with smooth nonempty boundary ∂M and carrying
a nontrivial parallel p-form ω0.

1. If M is a harmonic domain, then for the solution f to the Serrin problem on M the p-form
ω := f · ω0 is the unique solution to the boundary value problem

∆ω = ω0 on M
ω|∂M = 0 on ∂M

ν⌟dω = cι∗ω0 on ∂M
ι∗(δω) = −cν⌟ω0 on ∂M

(4)

for some constant c ∈ R.

2. Conversely, if (4) has a solution ω ∈ Ωp(M), then assuming w.l.o.g. that |ω0| = 1 on M , we
have that ω = f · ω0 where f solves (3). As a consequence, M must be a harmonic domain.

Proof. Before proving the proposition, we begin with the following fact. Given any parallel form
α and a smooth function h on M , we have that ∆(hα) = (∆h)α. To see this, we first have
d(hα) = dh ∧ α and δ(hα) = −dh⌟α, as α is parallel. Therefore, if we take {e1, · · · , en} a local
orthonormal frame of TM , we compute

∆(hα) = δ(dh ∧ α)− d(dh⌟α)

= −
n∑

i=1

ei⌟(∇eidh ∧ α)−
n∑

i=1

ei ∧ (∇eidh⌟α)

= (∆h)α+

n∑
i=1

∇eidh ∧ (ei⌟α)−
n∑

i=1

ei ∧ (∇eidh⌟α)

= (∆h)α,

since ∇dh is a symmetric 2-tensor field.
As a first consequence, if f solves (3), then for any parallel p-form ω0 on M the p-form ω := f · ω0

solves ∆ω = (∆f)·ω0 = ω0 on M together with ω|∂M = f|∂M ·ω0 = 0. As for the other two boundary

conditions, note that, if ω|∂M = 0, then by ∇Xω = 0 for all X ∈ T∂M we have that dω = ν♭ ∧∇νω
and δω = −ν⌟∇νω. Therefore,

ν⌟ dω = ν⌟(ν♭ ∧∇νω) = ∇νω − ν♭ ∧ (ν⌟∇νω) = ι∗∇νω = ∂νf · ι∗ω0 = cι∗ω0

and

ι∗(δω) = −ι∗(ν⌟∇νω) = −ν⌟∇νω = −∂νf · ν⌟ω0 = −cν⌟ω0,

so that ω solves (4). Note that, since the Dirichlet boundary condition ω|∂M = 0 forces ker(∆) = {0}
[1, Thm. p. 445], the p-form ω is necessarily the only solution to (4). This proves 1.
Conversely, let ω solve (4) for some nontrivial parallel p-form ω0. Up to rescaling ω0 we may assume
that |ω0| = 1 on M . We consider the function f := ⟨ω, ω0⟩ on M . By the Bochner formula and
∇ω0 = 0, we have that

∆f = ⟨∇∗∇ω, ω0⟩ = ⟨∆ω, ω0⟩ − ⟨B[p]ω, ω0⟩︸ ︷︷ ︸
0

= |ω0|2 = 1.

4



Here, we use the fact that the Bochner operator B[p] is a symmetric tensor. Also, it is immediate
to see that f|∂M = 0 since ω|∂M = 0. Therefore, we deduce that

∆(ω − fω0) = ω0 − (∆f)ω0 = 0,

on M and (ω− fω0)|∂M = 0. Hence by triviality of the Dirichlet kernel, we deduce that ω = f · ω0

on M . In order to finish the proof, we still have to compute the normal derivative of f :

∂νf = ⟨∇νω, ω0⟩
= ⟨ι∗∇νω, ι

∗ω0⟩+ ⟨ν⌟∇νω, ν⌟ω0⟩
= ⟨ν⌟dω, ι∗ω0⟩ − ⟨ι∗(δω), ν⌟ω0⟩
= c⟨ι∗ω0, ι

∗ω0⟩+ c⟨ν⌟ω0, ν⌟ω0⟩
= c|ω0|2 = c.

Here we used the identities{
ν⌟∇νω = δ∂M (ι∗ω)− ι∗(δω)− S[p−1](ν⌟ω) + (n− 1)Hν⌟ω
ι∗∇νω = d∂M (ν⌟ω) + ν⌟dω + S[p](ι∗ω).

stated in [20, Lem. 18]. Therefore the function f is a solution to the Serrin problem on M . This
concludes the proof of 2 and of Proposition 2.1. □

Remark 2.2 We notice that if we impose that ι∗ω0 is nowhere vanishing along the boundary, the
last boundary condition in (4) can be dropped. Indeed, with the boundary condition ν⌟dω = cι∗ω0

and the explicit form ω = f · ω0, we compute

cι∗ω0 = ν⌟dω = ν⌟d(fω0) = (∂νf)ω0 − df ∧ (ν⌟ω0) = (∂νf)ι
∗ω0,

from which ∂νf = c along ∂M follows. However, the condition ι∗ω0 ̸= 0 is not always assured.

The Serrin problem on functions is closely related to the biharmonic Steklov operator, that is the
boundary problem (1). Indeed, as mentioned in the introduction, on a given compact Riemannian
manifold (Mn, g) (not necessarily a domain in Rn), any solution to the Serrin problem is a solution
to (1) with q = 1

c . Conversely, it was shown in [21, Thm. 10] that the first positive eigenvalue q1
of problem (1) is bounded from below by the first eigenvalue of the Dirichlet-to-Neumann operator
on n-forms (see Section 5 for the definition) and, when equality occurs, the corresponding eigen-
function f of (1) is a solution to the Serrin problem. Notice here that, by [6], problem (1) admits
a discrete spectrum that consists of a nondecreasing sequence of positive eigenvalues (qi)i of finite
multiplicities.

In order to have a similar situation on differential forms, we come back to the Serrin problem
defined in (4) for domains in Rn. In fact, one can easily see that any solution to the Serrin problem
(4) gives rise to a solution to the following boundary problem


∆2ω = 0 on M
ω = 0 on ∂M
ν⌟∆ω + qι∗δω = 0 on ∂M
ι∗∆ω − qν⌟ dω = 0 on ∂M,

(5)

with q = 1
c . The equation ∆2ω = 0 comes from taking the Laplacian of ∆ω = ω0 and using the fact

that ω0 is a parallel form. Note here that, because of ω|∂M = 0, the last two boundary conditions
in (5) are actually equivalent to

∆ω = q∇νω

along ∂M since ν⌟ dω = ι∗∇νω and ι∗δω = −ν⌟∇νω as we have seen in the proof of Proposition
2.1.

It is then natural to study problem (5) for compact Riemannian manifolds with smooth boundary
that are not necessarily domains in Rn.
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2.2 Biharmonic Steklov operator

In this section, we will show that the spectrum of problem (5) is discrete and it consists entirely of
eigenvalues of finite multiplicities. We mainly follow [6].

First, note that on a compact Riemannian manifold (Mn, g) with smooth boundary ∂M , we have
the following integration by parts, which is valid for any ω, ω′ ∈ Ωp(M):∫

M

(
⟨∆ω, ω′⟩ − ⟨ω,∆ω′⟩

)
dµg

=

∫
∂M

(
⟨ν⌟dω, ι∗ω′⟩ − ⟨ι∗ω, ν⌟dω′⟩+ ⟨ν⌟ω, ι∗δω′⟩ − ⟨ι∗δω, ν⌟ω′⟩

)
dµg. (6)

Thus, replacing ω by ∆ω in (6), we obtain:∫
M
⟨∆2ω, ω′⟩ dµg =

∫
M
⟨∆ω,∆ω′⟩ dµg

+

∫
∂M

(
⟨ν⌟d∆ω, ι∗ω′⟩ − ⟨ι∗∆ω, ν⌟dω′⟩+ ⟨ν⌟∆ω, ι∗δω′⟩ − ⟨ι∗δ∆ω, ν⌟ω′⟩

)
dµg. (7)

The main result of this section is the following:

Theorem 2.3 Let (Mn, g) be a compact Riemannian manifold with smooth boundary ∂M and let
ν be the inward unit vector field normal to the boundary. Then the boundary problem

∆2ω = 0 on M
ω = 0 on ∂M
ν⌟∆ω + qι∗δω = 0 on ∂M
ι∗∆ω − qν⌟ dω = 0 on ∂M,

on p-forms, has a discrete spectrum consisting of an unbounded monotonously nondecreasing se-
quence of positive eigenvalues of finite multiplicities (qj,p)j≥1.

Proof. As in [6, Eq. (1.7)], we let

Z :=
{
ω ∈ Ωp(M) |∆2ω = 0 on M and ω|∂M = 0

}
.

We define the following Hermitian sesquilinear forms on Z: for all ω, ω′ ∈ Ωp(M),

(
ω, ω′)

V
:=

∫
M
⟨∆ω,∆ω′⟩ dµg and

(
ω, ω′)

W
:=

∫
∂M

⟨ν⌟dω, ν⌟dω′⟩ dµg +

∫
∂M

⟨ι∗δω, ι∗δω′⟩ dµg.

We split the proof of Theorem 2.3 into the following lemmas.

Lemma 2.4 For ω ∈ Z, we have∫
M

|∆ω|2 dµg +

∫
∂M

(
⟨ν⌟∆ω, ι∗δω⟩ − ⟨ι∗∆ω, ν⌟dω⟩

)
dµg = 0. (8)

The forms (· , ·)V and (· , ·)W are positive definite on Z. Moreover, there exists a positive constant C
such that ∥·∥W ≤ C ·∥·∥V on Z. As a consequence, if we denote by V (resp. W ) the completion of Z
w.r.t. ∥ · ∥V (resp. ∥ · ∥W ) as Hilbert spaces, then there is a natural bounded linear map I1 : V → W
extending the identity map IdZ .
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Proof. To prove (8) for ω ∈ Z, we replace ω′ in (7) by ω and use the fact that ∆2ω = 0 and
ι∗ω = ν⌟ω = 0. Since, if ∆ω = 0 on M and ω|∂M = 0, then ω = 0 (see e.g. [1, Thm. p. 445], the
sesquilinear form (· , ·)V is positive definite. For (· , ·)W , positive definiteness is a consequence of
(8). In fact, if (ω, ω)W = 0, then ν⌟dω = 0 and ι∗δω = 0 on ∂M and therefore, from equation (8),
∆ω = 0 on M , from which ω = 0 on M follows again by [1, Thm. p. 445] since ω|∂M = 0. We now
show, as in [6, Sec. 2], the existence of a positive constant C such that ∥ · ∥W ≤ C · ∥ · ∥V on Z.
First, both ∥ · ∥V and ∥ · ∥H2(M) are equivalent on Z. To see this, we have for any ω ∈ Z

∥ω∥V = ∥∆ω∥L2(M) ≤ C · ∥ω∥H2(M)

for some constant C depending only on M and n. On the other hand, by the elliptic estimates and
using the fact that, given any f ∈ L2(M), there exists a unique weak solution ω to the boundary
value problem ∆ω = f on M with ω|∂M = 0, we have, for any ω ∈ Z that ∥ω∥L2(M) ≤ C ·∥∆ω∥L2(M)

for some constant C, so that

∥ω∥H2(M) ≤ C ·
(
∥∆ω∥L2(M) + ∥ω∥L2(M)

)
≤ C · ∥∆ω∥L2(M) = C · ∥ω∥V

for some positive constant that we also denote by C and which again depends only on M and n,
see e.g. [5, Thm. 4 in Sec. 6.3]. Therefore, both ∥ · ∥V and ∥ · ∥H2(M) are equivalent on Z. Finally,
using the fact that both d and δ are first-order linear differential operators, we estimate, for any
ω ∈ Z,

∥ω∥2W = ∥ν⌟dω∥2L2(∂M) + ∥ι∗δω∥2L2(∂M)

≤ C · ∥ω∥2H1(∂M)

≤ C · ∥ω∥2H2(M)

≤ C · ∥ω∥2V

for some positive constant that we also denote by C, which again depends only on M and n. Here
we have also used the boundedness of the trace map T : H2(M) → H1(∂M). □

Next we consider the linear operator K : V → V defined by

K := D−1
V ◦ tI1 ◦DW ◦ I1,

where DV : V → V ′ and DW : W → W ′ are the natural duality isomorphisms, i.e. DV (ω) := (·, ω)V
and DW (ω) := (·, ω)W for every ω in V resp. W . As usual, tI1(θ) := θ ◦ I1 ∈ V ′ for every θ ∈ W ′.
Actually K can be defined via the identity(

Kω,ω′)
V
=
(
I1ω, I1ω

′)
W

(
=
(
ω, ω′)

W

)
for all ω, ω′ ∈ V . By definition, the operator K is self-adjoint and positive semi-definite. We need
now to prove the following.

Lemma 2.5 The map I1, defined in the previous lemma, is compact and injective. Therefore K is
also compact and injective.

Proof. Let I3 : V → L2(∂M)⊕ L2(∂M) be the composition of the following linear maps:

V −→ H
1
2 (∂M)⊕H

1
2 (∂M) −→ L2(∂M)⊕ L2(∂M)

ω 7−→ (ν⌟dω, ι∗δω) 7−→ (ν⌟dω, ι∗δω).

Note that I3 is well-defined since the trace operator maps H1(M) into (and onto) H
1
2 (∂M). More-

over, since the inclusion map H
1
2 (∂M) → L2(∂M) is compact by the Rellich-Kondrachov theorem,
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so is I3. Now (Z, (· , ·)W ) → L2(∂M) ⊕ L2(∂M), ω 7→ (ν⌟dω, ι∗δω), is a linear isometry, therefore
it extends to a linear isometry I2 : W → L2(∂M)⊕ L2(∂M) with I3 = I2 ◦ I1. Since I3 is compact
and I2 is a linear isometry, I1 must be compact.
We now prove that I3 is injective, so that I1 must be injective as well. First, we show the inclusion

V ⊂
{
ω ∈ H2(M) ∩H1

0 (M) |∆2ω = 0 weakly on M
}
,

where the concept of a weak solution is defined by the following: given f ∈ L2(M), a weak solution
ω to ∆2ω = f on M is a form ω ∈ H2 ∩H1

0 (M) := H2(M) ∩H1
0 (M) with

(
∆ω,∆ω′)

L2(M)
=
(
f, ω′)

L2(M)
∀ω′ ∈ H2

0 (M), (9)

where H2
0 (M) :=

{
ω ∈ H2(M) |ω|∂M = 0 and (∇ω)|∂M = 0

}
. Note that the condition (∇ω)|∂M = 0

can be replaced by ∇νω = 0 along ∂M because of ω|∂M = 0. Namely V ⊂ H2(M) already holds
because of the equivalence of ∥·∥V and ∥·∥H2(M) on Z. Moreover V ⊂ H1

0 (M) holds as well because of
the continuous inclusion map H2(M) ⊂ H1(M) and the continuity of the trace operator H1(M) →
L2(∂M). Thus V ⊂ H2∩H1

0 (M). Furthermore, if ω ∈ V is given, then there exists a sequence (ωm)m
in Z with ∥ωm − ω∥V −→

m→∞
0. Because of V ⊂ H2(M) and the equivalence of ∥ · ∥V and ∥ · ∥H2(M),

the sequence (ωm)m goes to ω in H2(M) and hence (∆ωm)m goes to ∆ω in L2(M) . But since, as
a consequence of (7), we have, for all m ∈ N and ω′ ∈

{
ω ∈ Ωp(M) |ω|∂M = 0 and (∇ω)|∂M = 0

}
,

0 =
(
∆ωm,∆ω′)

L2(M)
,

we can deduce that (∆ω,∆ω′)L2(M) = 0 for all ω′ as above and therefore for all ω′ ∈ H2
0 (M).

This shows that ω ∈ H2 ∩ H1
0 (M) satisfies ∆2ω = 0 weakly on M and therefore the inclusion

is proved. Now, we come back to the injectivity of I3. Consider ω ∈ V such that I3(ω) = 0,
that is ν⌟dω = 0 and ι∗δω = 0 in L2(∂M). Then both dω and δω vanish along ∂M because of
ι∗ω = 0, ν⌟ω = 0 and the identities [d, ι∗] = 0 and {δ, ν⌟} = 0. Again, because of ω|∂M = 0,

we have (dω)|∂M = ν♭ ∧ ∇νω and (δω)|∂M = −ν⌟∇νω, so that ν♭ ∧ ∇νω = 0 and ν⌟∇νω = 0
along ∂M , from which ∇νω = 0 on ∂M follows. This shows that ω ∈ H2

0 (M). Taking ω′ = ω in
(9), we deduce that ∆ω = 0 and therefore ω = 0 onM . This shows I3 and hence I1 to be injective. □

We end the proof of Theorem 2.3. SinceK is compact, self-adjoint and positive definite in the Hilbert
space V , there is a countable Hilbert o.n.b. (ωi)i≥1 of V for which a monotonously nonincreasing
positive real sequence (µi)i≥1 going to 0 exists such that Kωi = µiωi for all i ≥ 1. We want to
show that, for each i ≥ 1, the eigenform ωi lies in Z and satisfies µiι

∗∆ωi = ν⌟dωi as well as
µiν⌟∆ωi = −ι∗δωi along ∂M . Hence, for each i, the form ωi becomes a smooth eigenform for
problem (5) associated with the eigenvalue qi,p =

1
µi

which is of finite multiplicity, since µi is.

For this purpose, fix i ≥ 1. Since ωi ∈ V , we already know that ∆2ωi = 0 holds weakly on M
with ωi|∂M = 0. It remains to show that ωi is smooth and satisfies ι∗∆ωi = 1

µi
ν⌟dωi as well as

ν⌟∆ωi = − 1
µi
ι∗δωi along ∂M . By definition, for every ω ∈ Z,

µi (∆ωi,∆ω)L2(M) = µi (ωi, ω)V
= (Kωi, ω)V
= (ωi, ω)W
= (ν⌟dωi, ν⌟dω)L2(∂M) + (ι∗δωi, ι

∗δω)L2(∂M) . (10)
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But by (7), we have, still for every ω ∈ Z,

(∆ωi,∆ω)L2(M) =

∆2ωi︸ ︷︷ ︸
0

, ω


L2(M)

−

(
ν⌟d∆ωi, ι

∗ω︸︷︷︸
0

)
L2(∂M)

+ (ι∗∆ωi, ν⌟dω)L2(∂M)

− (ν⌟∆ωi, ι
∗δω)L2(∂M) +

(
ι∗δ(∆ωi), ν⌟ω︸︷︷︸

0

)
L2(∂M)

= (ι∗∆ωi, ν⌟dω)L2(∂M) − (ν⌟∆ωi, ι
∗δω)L2(∂M) . (11)

Here we see both ι∗∆ωi and ν⌟∆ωi as elements in H− 1
2 (∂M). Comparing (10) and (11), we deduce

that (
ι∗∆ωi −

1

µi
ν⌟dωi, ν⌟dω

)
L2(∂M)

−
(
ν⌟∆ωi +

1

µi
ι∗δωi, ι

∗δω

)
L2(∂M)

= 0

for all ω ∈ Z. Note that the map Z → Ωp(∂M)⊕Ωp−1(∂M), ω 7→ (ν⌟dω, ι∗δω) is continuous w.r.t.
∥ · ∥V and ∥ · ∥L2(∂M) and is injective since it is the restriction to Z of the map I3 from above. Now,

Lemma 6.1 in the appendix shows that this map is onto. Hence, it follows that ι∗∆ωi− 1
µi
ν⌟dωi = 0

and ν⌟∆ωi+
1
µi
ι∗δωi = 0. Therefore, ωi is an eigenform for (5) associated to the eigenvalue qi,p =

1
µi
.

The smoothness of ωi follows from the fact that both boundary conditions ι∗∆ωi − 1
µi
ν⌟dωi = 0

and ν⌟∆ωi +
1
µi
ι∗δωi = 0 together with ωi|∂M = 0 define elliptic boundary conditions for ∆2.

In order to finish the proof of Theorem 2.3, it remains to show that there is a one-to-one correspon-
dence between solutions of (5) and eigenforms of K. We have already shown that every eigenform
ω of K, associated to some eigenvalue µ > 0, satisfies (5) with q = 1

µ . Conversely, if q ∈ R is given

for which a nontrivial solution ω to (5) exists, then by (7), we have, for every ω′ ∈ Z,(
∆ω,∆ω′)

L2(M)
= q ·

((
ν⌟dω, ν⌟dω′)

L2(∂M)
+
(
ι∗δω, ι∗δω′)

L2(∂M)

)
,

that is, seeing both ω, ω′ as elements of V ,(
ω, ω′)

V
= q ·

(
ω, ω′)

W
.

Note that necessarily q > 0 holds, otherwise ω = 0 would follow. By definition of K, we then have
(ω, ω′)V = q · (Kω,ω′)V for all ω′ ∈ Z and hence in V , therefore Kω = 1

qω. This shows ω to be an

eigenform of K associated to the eigenvalue µ = 1
q . This shows the correspondence to be one-to-one.

This concludes the proof. □

In the following, we give a characterization for the first eigenvalue q1,p on p-forms. This will be used
later in order to get estimates for the eigenvalues.

Theorem 2.6 The first eigenvalue q1,p of the boundary problem (5) is characterized by

q1,p = inf

{
∥∆ω∥2L2(M)

∥ν⌟dω∥2
L2(∂M)

+ ∥ι∗δω∥2
L2(∂M)

|ω ∈ Ωp(M), ω|∂M = 0 and ∇νω ̸= 0

}
(12)

= inf

{
∥ω∥2L2(∂M)

∥ω∥2
L2(M)

|ω ∈ Ωp(M) \ {0}, ∆ω = 0 on M

}
. (13)

Both infima are indeed minima, (12) is attained by an eigenform of (5), associated to q1,p and
(13) is attained by ∆ω, where ω is an eigenform of (5), associated to q1,p. Moreover, for every
ω ∈ Ωp(M) with ω|∂M = 0, the inequality

q1,p ·
(
∥ν⌟dω∥2L2(∂M) + ∥ι∗δω∥2L2(∂M)

)
≤ ∥∆ω∥2L2(M)

holds.
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Proof. As mentioned above, it follows from (8) that, given any nonzero eigenform ω associated to
a positive eigenvalue q of (5), we have∫

M
|∆ω|2 dµg = q

∫
∂M

|ν⌟dω|2 dµg + q

∫
∂M

|ι∗δω|2 dµg,

so that q1,p ≤
∥∆ω∥2

L2(M)

∥ν⌟dω∥2
L2(∂M)

+∥ι∗δω∥2
L2(∂M)

for every such eigenform, with equality for ω associated to

q1,p of course. More generally, for every ω ∈ V , we can write ω =
∑

i (ω, ωi)V ·ωi because (ωi)i is a
Hilbert orthonormal basis of V . From this, we can express

∥∆ω∥2L2(M) = ∥ω∥2V =
∑
i

|(ω, ωi)V |
2

on the one hand, and

∥ν⌟dω∥2L2(∂M) + ∥ι∗δω∥2L2(∂M) = ∥ω∥2W
= (Kω,ω)V

=
∑
i

1

qi,p
|(ω, ωi)V |

2

≤ 1

q1,p

∑
i

|(ω, ωi)V |
2

≤ 1

q1,p
∥∆ω∥2L2(M)

on the other hand, therefore

q1,p = inf

{
∥∆ω∥2L2(M)

∥ν⌟dω∥2
L2(∂M)

+ ∥ι∗δω∥2
L2(∂M)

|ω ∈ V \ {0}

}
.

Now, we will show that this infimum can be taken over all ω ∈ (H2 ∩ H1
0 )(M) \ {0}, as well as

over all smooth forms vanishing and whose normal derivative does not vanish identically along ∂M .
Recall that,

H2
0 (M) =

{
ω ∈ (H2 ∩H1

0 )(M) | ι∗δω = 0 and ν⌟dω = 0
}
,

since, as we noticed above, if ω ∈ (H2 ∩ H1
0 )(M) is such that both ι∗δω and ν⌟dω vanish along

∂M , then so does ∇νω. As in [6, Thm. 1.2], we have the following lemma:

Lemma 2.7 The inner product (· , ·)V is well defined on (H2 ∩H1
0 )(M) and we have the following

(· , ·)V -orthogonal splitting:
H2 ∩H1

0 (M) = V ⊕H2
0 (M).

Proof. By its definition, (· , ·)V is well defined on (H2 ∩H1
0 )(M). Furthermore, (7) already implies

that, for all (ω, ω′) ∈ Z ×H2 ∩H1
0 (M),(

ω, ω′)
V
=
(
ι∗∆ω, ν⌟dω′)

L2(∂M)
−
(
ν⌟∆ω, ι∗δω′)

L2(∂M)
, (14)

so that (ω, ω′)V = 0 as soon as ω′ ∈ H2
0 (M). This shows that H2

0 (M) ⊂ Z⊥ = V ⊥.
Conversely, let ω′ ∈ V ⊥ ⊂ H2 ∩ H1

0 (M). Then (ωi, ω
′)V = 0 for all i. By (14), this is equiv-

alent to (ν⌟dωi, ν⌟dω′)L2(∂M) + (ι∗δωi, ι
∗δω′)L2(∂M) = 0 for all i by ι∗∆ωi = 1

µi
ν⌟ dωi and

ν⌟∆ωi = − 1
µi
ι∗(δωi). Since the map Z → Ωp(∂M) ⊕ Ωp−1(∂M), ω 7→ (ν⌟dω, ι∗δω) is bounded

(w.r.t. ∥ · ∥V and ∥ · ∥L2(∂M)), onto and the ωi’s span a dense subspace of V , we obtain that
(ω1, ν⌟dω′)L2(∂M) = 0 as well as (ω2, ν⌟dω′)L2(∂M) = 0 for all (ω1, ω2) ∈ Ωp(∂M)⊕ Ωp−1(∂M) and

therefore ν⌟dω′ = 0 and ι∗δω′ = 0 hold along ∂M . This shows that ω′ ∈ H2
0 (M). On the whole,

10



H2
0 (M) = V ⊥ and the orthogonal splitting is proved. □

It remains to notice that, for any ω ∈ Ωp(M) with ω|∂M = 0, we can split (· , ·)V -orthogonally
ω = ωV + ω̂, where ωV ∈ V and ω̂ ∈ H2

0 (M). Then

∥∆ω∥2L2(M) = ∥ω∥2V = ∥ωV ∥2V + ∥ω̂∥2V

on the one hand, and

∥ν⌟dω∥2L2(∂M) + ∥ι∗δω∥2L2(∂M) = ∥ν⌟dωV ∥2L2(∂M) + ∥ι∗δωV ∥2L2(∂M)

on the other hand, so that

∥∆ω∥2L2(M) = ∥∆ωV ∥2L2(M) + ∥∆ω̂∥2L2(M)

≥ ∥∆ωV ∥2L2(M)

≥ q1,p ·
(
∥ν⌟dωV ∥2L2(∂M) + ∥ι∗δωV ∥2L2(∂M)

)
= q1,p ·

(
∥ν⌟dω∥2L2(∂M) + ∥ι∗δω∥2L2(∂M)

)
,

which proves (12). Furthermore, the r.h.s. of (12) is actually a minimum attained exactly by
those eigenforms of the biharmonic Steklov problem that are associated to the smallest positive
eigenvalue q1,p. And that same r.h.s. vanishes if and only if ∇νω = 0 along ∂M as we noticed above.

We now prove the following lemma:

Lemma 2.8 The infimum in (13), that we denote by q′1,p, is a positive minimum.

Proof. To prove this result, we apply the same argument as in [6, p. 318]. Namely the standard

Rellich-Kondrachov compactness theorem ensures the natural inclusion map H
1
2 (∂M) → L2(∂M)

to be compact. Hence its transpose map L2(∂M) → H− 1
2 (∂M) is compact, as a straightfor-

ward consequence. Moreover, the harmonic extension from ∂M to M defines a bounded lin-
ear map H− 1

2 (∂M) → L2(M), see e.g. [17, Thm. 6.6 chap. 2]. Therefore the composition

L2(∂M) → H− 1
2 (∂M) → L2(M) of both maps defines a compact linear map E : L2(∂M) → L2(M),

which already shows that q′1,p to be positive using only the boundedness of the map. Furthermore,

because the image by E of the unit sphere S :=
{
ω ∈ L2(∂M) , ∥ω∥L2(∂M) = 1

}
of L2(∂M) is rela-

tively compact in L2(M), there exists ω̃ ∈ E(S) such that ∥ω̃∥L2(M) = sup
{
∥Eω∥L2(M) |ω ∈ S

}
. By

definition of the closure, there exists a sequence (ωm)m in S such that Eωm −→
m→∞

ω̃ in L2(M). But

then ∆(Eωm) −→
m→∞

∆ω̃ in H−2(M) = (H2
0 (M))′, so that necessarily ∆ω̃ = 0 holds in H−2(M).

Note that, because ∆ω̃ = 0 and ∆(Eωm) = 0 for all m, we can also claim that ∆(Eωm) −→
m→∞

∆ω̃

in L2(M). By G̊arding’s inequality and since both Eωm −→
m→∞

ω̃ and ∆(Eωm) −→
m→∞

∆ω̃ in L2(M),

we have that Eωm −→
m→∞

ω̃ in H2(M). As a consequence, because of ν⌟Eωm = 0 along ∂M and

ν⌟Eωm −→
m→∞

ν⌟ ω̃ in L2(∂M), necessarily ν⌟ ω̃ = 0 holds along ∂M . Now again Eωm −→
m→∞

ω̃ in

H2(M) also implies ωm = (Eωm)|∂M −→
m→∞

ω̃|∂M in L2(∂M) (actually also in H1(∂M)), so that

∥ω̃|∂M ∥L2(∂M) = 1. This shows that ω̃ ∈ E(S) and hence ∥ω̃∥L2(M) = max
{
∥Eω∥L2(M) |ω ∈ S

}
satisfies ∥ω̃∥L2(M) =

1
q′1,p

. This shows the positive r.h.s. q′1,p of (13) to be a minimum. □

In order to finish the proof of Theorem 2.6, we want to show that q1,p = q′1,p. Pick any eigenform

ω associated to q1,p. Up to rescaling ω, we may assume that ∥ν⌟dω∥2L2(∂M) + ∥ι∗δω∥2L2(∂M) = 1.
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Let ω̂ ∈ Ωp(M) be the unique solution to ∆ω̂ = 0 on M with ι∗ω̂|∂M = −q1,pν⌟dω a well as
ν⌟ω̂ = q1,pι

∗δω along ∂M . By (6),

0 =

∫
M
⟨∆ω̂, ω⟩ dµg

=

∫
M
⟨ω̂,∆ω⟩ dµg + q1,p

∫
∂M

(|ν⌟dω|2 + |ι∗δω|2) dµg

=

∫
M
⟨ω̂,∆ω⟩ dµg + q1,p,

so that Cauchy-Schwarz inequality leads to q1,p ≤ ∥∆ω∥L2(M) · ∥ω̂∥L2(M). Using q1,p = ∥∆ω∥2L2(M),

we obtain q1,p ≤ ∥ω̂∥2L2(M). Therefore,

∥ω̂∥2L2(∂M)

∥ω̂∥2
L2(M)

=
q21,p

∥ω̂∥2
L2(M)

≤ q1,p,

from which q′1,p ≤ q1,p follows. Conversely, if ω ∈ Ωp(M) \ {0} satisfies ∆ω = 0 on M and

∥ω∥2L2(∂M) = q′1,p∥ω∥2L2(M), then let ω̂ be the solution to ∆ω̂ = ω on M with ω̂|∂M = 0. Then,

again by (6), ω|∂M = ι∗ω + ν♭ ∧ (ν⌟ω) and Cauchy-Schwarz inequality, we have

∥ω∥2L2(M) = (∆ω̂, ω)L2(M)

=

(
ω̂, ∆ω︸︷︷︸

0

)
L2(M)

+ (ν⌟dω̂, ι∗ω)L2(∂M) − (ι∗δω̂, ν⌟ω)L2(∂M)

= (ν⌟dω̂, ω)L2(∂M) −
(
ν♭ ∧ ι∗δω̂, ω

)
L2(∂M)

=
(
ν⌟ dω̂ − ν♭ ∧ ι∗δω̂, ω

)
L2(∂M)

≤
∥∥∥ν⌟ dω̂ − ν♭ ∧ ι∗δω̂

∥∥∥
L2(∂M)

· ∥ω∥L2(∂M) .

But since
(
ν⌟ dω̂, ν♭ ∧ ι∗δω̂

)
L2(∂M)

= 0, we have∥∥∥ν⌟ dω̂ − ν♭ ∧ ι∗δω̂
∥∥∥2
L2(∂M)

= ∥ν⌟ dω̂∥2L2(∂M)+
∥∥∥ν♭ ∧ ι∗δω̂

∥∥∥2
L2(∂M)

= ∥ν⌟ dω̂∥2L2(∂M)+∥ι∗δω̂∥2L2(∂M) ,

so that ∥ω∥2L2(M) ≤
(
∥ν⌟dω̂∥2L2(∂M) + ∥ι∗δω̂∥2L2(∂M)

) 1
2 · ∥ω∥L2(∂M). Therefore,

∥∆ω̂∥2L2(M)

∥ν⌟dω̂∥2
L2(∂M)

+ ∥ι∗δω̂∥2
L2(∂M)

=
∥ω∥2L2(M)

∥ν⌟dω̂∥2
L2(∂M)

+ ∥ι∗δω̂∥2
L2(∂M)

≤
∥ω∥2L2(M) · ∥ω∥

2
L2(∂M)

∥ω∥4
L2(M)

=
∥ω∥2L2(∂M)

∥ω∥2
L2(M)

= q′1,p,

from which q′1,p ≥ q1,p follows. On the whole, we deduce that q1,p = q′1,p, as we claimed. Moreover,
the p-form ω̂ defined above, because it now minimizes q1,p, must be an eigenform of the biharmonic
Steklov operator associated to the eigenvalue q1,p. As a consequence, ω = ∆ω̂ where ω̂ is an
eigenform of the biharmonic Steklov operator associated to the eigenvalue q1,p. □
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3 Eigenvalues of the biharmonic Steklov operator

In this section, we will establish some eigenvalue estimates for the first eigenvalue of the biharmonic
Steklov operator defined in the previous section.

As before, we will consider a compact Riemannian manifold (Mn, g) with smooth boundary ∂M .
Notice first the following fact:

Lemma 3.1 The biharmonic Steklov operator is preserved by the Hodge star operator ∗M on M .

Proof. We only need to check that the last two boundary conditions in (5) are preserved. For this
purpose, using the equality ι∗(∗Mα) = ∗∂M (ν⌟α) for any form α, we compute, for any solution ω
of degree p to problem (5),

ν⌟∆(∗Mω) = ν⌟(∗M∆ω)

= (−1)p ∗∂M ι∗(∆ω)

= (−1)pq ∗∂M (ν⌟dω)

= (−1)pqι∗(∗Mdω)

= −qι∗(δ ∗M ω).

In the last equality, we use the fact that ∗Md = (−1)p−1δ∗M on p-forms. For the other boundary
condition, we have

ι∗(∆ ∗M ω) = ι∗(∗M∆ω) = ∗∂M (ν⌟∆ω) = −q ∗∂M (ι∗δω) = (−1)pqν⌟ ∗M δω = qν⌟d(∗Mω).

Also here we use the fact that d∗M = (−1)p ∗M δ on p-forms. This finishes the proof. □

Remark 3.2 As a direct consequence of the invariance of the biharmonic Steklov operator by the
Hodge star operator is that qi,p = qi,n−p for any i ≥ 1 and p ≤ n.

In the following, we recall the estimate stated by S. Raulot and A. Savo in [22] for subharmonic
functions that we will use in order to get a lower bound of the first eigenvalue q1,p. Let (M

n, g) be a
compact Riemannian manifold with smooth boundary such that the Ricci curvature of M satisfies
RicM ≥ (n− 1)K and the mean curvature of the boundary satisfies H ≥ H0 for some real numbers
K and H0. Let R be the inner radius of the manifold M , that is

R = max{dist(x, ∂M)|x ∈ M},

and Θ(r) = (s′K(r)−H0sK(r))n−1 for all r, where the function sK is being given by

sK(r) :=


1√
K

sin(r
√
K) if K > 0,

r if K = 0,

1√
|K|

sinh(r
√
|K|) if K < 0.

It was shown in [22, Prop. 14] (see also [12, Thm. A]) that the function Θ is smooth and positive
on [0, R[ and Θ(R) = 0 when M is a geodesic ball in MK , the space form of sectional curvature K.
The following result was proved in [22]:

Theorem 3.3 [22, Thm. 10] Let (Mn, g) be a compact Riemannian manifold with smooth bound-
ary. Assume that the Ricci curvature of M satisfies RicM ≥ (n − 1)K and the mean curvature
H ≥ H0 for some real numbers K and H0. If h is a non-trivial, nonnegative subharmonic function
on M (i.e. ∆h ≤ 0 on M), then ∫

∂M hdµg∫
M hdµg

≥ 1∫ R
0 Θ(r)dr

.
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Using this result and the Bochner formula ∆ = ∇∗∇+B[p] on p-forms, we prove the following:

Theorem 3.4 Let (Mn, g) be a compact Riemannian manifold with smooth boundary. Assume that
the Ricci curvature of M satisfies RicM ≥ (n− 1)K and the mean curvature H ≥ H0 for some real
numbers K and H0. Assume also that the Bochner operator B[p] is nonnegative for some p. Then,
the inequality

q1,p ≥
1∫ R

0 Θ(r) dr
(15)

holds.

Proof. Applying the Bochner formula to ∆ω where ω is a p-eigenform of the biharmonic Steklov
operator associated with q1,p, we get after taking the pointwise scalar product with ∆ω that

0 = ⟨∆2ω,∆ω⟩ = |∇∆ω|2 + 1

2
∆(|∆ω|2) + ⟨B[p]∆ω,∆ω⟩.

Since B[p] is nonnegative, we deduce that ∆(|∆ω|2) is nonpositive or equivalently the function
h := |∆ω|2 is subharmonic. Therefore, by the previous theorem, we can say that∫

∂M |∆ω|2dµg∫
M |∆ω|2dµg

≥ 1∫ R
0 Θ(r)dr

.

Now, Characterization (13) gives the result and finishes the proof of the theorem. □

Remark 3.5 Depending on the sign of K and H0, we can estimate explicitly
∫ R
0 Θ(r)dr in terms

of R and H0, as in [22, Thms. 12 & 13]. Therefore, one can deduce several estimates for q1,p in
terms of R and H0.

We will now provide an estimate for the first eigenvalue of problem (5) on manifolds carrying
parallel forms and study the limiting case of the estimate. Recall that a harmonic domain is a
compact Riemannian manifold (Mn, g) with smooth boundary ∂M supporting a solution to the
Serrin problem (3). We have the following result:

Theorem 3.6 Let (Mn, g) be a compact Riemannian manifold with smooth boundary. Assume that
M supports a non-trivial parallel p-form ω0 for some p = 0, . . . , n. Then

q1,p ≤
Vol(∂M)

Vol(M)
. (16)

Moreover, if equality holds in (16), then f · ω0 is an eigenform associated to q1,p, where f is
the solution of (3) and therefore M must be a harmonic domain (and hence a Euclidean ball if
M ⊂ Rn).

Conversely, if M is a harmonic domain, then Vol(∂M)
Vol(M) is an eigenvalue of the biharmonic Steklov

problem (5).

Proof. As ω0 is a parallel form, we can assume that |ω0| = 1. By using the variational characteri-
zation (13), we obtain that

q1,p ≤
∥ω0∥2L2(∂M)

∥ω0∥2L2(M)

=
Vol(∂M)

Vol(M)
.

If equality occurs in (16), then ω0 = ∆ω for some eigenform ω associated with q1,p by Theorem
2.6. Now Proposition 2.1 implies that M carries a solution f to the Serrin problem (3) and that
ω = f ·ω0. To check the converse, we take a function f solution to the Serrin problem (3), then using
again Proposition 2.1 the p-form ω := f · ω0 is an eigenform of (5) associated with the eigenvalue

q = 1
c , where c =

Vol(M)

Vol(∂M)
. □
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Remark 3.7 If a compact Riemannian manifold M with smooth boundary carries a nontrivial
harmonic form of constant length ω0, then (16) remains valid. Moreover, if (16) is an equality, then
there still exists an eigenform ω to the biharmonic Steklov operator on p-forms such that ∆ω = ω0,
nevertheless it is no more true in general that M must be a harmonic domain and that ω = f · ω0

for some solution f to the scalar Serrin problem.

Next we compare the first eigenvalues of the biharmonic Steklov operator for successive degrees,
when the manifold M is a domain in Rn or Sn. We first notice that, if f is any eigenfunction to the
scalar biharmonic Steklov problem (1), then for any parallel p-form ω0 on M the form f · ω0 is an
eigenform to the biharmonic Steklov problems on p-forms and associated to the same eigenvalue.
Therefore, for every eigenvalue q of the scalar biharmonic Steklov operator, we have an embedding

ker(BS0 − q)⊗ Pp ↪→ ker(BSp − q),

where ker(BSj − q) denotes the eigenspace for the biharmonic Steklov operator on j-forms and
associated to the eigenvalue q, and Pp denotes the space of parallel p-forms on M . When M ⊂ Rn,
then conversely for any ω ∈ ker(BSp − q), there exists a parallel p-form ω0 on M with |ω0| = 1 and
⟨ω, ω0⟩ ≠ 0 (non identically vanishing) on M . But then f can be easily shown to lie in ker(BS0−q).
This shows that, when M ⊂ Rn, both 0- and p-biharmonic Steklov eigenvalues coincide, their
multiplicities being ignored.

In what follows, we assume that (Mn, g) is isometrically immersed into the Euclidean space Rn+m.
For any given smooth normal vector field N to M , we denote by IIN the associated Weingarten
map, that is, the endomorphism field of TM defined by

⟨IIN (X), Y ⟩ = ⟨N, II(X,Y )⟩

for all X,Y tangent to M , where II is the second fundamental form of the immersion. Recall that
any endomorphism A of TM can be extended to the set of differential p-forms on M as follows:
For any p-form ω on M , we define

A[p]ω(X1, · · · , Xp) =

p∑
i=1

ω(X1, · · · , A(Xi), · · · , Xp), (17)

for all X1, · · · , Xp vector fields in TM . In particular, this applies to IIN for all N ∈ T⊥M . The
following lemma is technical but will be useful for the comparison.

Lemma 3.8 Let (Mn, g) be a compact Riemannian manifold with smooth boundary ∂M . Assume
that M is isometrically immersed into the Euclidean space Rn+m. Let ω be any p-eigenform of the
biharmonic Steklov operator. Then we have

pq1,p−1

∫
∂M

(|ν⌟dω|2 + |ι∗(δω)|2)dµg ≤
n+m∑
i=1

∫
M

| − 2II
nH̃

(∂T
xi
)⌟ω + 2

m∑
a=1

IIfa(∂
T
xi
)⌟II [p]fa

ω

−2
n∑

s=1

(II∂⊥
xi
es)⌟(∇esω)− n

(
d(⟨H̃, ∂⊥

xi
⟩)
)
⌟ω + ∂T

xi
⌟∆ω|2dµg.

(18)

Here {e1, · · · , en} and {f1, · · · , fm} are respectively orthonormal bases of TM and T⊥M and H̃ is
the mean curvature field of the immersion.

Proof. Let ω be any eigenform of the biharmonic Steklov problem associated with q1,p. For each
i = 1, · · · , n + m, the unit parallel vector field ∂xi on Rn+m splits into ∂xi = (∂xi)

T + (∂xi)
⊥
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where (∂xi)
T is the tangent part in TM and (∂xi)

⊥ is the orthogonal one in T⊥M . We consider
the (p − 1)-form (∂xi)

T ⌟ω on M which clearly vanishes on ∂M . By applying to it the variational
characterization (12), we get, for each i,

q1,p−1

∫
∂M

(
|ν⌟d((∂xi)

T ⌟ω)|2 + |ι∗δ((∂xi)
T ⌟ω)|2

)
dµg ≤

∫
M

|∆((∂xi)
T ⌟ω)|2dµg. (19)

Now we want to sum over i = 1, · · · , n+m. We first begin with the l.h.s. Recall the Cartan formula:
LXω = d(X⌟ω) +X⌟dω, for any vector field X on M . Using this formula, we have for each i,

d(∂T
xi
⌟ω) = L∂T

xi
ω − ∂T

xi
⌟dω

= ∇∂T
xi
ω + II

[p]

∂⊥
xi

ω − ∂T
xi
⌟dω. (20)

In the last equality, we used the splitting of the Lie derivative in terms of the connection as follows:

LXTω = ∇XTω+ II
[p]

X⊥ω, for a parallel vector field X ∈ Rn+m, proved in [9, Eq. (4.3) p. 337]. Since
ω = 0 on ∂M , we have that for any X ∈ T∂M [20, Eq. (23)]

ν⌟∇Xω = ∇∂M
X (ν⌟ω) + S(X)⌟(ι∗ω) = 0.

Here S denotes the second fundamental form of the boundary. Therefore, we deduce that

ν⌟d((∂xi)
T ⌟ω) = ν⌟∇∂T

xi
ω + ∂T

xi
⌟(ν⌟dω)

= g((∂xi)
T , ν)ν⌟∇νω + ∂T

xi
⌟(ν⌟dω)

= −g(∂xi , ν)ι
∗(δω) + ∂T

xi
⌟(ν⌟dω). (21)

In the last equality, we use the identity [20, Lem. 18]

ν⌟∇νω = δ∂M (ι∗ω)− ι∗(δω)− S[p−1](ν⌟ω) + (n− 1)Hν⌟ω = −ι∗(δω).

Independently, by a straightforward computation, we check that, for any p-form α,

n+m∑
i=1

∂T
xi
∧ (∂T

xi
⌟α) =

n∑
i=1

ei ∧ (ei⌟α) = pα.

As a consequence, we obtain for any p-forms α and β on M

n+m∑
i=1

⟨∂T
xi
⌟α, ∂T

xi
⌟β⟩ = p⟨α, β⟩. (22)

We take the norm of (21) and sum over i to get

n+m∑
i=1

|ν⌟d((∂xi)
T ⌟ω)|2 (22)

= |ι∗(δω)|2 + p|ν⌟dω|2 − 2

n+m∑
i=1

g(∂xi , ν)⟨ι∗(δω), ∂T
xi
⌟(ν⌟dω)⟩

= |ι∗δω|2 + p|ν⌟dω|2 − 2⟨ι∗δω, νT ⌟(ν⌟dω)⟩
= |ι∗δω|2 + p|ν⌟dω|2. (23)

Here we notice that by the Gauß formula and the fact that ∂xi is parallel in Rn+m, we have

16



∇X∂T
xi

= II∂⊥
xi
(X), so that

δ(∂T
xi
⌟ω) = −

n∑
j=1

ej⌟∇ej (∂
T
xi
⌟ω)

= −
n∑

j=1

ej⌟ (∇ej∂
T
xi
⌟ω + ∂T

xi
⌟∇ejω)

= −
n∑

j=1

ej⌟ II∂⊥
xi
(ej)⌟ω +

n∑
j=1

∂T
xi
⌟ (ej⌟∇ejω)

= −
n∑

j,k=1

⟨II∂⊥
xi
(ej), ek⟩ej⌟ ek⌟ω − ∂T

xi
⌟ δω

= −∂T
xi
⌟ δω

because of the expression ⟨II∂⊥
xi
(ej), ek⟩ = ⟨II(ej , ek), ∂⊥

xi
⟩ being symmetric in j, k. Thus δ(∂T

xi
⌟ω) =

−∂T
xi
⌟δω for any i. Using also the fact that ν⌟ δ(∂T

xi
⌟ω) = −δ∂M (ν⌟ ∂T

xi
⌟ω) = 0, we get that

n+m∑
i=1

|ι∗δ(∂T
xi
⌟ω)|2 =

n+m∑
i=1

|δ(∂T
xi
⌟ω)|2 (22)

= (p− 1)|ι∗δω|2. (24)

Hence adding Equations (23) and (24) allows to find the l.h.s. of Inequality (18). We are now going

to estimate the term
n+m∑
i=1

|∆(∂T
xi
⌟ω)|2 in (19). Taking the divergence of (20) and the differential of

the identity δ(∂T
xi
⌟ω) = −∂T

xi
⌟δω along with the Cartan formula and the decomposition of the Lie

derivative as in (20), we get that

∆(∂T
xi
⌟ω) = [δ,∇∂T

xi
](ω) + δ(II

[p]

∂⊥
xi

ω)− II
[p−1]

∂⊥
xi

(δω) + ∂T
xi
⌟∆ω. (25)

In the following, we will compute each term of (25) separately. First, take an orthonormal frame
{e1, · · · , en} of TM such that ∇ei = 0 at some point. Then we have, for any vector field X on M ,

[δ,∇X ](ω) = δ(∇Xω)−∇Xδω

= −
n∑

s=1

es⌟∇es∇Xω −∇Xδω

= −
n∑

s=1

es⌟
(
R(es, X)ω +∇X∇esω +∇[es,X]ω

)
−∇Xδω

= −
n∑

s=1

es⌟R(es, X)ω +∇Xδω −
n∑

s=1

es⌟∇∇esXω −∇Xδω

= −
n∑

s=1

es⌟R(es, X)ω −
n∑

s=1

es⌟∇∇esXω. (26)

Now we use the fact that for any tensor field A, any vector field X and any p-form α on M ,
∇XA[p] = (∇XA)[p] and A[p−1](X⌟α) = X⌟A[p]α − A(X)⌟α, which both can be proved by a
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straightforward computation. Thus for any N ∈ T⊥M , we can write

δ(II
[p]
N ω)− II

[p−1]
N (δω) = −

n∑
s=1

es⌟∇es(II
[p]
N ω)− II

[p−1]
N (δω)

= −
n∑

s=1

es⌟(∇esIIN )[p](ω)−
n∑

s=1

es⌟II
[p]
N (∇esω)− II

[p−1]
N (δω)

= −
n∑

s=1

(∇esIIN )[p−1](es⌟ω)−
n∑

s=1

((∇esIIN )(es))⌟ω −
n∑

s=1

II
[p−1]
N (es⌟∇esω)

−
n∑

s=1

(IINes)⌟(∇esω)− II
[p−1]
N (δω)

= −
n∑

s=1

(∇esIIN )[p−1](es⌟ω) + δ(IIN )⌟ω −
n∑

s=1

(IINes)⌟(∇esω). (27)

By taking X = ∂T
xi

in (26) and N = ∂⊥
xi

in (27), Equation (25) reduces after using the fact that
∇∂T

xi
= II∂⊥

xi
as a consequence of the parallelism of the vector field ∂xi , to

∆(∂T
xi
⌟ω) = −

n∑
s=1

es⌟R(es, ∂
T
xi
)ω − 2

n∑
s=1

(II∂⊥
xi
es)⌟(∇esω)

−
n∑

s=1

(∇esII∂⊥
xi
)[p−1](es⌟ω) + δ(II∂⊥

xi
)⌟ω + ∂T

xi
⌟∆ω. (28)

We proceed in the computation of (28). Let us compute the term
∑n

s=1(∇esII∂⊥
xi
)[p−1](es⌟ω). Using

the fact that A[p] =
∑n

l=1 el ∧ (A(el)⌟) for any symmetric tensor A, we compute with the help of
Equation (56) in the appendix

n∑
s=1

(∇esII∂⊥
xi
)[p−1](es⌟ω) =

n∑
l,s=1

el ∧
(
(∇esII∂⊥

xi
)(el)⌟es⌟ω

)
=

n∑
l,s=1

el ∧
(
(∇elII∂⊥

xi
)(es)⌟es⌟ω

)
−

n∑
l,s=1

el ∧
(
II

(∇Rn+m
el

∂⊥
xi
)⊥)(es)⌟es⌟ω

)
+

n∑
l,s=1

el ∧
(
II

(∇Rn+m
es

∂⊥
xi
)⊥)(el)⌟es⌟ω

)
. (29)

The first two sums vanish identically, since
∑

sA(es)⌟es⌟ω = 0 for any symmetric endomorphism
A. Hence with the help of Equation (58), Equality (29) reduces to

n∑
s=1

(∇esII∂⊥
xi
)[p−1](es⌟ω) = −

n∑
l,s=1

el ∧
(
IIII(es,∂T

xi
)(el)⌟es⌟ω

)
= −

n∑
l,s=1

m∑
a=1

⟨II(es, ∂T
xi
), fa⟩el ∧ (IIfa(el)⌟es⌟ω)

= −
n∑

l=1

m∑
a=1

el ∧
(
IIfa(el)⌟IIfa(∂

T
xi
)⌟ω
)
= −

m∑
a=1

II
[p−1]
fa

(IIfa(∂
T
xi
)⌟ω)

(30)

where {f1, · · · , fm} is an orthonormal frame of T⊥M . In the last equality, we used again the
expression A[p] =

∑
l el ∧ (A(el)⌟) for any symmetric endomorphism A. Hence after replacing
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Equations (57), proved in the appendix, and (30) into Equation (28), we finally get

∆(∂T
xi
⌟ω) = −

n∑
s=1

es⌟R(es, ∂
T
xi
)ω − 2

n∑
s=1

(II∂⊥
xi
es)⌟(∇esω)

+

m∑
a=1

II
[p−1]
fa

(IIfa(∂
T
xi
)⌟ω) +

(
m∑
a=1

II2fa(∂
T
xi
)− nd(⟨H̃, ∂⊥

xi
⟩)− nII

H̃
(∂T

xi
)

)
⌟ω + ∂T

xi
⌟∆ω

= −
n∑

s=1

es⌟R(es, ∂
T
xi
)ω − 2

n∑
s=1

(II∂⊥
xi
es)⌟(∇esω)

+

m∑
a=1

IIfa(∂
T
xi
)⌟II [p]fa

ω +
(
−nd(⟨H̃, ∂⊥

xi
⟩)− nII

H̃
(∂T

xi
)
)
⌟ω + ∂T

xi
⌟∆ω

= −II
nH̃

(∂T
xi
)⌟ω +

m∑
a=1

IIfa(∂
T
xi
)⌟II [p]fa

ω − 2

n∑
s=1

(II∂⊥
xi
es)⌟(∇esω)

+
m∑
a=1

IIfa(∂
T
xi
)⌟II [p]fa

ω +
(
−nd(⟨H̃, ∂⊥

xi
⟩)− nII

H̃
(∂T

xi
)
)
⌟ω + ∂T

xi
⌟∆ω

= −2II
nH̃

(∂T
xi
)⌟ω + 2

m∑
a=1

IIfa(∂
T
xi
)⌟II [p]fa

ω − 2

n∑
s=1

(II∂⊥
xi
es)⌟(∇esω)− n

(
d
(
⟨H̃, ∂⊥

xi
⟩)
)
⌟ω

+∂T
xi
⌟∆ω. (31)

In the second equality, we used again the relation A[p−1](X⌟α) = X⌟A[p]α−A(X)⌟α for any p-form
α and X ∈ TM , and in the third equality, we used Proposition 6.3 in the appendix. Equation (31),
along with (23) and (24), gives the result, by using Inequality (19). □

In general, it is difficult to control all the terms in Inequality (18) in order to compare q1,p−1 and
q1,p. Therefore, we shall restrict ourselves to the case when M is a domain in Sn. We have the
following result:

Theorem 3.9 Let (Mn, g) be a compact Riemannian manifold with smooth boundary. If M is a
domain in Sn, then we have that

pq1,p−1 + (n− p)q1,p+1 < Cp,nq1,p, (32)

where Cp,n is some constant that depends on p and n and whose explicit expression is given in (37).

Proof. We consider the isometric immersion M ⊂ Sn ↪→ Rn+1. In this case, we have that m = 1, the
orthonormal basis of T⊥M reduces to the inward unit vector field ν̃ = −

∑n+1
i=1 xi∂xi , the second

fundamental form is given by IIν̃ = Id and H̃ = ν̃. Therefore, Inequality (18) becomes

pq1,p−1

∫
∂M

(|ν⌟dω|2 + |ι∗(δω)|2)dµg ≤

n+1∑
i=1

∫
M

∣∣∣(2p− 2n)∂T
xi
⌟ω + 2⟨∂⊥

xi
, ν̃⟩δω − nd(⟨ν̃, ∂⊥

xi
⟩)⌟ω + ∂T

xi
⌟∆ω

∣∣∣2dµg.

Now, an elementary computation shows that d(⟨ν̃, ∂⊥
xi
⟩) = −∂T

xi
. Therefore, the above inequality
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reduces to

pq1,p−1

∫
∂M

(|ν⌟dω|2 + |ι∗(δω)|2)dµg ≤
n+1∑
i=1

∫
M

|(2p− n)∂T
xi
⌟ω + 2⟨∂⊥

xi
, ν̃⟩δω + ∂T

xi
⌟∆ω|2dµg

=

∫
M

(
(2p− n)2p|ω|2 + 4|δω|2 + p|∆ω|2

+ 2p(2p− n)⟨ω,∆ω⟩
)
dµg

=

∫
M
(4|δω|2 + p|∆ω + (2p− n)ω|2)dµg. (33)

Here, we use Identity (22) and that

n+1∑
i=1

⟨∂⊥
xi
, ν̃⟩⟨∂T

xi
⌟ω, δω⟩ =

n+1∑
i=1

⟨∂xi , ν̃⟩⟨∂T
xi
⌟ω, δω⟩ = ⟨ν̃T ⌟ω, δω⟩ = 0.

The same argument applies to
∑n+1

i=1 ⟨∂⊥
xi
, ν̃⟩⟨δω, ∂T

xi
⌟∆ω⟩ = 0. Since Inequality (33) is true for any

p-eigenform ω, we apply it to the (n− p)-eigenform ∗Mω to get

(n−p)q1,n−p−1

∫
∂M

(|ι∗(δω)|2+ |ν⌟dω|2)dµg ≤
∫
M
(4|dω|2+(n−p)|∆ω+(2n−2p−n)ω|2)dµg. (34)

Summing inequalities (33) and (34) and using the fact that q1,n−p−1 = q1,p+1 yield the following:

(pq1,p−1 + (n− p)q1,p+1)

∫
∂M

(|ν⌟dω|2 + |ι∗(δω)|2)dµg

≤
∫
M
(4|dω|2 + 4|δω|2 + p|∆ω + (2p− n)ω|2 + (n− p)|∆ω + (n− 2p)ω|2)dµg

=

∫
M
(4⟨∆ω, ω⟩+ p|∆ω + (2p− n)ω|2 + (n− p)|∆ω + (n− 2p)ω|2)dµg. (35)

Here, we used the fact that
∫
M ⟨∆ω, ω⟩dµg =

∫
M (|dω|2+|δω|2)dµg as a consequence of the boundary

condition ω|∂M = 0. Now, the Bochner formula applied to the eigenform ω, with the help of the

pointwise inequality |∇α|2 ≥ 1
p+1 |dα|

2 + 1
n−p+1 |δα|

2 which is true for any p-form α [7, Lemme 6.8],
gives that∫

M
⟨∆ω, ω⟩dµg =

∫
M

|∇ω|2dµg +
1

2

∫
M

∆(|ω|2)dµg +

∫
M
⟨B[p]ω, ω⟩dµg

≥
∫
M

1

a(p, n)
(|dω|2 + |δω|2)dµg +

∫
∂M

⟨∇νω, ω⟩dµg +

∫
M

p(n− p)|ω|2dµg

=
1

a(p, n)

∫
M
⟨∆ω, ω⟩dµg +

∫
M

p(n− p)|ω|2dµg.

Here, we have set a(p, n) = max(p+1, n− p+1) and used the fact that the Bochner operator B[p]

is equal to p(n − p)Id on the round sphere Sn, see e.g. [7, Cor. 2.6] and [7, Rem. 6.15]. Thus, we
deduce that

p(n− p)∥ω∥2L2(M) ≤
(
1− 1

a(p, n)

)∫
M
⟨∆ω, ω⟩dµg ≤

(
1− 1

a(p, n)

)
∥∆ω∥L2(M)∥ω∥L2(M),

so that

∥ω∥L2(M) ≤
a(p, n)− 1

p(n− p)a(p, n)
∥∆ω∥L2(M). (36)
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Coming back to Inequality (35) and using again the Cauchy-Schwarz inequality as well as the
estimate ∥α+ β∥2L2(M) ≤ 2(∥α∥2L2(M) + ∥β∥2L2(M)), we obtain

(pq1,p−1 + (n− p)q1,p+1)

∫
∂M

(|ν⌟dω|2 + |ι∗(δω)|2)dµg ≤ 4∥∆ω∥L2(M)∥ω∥L2(M) + 2p∥∆ω∥2L2(M)

+2p(2p− n)2∥ω∥2L2(M) + 2(n− p)∥∆ω∥2L2(M)

+2(n− p)(n− 2p)2∥ω∥2L2(M)

(36)

≤ C(p, n)∥∆ω∥2L2(M),

where C(p, n) is the constant given by

C(p, n) = 4
a(p, n)− 1

p(n− p)a(p, n)
+ 2n+ (2p(2p− n)2 + 2(n− p)(n− 2p)2))(

a(p, n)− 1

p(n− p)a(p, n)
)2

= 4
a(p, n)− 1

p(n− p)a(p, n)
+ 2n+ 2n(2p− n)2(

a(p, n)− 1

p(n− p)a(p, n)
)2. (37)

Finally Characterization (12) allows to get the result. Notice that, if (32) were an equality, then
by the limiting case in the Cauchy-Schwarz inequality, the form ∆ω would be parallel to ω. But
by ∆2ω = 0, this would imply that ∆ω = 0. Because of ω|∂M = 0, we would deduce from [1] that
ω = 0 on M , which is a contradiction. Therefore, (32) always remains strict. □

4 Robin vs. Dirichlet and Neumann eigenvalue problems

In this section, we will establish estimates for the Robin eigenvalue problem on differential forms
defined in [4]. We mainly generalize some results in [13] to differential forms. For this purpose, we
recall the Robin problem on forms. Let (Mn, g) be a compact Riemannian manifold with smooth
boundary ∂M . Fix a positive real number τ . Then the boundary value problem [4]

∆ω = λω on M
ι∗(ν⌟ dω − τω) = 0 on ∂M
ν⌟ω = 0 on ∂M

(38)

is elliptic and self-adjoint. It admits an increasing unbounded sequence of positive real eigenvalues
with finite multiplicities

λ1,p(τ) ≤ λ2,p(τ) ≤ · · ·

The first eigenvalue λ1,p(τ) of the Robin boundary problem (38) can be characterized as follows:

λ1,p(τ) = inf


∫
M

(
|dω|2 + |δω|2

)
dµg + τ

∫
∂M

|ι∗ω|2dµg∫
M

|ω|2dµg

 , (39)

where ω runs over all non-identically vanishing p-forms on M such that ν⌟ω = 0. When the
parameter τ tends to 0, the Robin problem (38) reduces to the Neumann boundary problem, that
is 

∆ω = λω on M
ν⌟ dω = 0 on ∂M
ν⌟ω = 0 on ∂M.

(40)

Notice that the first eigenvalue λN
1,p of (40) is nonnegative and the kernel of the operator (40) is

isomorphic to the so-called absolute de Rham cohomology, which is defined by

Hp
A(M) = {ω ∈ Ωp(M)| dω = δω = 0 on M and ν⌟ω = 0 on ∂M}.
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When τ → ∞, the Robin problem (38) reduces to the Dirichlet boundary problem{
∆ω = λω on M
ω = 0 on ∂M.

(41)

By [1], the first eigenvalue λD
1,p of problem (41) is positive. We also have the estimate [4, Prop. 5.4]

λN
1,p ≤ λ1,p(τ) ≤ λD

1,p.

In the following, we will establish another estimates for λ1,p(τ) in terms of the Neumann and
Dirichlet ones. We have:

Theorem 4.1 Let (Mn, g) be a compact Riemannian manifold with smooth boundary. We have
the following estimates for the first eigenvalue of the Robin boundary problem:

1. Assume that the absolute de Rham cohomology Hp
A(M) does not vanish. We denote by ωD an

eigenform of the Dirichlet boundary problem associated to λD
1,p and let ω0 be the orthogonal

projection of ωD on the space Hp
A(M), assumed to be nonzero. Then

1

λ1,p(τ)
≥ 1

λD
1,p

+
∥ω0∥4L2(M)

τ∥ω0∥2L2(∂M)

.

2. Assume that the first eigenvalue λN
1,p of the Neumann boundary problem is positive, then

1

λ1,p(τ)
≥ 1

λN
1,p

−
ταN (λD

1,p − λN
1,p)

λN
1,p(ταNλD

1,p + λN
1,p(λ

D
1,p − λN

1,p))
,

where αN =
∥ωN∥2L2(∂M)

∥ωN∥2
L2(M)

and ωN is being an eigenform of the Neumann boundary problem

associated to λN
1,p.

Proof. We begin with the proof of the first point. Let ωD be a p-eigenform associated to the first
eigenvalue λD

1,p that is assumed to be of L2-norm equal to 1. Let ω0 be the orthogonal projection
of ωD to Hp

A(M). For any real number t, we consider the p-form

ωt = ωD + t ω0.

Clearly, we have that ν⌟ωt = 0. Therefore, by the characterization of the first eigenvalue λ1,p(τ),
we have that

λ1,p(τ) ≤

∫
M

(
|dωt|2 + |δωt|2

)
dµg + τ

∫
∂M

|ωt|2dµg∫
M

|ωt|2dµg

.

By the definition of the form ω0, we have that

∥dωt∥2L2(M) + ∥δωt∥2L2(M) = λD
1,p, ∥ωt∥2L2(∂M) = t2∥ω0∥2L2(∂M).

Also, we have that
∥ωt∥2L2(M) = 1 + t2∥ω0∥2L2(M) + 2t∥ω0∥2L2(M).

The last term comes from the fact that ω0 is the orthogonal projection of ωD. Thus by plugging in
the above inequality, we get that

λ1,p(τ) ≤
λD
1,p + t2τ∥ω0∥2L2(∂M)

1 + t2∥ω0∥2L2(M)
+ 2t∥ω0∥2L2(M)

.
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Now, we take the inverse of this last inequality, then add and subtract the term
t2τ∥ω0∥2L2(∂M)

λD
1,p

in

the numerator to find that

1

λ1,p(τ)
≥ 1

λD
1,p

+

t2

(
∥ω0∥2L2(M) −

τ∥ω0∥2L2(∂M)

λD
1,p

)
+ 2t∥ω0∥2L2(M)

λD
1,p + t2τ∥ω0∥2L2(∂M)

.

Since this is true for any real number t, then we deduce that
1

λ1,p(τ)
≥ 1

λD
1,p

+ sup
R

(f) where f is

the function given by

f(t) =

t2

(
∥ω0∥2L2(M) −

τ∥ω0∥2L2(∂M)

λD
1,p

)
+ 2t∥ω0∥2L2(M)

λD
1,p + t2τ∥ω0∥2L2(∂M)

=
At2 +Bt

Ct2 +D

with

A = ∥ω0∥2L2(M) −
τ∥ω0∥2L2(∂M)

λD
1,p

, B = 2∥ω0∥2L2(M),

C = τ∥ω0∥2L2(∂M), D = λD
1,p.

It is easy to check that the supremum of f is attained at t0 =
AD +

√
A2D2 +B2CD

BC
which is

equal to

sup
R

f = f(t0) =
t0(At0 +B)

Ct20 +D
=

t0(At0 +B)
2ADt0

B
+D +D

=
Bt0
2D

=
A+

√
A2 +

B2C

D
2C

.

Now, by replacing A,B,C and D by their values, we estimate

A2 +
B2C

D
=

(
∥ω0∥2L2(M) −

τ∥ω0∥2L2(∂M)

λD
1,p

)2

+
4∥ω0∥4L2(M)τ∥ω0∥2L2(∂M)

λD
1,p

=

(
∥ω0∥2L2(M) −

τ∥ω0∥2L2(∂M)

λD
1,p

− 2∥ω0∥4L2(M)

)2

− 4∥ω0∥8L2(M) + 4∥ω0∥6L2(M)

≥

(
∥ω0∥2L2(M) −

τ∥ω0∥2L2(∂M)

λD
1,p

− 2∥ω0∥4L2(M)

)2

,

since ∥ω0∥2L2(M) ≤ ∥ωD∥2L2(M) = 1. Then

sup
R

f ≥

(
∥ω0∥2L2(M) −

τ∥ω0∥2L2(∂M)

λD
1,p

)
+

∣∣∣∣∣ ∥ω0∥2L2(M) −
τ∥ω0∥2L2(∂M)

λD
1,p

− 2∥ω0∥4L2(M)

∣∣∣∣∣
2τ∥ω0∥2L2(∂M)

≥
∥ω0∥4L2(M)

τ∥ω0∥2L2(∂M)

.

This shows the required estimate. To prove the second inequality, let ωD (resp. ωN ) an eigen-
form of the Dirichlet (resp. Neumann) boundary problem associated to λD

1,p (resp. λN
1,p) such
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that ∥ωD∥L2(M) = ∥ωN∥L2(M) = 1. For any nonnegative number s, we consider the p-form
ωs = sωD + ωN , which clearly satisfies ν⌟ωs = 0. In order to use the Rayleigh inequality for
the eigenvalue λ1,p(τ), we compute∫

M
(|dωs|2 + |δωs|2)dµg = s2

∫
M
(|dωD|2 + |δωD|2)dµg +

∫
M
(|dωN |2 + |δωN |2)dµg

+2s

∫
M
⟨dωD, dωN ⟩dµg + 2s

∫
M
⟨δωD, δωN ⟩dµg

= s2λD
1,p + λN

1,p + 2sλN
1,p(ωD, ωN )L2(M).

In the last equality, we use the Stokes formula. Also, we have

∥ωs∥2L2(∂M) = ∥ωN∥2L2(∂M) and ∥ωs∥2L2(M) = s2 + 1 + 2s(ωD, ωN )L2(M).

Therefore, after replacing we get that

λ1,p(τ) ≤
s2λD

1,p + λN
1,p + 2sλN

1,p(ωD, ωN )L2(M) + τ∥ωN∥2L2(∂M)

s2 + 1 + 2s(ωD, ωN )L2(M)
.

As we did before, we take the inverse of this last inequality, then add and subtract the term
s2λD

1,p+τ∥ω∥2
L2(∂M)

λN
1,p

in the numerator to get that

1

λ1,p(τ)
≥ 1

λN
1,p

+

s2

(
1−

λD
1,p

λN
1,p

)
− ταN

λN
1,p

s2λD
1,p + λN

1,p + 2sλN
1,p + ταN

.

Here, we also use the fact that |(ωD, ωN )L2(M)| ≤ 1 by the Cauchy-Schwarz inequality and the fact
that s ≥ 0. In order to get the lower bound, we need to compute the supremum of the function g
which is given by

g(s) =
As2 +B

Cs2 +Ds+ E
,

with

A = 1−
λD
1,p

λN
1,p

, B = −ταN

λN
1,p

,

C = λD
1,p, D = 2λN

1,p, E = λN
1,p + ταN .

A direct computation shows that the supremum of the function g is attained at s2 =
ταN

λD
1,p − λN

1,p

and thus

supR(g) = g(s2) = −
ταN (λD

1,p − λN
1,p)

λN
1,p(ταNλD

1,p + λN
1,p(λ

D
1,p − λN

1,p))
.

This finishes the proof of the theorem. □

In the following result, we will give a gap inequality between the eigenvalues of the Robin Laplacian
under some curvature conditions. Let (Mn, g) be a Riemannian manifold with smooth boundary
and let η1(x), η2(x), · · · , ηn−1(x) be the principal curvatures at a point x of the boundary (i.e.
eigenvalues of the second fundamental form of the Weingarten tensor S). We assume that η1(x) ≤
η2(x) ≤ · · · ≤ ηn−1(x). For any integer p ∈ {1, · · · , n − 1}, the p-curvatures σp(x) are defined as
σp(x) = η1(x) + · · ·+ ηp(x). One can easily check that for any integer p and q with p ≤ q, we have

that
σp(x)

p ≤ σq(x)
q with equality if and only if η1(x) = η2(x) = · · · = ηq(x). Hence, we deduce that

H ≥ σp(x)
p for any integer p ∈ {1, · · · , n− 1}. In the next theorem, we set

σp = inf
x∈∂M

σp(x)

We state the result which generalizes [4, Thm. 5.8].
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Theorem 4.2 Let M be a compact domain in Rn. Fix an integer number q ∈ {1, · · · , n− 1} and
Let ω be a q-eigenform of the Robin Laplacian. If σp > 0 for some p ≤ q, then we have

∥ω∥2L2(∂M)

∥ω∥2
L2(M)

≤ 1

σp
(λ1,q − λ1,q−p).

Proof. We mainly follow the same computations as in [4, Thm. 5.8]. Let ω be a q-eigenform of
the Robin Laplacian and, for any p ≤ q, consider the (q − p)-form ϕi1,··· ,ip := ∂xi1

⌟ · · ·⌟∂xip
⌟ω, for

ik = 1, · · · , n with k = 1, · · · , p. Clearly, we have that ν⌟ϕi1,··· ,ip = 0. Hence by the characterization
(39) of the first eigenvalue, we get that

λ1,q−p(τ)

∫
M

|ϕi1,··· ,ip |2dµg ≤
∫
M
(|dϕi1,··· ,ip |2 + |δϕi1,··· ,ip |2)dµg + τ

∫
∂M

|ϕi1,··· ,ip |2dµg. (42)

Next we sum over i1, · · · , ip. We begin with the l.h.s. Applying successively (22), we have∑
i1,··· ,ip

|ϕi1,··· ,ip |2 =
∑

i1,··· ,ip

|∂xi1
⌟ · · ·⌟∂xip

⌟ω|2

= (q − (p− 1)) · · · q · |ω|2 = q!

(q − p)!
|ω|2. (43)

For the r.h.s., we first compute∑
i1,··· ,ip

|δϕi1,··· ,ip |2 =
∑

i1,··· ,ip

|∂xi1
⌟ · · ·⌟∂xip

⌟δω|2 (22)
=

(q − 1)!

(q − 1− p)!
|δω|2. (44)

In order to compute the term
∑

i1,··· ,ip |dϕi1,··· ,ip |2, we proceed as in Equation (20). Using repeatedly

the identity d(X⌟α) = ∇Xα−X⌟dα, true for any parallel vector field X, we get

dϕi1,··· ,ip = (−1)p∂xi1
⌟ · · ·⌟∂xip

⌟dω +

p∑
l=1

(−1)l+1∂xi1
⌟ · · ·⌟∂̂xil

⌟ · · ·⌟∂xip
⌟∇∂xil

ω.

Thus, we find that the sum
∑

i1,··· ,ip |dϕi1,··· ,ip |2 is equal to

∑
i1,··· ,ip

|∂xi1
⌟ · · ·⌟∂xip

⌟dω|2 +
∑

i1,··· ,ip

|
p∑

l=1

(−1)l+1∂xi1
⌟ · · ·⌟∂̂xil

⌟ · · ·⌟∂xip
⌟∇∂xil

ω|2

+2(−1)p
∑

i1,··· ,ip

p∑
l=1

(−1)l+1⟨∂xi1
⌟ · · ·⌟∂xip

⌟dω, ∂xi1
⌟ · · ·⌟∂̂xil

⌟ · · ·⌟∂xip
⌟∇∂xil

ω⟩

(22)
=

(q + 1)!

(q + 1− p)!
|dω|2 +

∑
i1,··· ,ip

∑
l

⟨∂xi1
⌟ · · ·⌟∂̂xil

⌟ · · ·⌟∂xip
⌟∇∂xil

ω, ∂xi1
⌟ · · ·⌟∂̂xil

⌟ · · ·⌟∂xip
⌟∇∂xil

ω⟩

−2
∑

i1,··· ,ip

∑
l<s

(−1)l+s⟨∂xi1
⌟ · · ·⌟∂̂xil

⌟ · · ·⌟∂xip
⌟∇∂xil

ω, ∂xi1
⌟ · · ·⌟∂̂xis

⌟ · · ·⌟∂xip
⌟∇∂xis

ω⟩

−2
∑

i1,··· ,ip

p∑
l=1

⟨∂xi1
⌟ · · · ∂̂xil

⌟ · · ·⌟∂xip
⌟(∂xil

⌟dω), ∂xi1
⌟ · · ·⌟∂̂xil

⌟ · · ·⌟∂xip
⌟∇∂xil

ω⟩

=
(q + 1)!

(q + 1− p)!
|dω|2 + pq!

(q − p+ 1)!
|∇ω|2

−2
∑

i1,··· ,ip

∑
l<s

(q − 1)− (p− 3)) · · · (q − 1)⟨∂xis
⌟∇∂xil

ω, ∂xil
⌟∇∂xis

ω⟩ − 2
pq!

(q − p+ 1)!
|dω|2.
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In this lenghty computation, we used the fact that
∑

i⟨∂xi⌟α, ∂xi⌟β⟩ = p⟨α, β⟩ for any p-forms α
and β. We also make use of the formula d =

∑
i ∂xi ∧∇∂xi

. Now, one can easily check by using the
expression of d and ∇ that the sum term in the above equality is equal to∑

i1,··· ,ip

∑
l<s

⟨∂xis
⌟∇∂xil

ω, ∂xil
⌟∇∂xis

ω⟩ =
(
p
2

)
(|∇ω|2 − |dω|2).

Hence, after simplifying, we find that∑
i1,··· ,ip

|dϕi1,··· ,ip |2 =
p(q − 1)!

(q − p)!
|∇ω|2 + (q − 1)!

(q − p− 1)!
|dω|2. (45)

Plugging Equalities (43), (44) and (45) into Inequality (42) yields after simplifying by (q−1)!
(q−p)!

λ1,q−p(τ)q

∫
M

|ω|2dµg ≤ p

∫
M

|∇ω|2dµg + (q − p)

∫
M
(|dω|2 + |δω|2)dµg

+τq

∫
∂M

|ω|2dµg. (46)

Now the Bochner formula ∆ = ∇∗∇+B[q] applied to the form ω gives after integrating that

λ1,q(τ)

∫
M

|ω|2dµg =

∫
M
⟨∆ω, ω⟩dµg =

∫
M

|∇ω|2dµg +

∫
∂M

⟨∇νω, ω⟩dµg.

By using ⟨∇νω, ω⟩ = ⟨S[q](ι∗ω), ι∗ω⟩+ τ |ω|2 as proved in [9], we get that∫
M

|∇ω|2dµg = λ1,q(τ)

∫
M

|ω|2dµg −
∫
∂M

(⟨S[q](ι∗ω), ι∗ω⟩+ τ |ω|2)dµg.

Plugging this last equality into Inequality (46), we get after using the pointwise inequality
⟨S[q](ι∗ω), ι∗ω⟩ ≥ σq|ω|2 that

λ1,q−p(τ)q

∫
M

|ω|2dµg ≤ pλ1,q(τ)

∫
M

|ω|2dµg − p

∫
∂M

(σq + τ)|ω|2dµg

+(q − p)

(
λ1,q(τ)

∫
M

|ω|2dµg − τ

∫
∂M

|ω|2dµg

)
+ τq

∫
∂M

|ω|2dµg

= qλ1,q(τ)

∫
M

|ω|2dµg − pσq

∫
∂M

|ω|2dµg

≤ qλ1,q(τ)

∫
M

|ω|2dµg − qσp

∫
∂M

|ω|2dµg.

In the last inequality, we used the fact that
σp

p ≤ σq

q . This finishes the proof of the theorem. □

5 Robin and Steklov operators vs. biharmonic Steklov

In this section, we relate the eigenvalues of the Robin problem to those of the biharmonic Steklov
operator. This extends the result stated in [13, Thm. 1.17] for functions.

Theorem 5.1 Let (Mn, g) be a compact Riemannian manifold with smooth boundary. We have
for any τ > 0 the estimate

1

λ1,p(τ)
≤ 1

λD
1,p

+
1

τq1,p
,

where λD
1,p is the first eigenvalue of the Dirichlet boundary problem (41).
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Proof. We mainly follow the computations done in [13, Thm. 1.17]. Let ω be an eigenform of the
Robin boundary problem (38) associated to λ1,p(τ). We denote by ω1 a solution to the problem

∆ω1 = 0 on M
ι∗ω1 = ι∗ω on ∂M
ν⌟ω1 = 0 on ∂M.

(47)

Notice that such a problem admits a unique solution by [24]. Now, let us consider the p-form
ω2 := ω − ω1. It clearly satisfies {

∆ω2 = ∆ω on M
ω2 = 0 on ∂M.

(48)

By using the triangle inequality, the characterization (13) and the one of the first eigenvalue λD
1,p

of the Dirichlet problem (corresponding to τ → ∞ in (39)), we have

∥ω∥L2(M) ≤ ∥ω1∥L2(M) + ∥ω2∥L2(M)

≤
√
q−1
1,p∥ω1∥L2(∂M) +

√
(λD

1,p)
−1
(
∥dω2∥2L2(M) + ∥δω2∥2L2(M)

) 1
2

≤
√
q−1
1,p∥ω∥L2(∂M) +

√
(λD

1,p)
−1
(
∥dω∥2L2(M) + ∥δω∥2L2(M)

) 1
2
. (49)

Indeed, ∥ω1∥L2(∂M) = ∥ω∥L2(∂M) since ω2 = 0 on ∂M and

∥dω∥2L2(M) + ∥δω∥2L2(M) = ∥dω1∥2L2(M) + ∥dω2∥2L2(M) + 2(dω1, dω2)L2(M)

+∥δω1∥2L2(M) + ∥δω2∥2L2(M) + 2(δω1, δω2)L2(M)

= ∥dω1∥2L2(M) + ∥δω1∥2L2(M) + ∥dω2∥2L2(M) + ∥δω2∥2L2(M)

+2

∫
M
⟨δdω1, ω2⟩dµg − 2

∫
∂M

⟨ν⌟ω1, ι
∗ω2⟩dµg

+2

∫
M
⟨dδω1, ω2⟩dµg + 2

∫
∂M

⟨ι∗δω1, ν⌟ω2⟩dµg

= ∥dω1∥2L2(M) + ∥δω1∥2L2(M) + ∥dω2∥2L2(M) + ∥δω2∥2L2(M)

≥ ∥dω2∥2L2(M) + ∥δω2∥2L2(M).

Now, we square both sides of Inequality (49) to write

∥ω∥2L2(M) ≤ q−1
1,p∥ω∥

2
L2(∂M) + (λD

1,p)
−1
(
∥dω∥2L2(M) + ∥δω∥2L2(M)

)
+2
(
q−1
1,p(λ

D
1,p)

−1∥ω∥2L2(∂M)

(
∥dω∥2L2(M) + ∥δω∥2L2(M)

)) 1
2

≤ q−1
1,p∥ω∥

2
L2(∂M) + (λD

1,p)
−1
(
∥dω∥2L2(M) + ∥δω∥2L2(M)

)
τ−1q−1

1,p

(
∥dω∥2L2(M) + ∥δω∥2L2(M)

)
+ τ(λD

1,p)
−1∥ω∥2L2(∂M)

= (τ−1q−1
1,p + (λD

1,p)
−1)

(
∥dω∥2L2(M) + ∥δω∥2L2(M) + τ∥ω∥2L2(∂M)

)
.

In the second above inequality, we use the fact that 2
√
ab ≤ a

τ + τb for any real positive τ . The
characterization (39) allows to deduce the estimate. □

Now, we come back to the Serrin problem on forms. We will use the existence of solution to this
problem in harmonic domains carrying parallel forms to get an estimate for the eigenvalues of the
absolute Dirichlet-to-Neumann operator introduced in [21] (see also [11]). Recall the definition of
this operator. Let (Mn, g) be a compact Riemannian manifold with smooth boundary ∂M . Let
p ∈ {0, · · · , n− 1}. Given any p-form ω on ∂M , there exists a unique p-form ω̂ on M such that [24]
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∆ω̂ = 0 on M
ι∗ω̂ = ω on ∂M
ν⌟ω = 0 on ∂M.

(50)

The form ω̂ is usually called the harmonic tangential extension of ω. The Dirichlet-to-Neumann
operator is then defined as T [p] : Λp(∂M) → Λp(∂M), ω 7→ −ν⌟dω̂. When p = 0, this operator
reduces to the classical Dirichlet-to-Neumann operator on functions, known as Steklov operator.
It is shown in [21] that T [p] is an elliptic self-adjoint pseudo-differential operator with discrete
spectrum consisting of eigenvalues

0 ≤ ν1,p(M) ≤ ν2,p(M) ≤ · · · .

The kernel of this operator is isomorphic to the absolute de Rham cohomology Hp
A(M) introduced

in Section 4. The dual problem to (50) (w.r.t. the Hodge star operator) is called the relative

Dirichlet-to-Neumann operator and is defined by T
[p]
D = (−1)p(n−1−p) ∗∂M T [n−1−p]∗∂M . If νD1,p(M)

is the first eigenvalue of T
[p]
D , we have

νD1,p(M) = ν1,n−1−p(M).

Also, we have the following characterization [22] for the first eigenvalue νD1,p(M):

νD1,p(M) = inf


∫
M
(|dϕ|2 + |δϕ|2)dµg∫

∂M
|ϕ|2dµg

| ϕ ∈ Ωp+1(M), ι∗ϕ = 0

 . (51)

Theorem 5.2 Let (Mn, g) be a compact Riemannian manifold with smooth boundary. Assume that
M is a harmonic domain and carries a parallel p-form for some p = 1, · · · , n−1. If moreover σp > 0
or σn−p > 0, then

min(ν1,p−1(M), ν1,n−1−p(M)) ≤ Vol(∂M)

Vol(M)
.

Proof. Let ω be any p-eigenform of the biharmonic Steklov operator associated to some eigenvalue,
say q. We let the (p+ 1)-form ϕ := dω. Clearly, we have that ι∗ϕ = 0. Hence, by Characterization
(51), we get that

νD1,p(M)

∫
∂M

|ν⌟dω|2dµg ≤
∫
M

|δdω|2dµg. (52)

Now, applying the same characterization (51) to d(∗Mω), since ∗Mω is also an eigenform of the
biharmonic Steklov operator, yields the inequality

νD1,n−p(M)

∫
∂M

|ι∗δω|2dµg ≤
∫
M

|dδω|2dµg. (53)

Summing Inequalities (52) and (53) yields

min(νD1,p(M), νD1,n−p(M))

∫
∂M

(|ν⌟dω|2 + |ι∗δω|2)dµg ≤
∫
M
(|δdω|2 + |dδω|2)dµg.

Now a direct computation using the Stokes formula and the boundary conditions on ω gives that∫
M

|∆ω|2dµg =

∫
M
(|dδω|2 + |δdω|2)dµg −

2

q2

∫
∂M

⟨ν⌟∆ω, δ∂M (ι∗∆ω)⟩dµg.
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Hence after plugging this equality into the above inequality, we deduce that

min(νD1,p(M), νD1,n−p(M)) ≤ q +
2

q2

∫
∂M

⟨ν⌟∆ω, δ∂M (ι∗∆ω)⟩dµg∫
∂M

(|ν⌟dω|2 + |ι∗δω|2)dµg

. (54)

Notice that this inequality is true for any eigenform ω of the biharmonic Steklov operator. From
Theorem (3.6), we know that when M is a harmonic domain carrying a parallel p-form ω0, the

form ω = f · ω0 is an eigenform associated to the eigenvalue q = Vol(∂M)
Vol(M) . Hence, we will apply

Inequality (54) to the particular form ω = f · ω0. For this purpose, we will check the sign of the
integral. Assume first that σn−p > 0. We estimate∫

∂M
⟨ν⌟∆ω, δ∂M (ι∗∆ω)⟩dµg =

∫
∂M

⟨ν⌟ω0, δ
∂M (ι∗ω0)⟩dµg

=

∫
∂M

⟨ν⌟ω0, (S
[p−1] − (n− 1)H)ν⌟ω0)⟩dµg

≤
∫
∂M

(
(σn−1 − σn−p)|ν⌟ω0|2 − σn−1|ν⌟ω0|2

)
dµg

≤ 0.

In the second equality, we use the identity [20, Lem. 18]

δ∂M (ι∗ω0) = ν⌟∇νω0 + ι∗(δω0) + S[p−1](ν⌟ω0)− (n− 1)Hν⌟ω0.

Also, we use the pointwise estimate ⟨S[p]α, α⟩ ≤ (σn−1 − σn−p−1)|α|2 for any p-form α. Hence, we
deduce that

min(νD1,p(M), νD1,n−p(M)) ≤ Vol(∂M)

Vol(M)
.

Finally, the fact that νD1,p(M) = ν1,n−1−p(M) and νD1,n−p(M) = ν1,p−1(M) finishes the proof of the
statement when σn−p > 0. If σp > 0, then replacing p by n− p and by invariance of parallel forms
under the Hodge star operator on M , we obtain the same inequality. This concludes the proof. □

Remark 5.3 Notice that a similar estimate has been established in [21, Cor. 15] for compact
manifolds carrying parallel forms with the assumption Hp

A(M) = Hp(M) = 0. The inequality is

ν1,n−1−p(M) + ν1,p−1(M) ≤ Vol(∂M)

Vol(M)
.

6 Appendix

Lemma 6.1 Let (Mn, g) be a compact Riemannian manifold with smooth boundary ∂M and let
ν be the inward unit normal vector field to the boundary. Consider the following boundary value
problem 

∆2ω = f on M
B1ω = ω1 on ∂M
B2ω = ω2 on ∂M
B3ω = ω3 on ∂M

(55)

for given f ∈ Ωp(M), ω1 ∈ Γ(ΛpT ∗M|∂M ), ω2 ∈ Ωp−1(∂M) and ω3 ∈ Ωp(∂M) and where if E1 :=
ΛpT ∗M|∂M , E2 := Λp−1T ∗∂M and E3 := ΛpT ∗∂M , B1 : Ω

p(M) → Γ(E1) such that B1ω := ω|∂M ,
B2 : Ω

p(M) → Γ(E2) and B3 : Ω
p(M) → Γ(E3) are either:
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1. B2 = ι∗δω and B3 = ν⌟dω. In this case, (55) is elliptic in the sense of Lopatinskĭı-Shapiro
(see Definition 1.6.1 in [24]), self-adjoint and its kernel is reduced to {0}. Or

2. B2ω := ν⌟∆ω + qι∗(δω) and B3ω := ι∗∆ω − qν⌟ dω for some real constant q. In this case,
problem (55) is elliptic in the sense of Lopatinskĭı-Shapiro.

Proof. Given any v ∈ T ∗
x∂M \ {0} for a fixed x ∈ ∂M , we consider the space

M+
v := {bounded solutions y = y(t) on R+ to the ODE σ∆2((−iv, ∂t))y = 0} .

A direct computation shows that

M+
v = Span

(
e−|v|t(at+ b) · ω0 | a, b ∈ R, ω0 ∈ ΛpT ∗

xM|∂M

)
,

which is hence a space of dimension N := 2

(
n
p

)
. We look at the pointwise map

M+
v −→

3⊕
j=1

Ej

y 7−→ (σB1((−iv, ∂t))y, σB2((−iv, ∂t))y, σB3((−iv, ∂t))y) (0)

which we want to show to be an isomorphism. Note already that space dimensions are equal on both
sides. Since σB1((−iv, ∂t)) = Id, σB2((−iv, ∂t)) = −∂t · ν⌟ · +iv⌟ι∗· and σB3((−iv, ∂t)) = ∂t · ι∗ +
iv ∧ (ν⌟·), we obtain that, for any fixed ω0 ∈ ΛpT ∗

xM , the element e−|v|t ·ω0 of M+
v (corresponding

to a = 0 and b = 1) is sent to (ω0, |v|ν⌟ω0 + iv⌟ι∗ω0,−|v|ι∗ω0 + iv ∧ (ν⌟ω0)); and that the element
te−|v|t · ω0 of M+

v (corresponding to a = 1 and b = 0) is sent to (0,−ν⌟ω0, ι
∗ω0). Choosing a basis

(ω
(1)
0 , . . . , ω

(N)
0 ) of ΛpT ∗

xM , the basis
(
e−|v|t · ω(1)

0 , . . . , e−|v|t · ω(N)
0 , te−|v|t · ω(1)

0 , . . . , te−|v|t · ω(N)
0

)
of M+

v will therefore be sent to a basis of
⊕3

j=1Ej . This shows the map M+
v −→

⊕3
j=1Ej to be

an isomorphism. Therefore (55) is elliptic.
Using (6), it is easy to see that (55) is also self-adjoint. Moreover, the kernel of (55) is reduced to
{0}: namely, if ω ∈ Ωp(M) solves (55) with f = 0 as well as ω1 = ω2 = ω3 = 0, then (7) implies
that ∥∆ω∥L2(M) = 0, from which ω = 0 on M follows using ω|∂M = 0.
As a consequence, fixing f = 0 as well as ω1 = 0, for any given (ω2, ω3) ∈ Ωp−1(∂M) ⊕ Ωp(∂M),
there exists a unique ω ∈ Ωp(M) solving (55). In particular, ω ∈ Z, where, as in the proof of
Theorem 2.3,

Z :=
{
ω ∈ Ωp(M) |∆2ω = 0 on M and ω|∂M = 0

}
.

This shows the map Z → Ωp(∂M)⊕ Ωp−1(∂M), ω 7→ (ν⌟dω, ι∗δω), to be onto. This proves 1.
Changing the boundary operators B2 and B3 via B2ω := ν⌟∆ω+qι∗(δω) and B3ω := ι∗∆ω−qν⌟ dω
for some real contant q (which actually plays no role since it is only involved in the first-order-
terms of the b.c. and not in their principal symbols), we still get elliptic boundary conditions
for ∆2: for any v ∈ T ∗

x∂M \ {0}, the pointwise map M+
v −→

⊕3
j=1Ej from above sends

e−|v|t · ω0 to (ω0, 0, 0) and sends te−|v|t · ω0 to (0, 2|v|ν⌟ω0, 2|v|ι∗ω0), which shows that map to
be an isomorphism. Therefore B1, B2, B3 define elliptic boundary conditions for ∆2, this proves 2.□

Lemma 6.2 Let Mn ↪→ Rn+m be an isometric immersion and let II be the second fundamental
form of the immersion. For all X,Y ∈ TM and N ∈ T⊥M , we have

(∇XIIN )(Y ) = (∇Y IIN )(X)− II∇⊥
Y N (X) + II∇⊥

XN (Y ), (56)
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where ∇⊥
XN := (∇Rn+m

X N)⊥ defines the normal connection on T⊥M . As a consequence, by writing
∂xi = ∂T

xi
+ ∂⊥

xi
for all i = 1, · · · , n+m, the divergence of the endomorphism II∂⊥

xi
is equal to

δ(II∂⊥
xi
) = −nd(⟨H̃, ∂⊥

xi
⟩)− nII

H̃
(∂T

xi
) +

m∑
a=1

II2fa(∂
T
xi
). (57)

Here {f1, · · · , fm} is a local orthonormal frame of T⊥M and H̃ is the mean curvature field of the
immersion.

Proof. Let X,Y, Z be vector fields in TM that we assume to be parallel at some point in M and
let N ∈ T⊥M . We compute

(∇XIIN )(Y, Z) = X(IIN (Y, Z))

= X⟨II(Y,Z), N⟩
= ⟨∇Rn+m

X II(Y,Z), N⟩+ ⟨II(Y,Z),∇Rn+m

X N⟩
= ⟨∇Rn+m

Y II(X,Z), N⟩+ ⟨II(Y, Z),∇Rn+m

X N⟩
= Y (IIN (X,Z))− ⟨II(X,Z),∇Rn+m

Y N⟩+ ⟨II(Y,Z),∇Rn+m

X N⟩
= (∇Y IIN )(X,Z)− II∇⊥

Y N (X,Z) + II∇⊥
XN (Y, Z).

In the fourth equality, we use the Codazzi equation for submanifolds in Rn+m. Hence we get Equality
(56). To find Equation (57), we decompose ∂xi = ∂T

xi
+ ∂⊥

xi
for all i = 1, · · · , n+m. Then from the

parallelism of the vector ∂xi and the Gauss formula, we get that

∇Rn+m

X ∂⊥
xi

= −∇Rn+m

X ∂T
xi

= −∇X∂T
xi
− II(X, ∂T

xi
),

where ∇ is the Levi-Civita connection on TM . Thus, we deduce that

∇⊥
X∂⊥

xi
= (∇Rn+m

X ∂⊥
xi
)⊥ = −II(X, ∂T

xi
). (58)

The divergence of the endomorphism II∂⊥
xi

can be computed using Equation (56) with N = ∂⊥
xi
.

For X ∈ TM , we have

δ(II∂⊥
xi
)(X) = −

n∑
s=1

(∇esII∂⊥
xi
)(es, X)

= −
n∑

s=1

(∇esII∂⊥
xi
)(X, es)

(56)
= −

∑
s

(∇XII∂⊥
xi
)(es, es)−

n∑
s=1

IIII(X,∂T
xi
)(es, es) +

n∑
s=1

IIII(es,∂T
xi
)(X, es)

= −nX(⟨H̃, ∂⊥
xi
⟩)− nII

H̃
(X, ∂T

xi
) +

m∑
a=1

n∑
s=1

⟨II(es, ∂T
xi
), fa⟩⟨II(X, es), fa⟩

= −nX(⟨H̃, ∂⊥
xi
⟩)− nII

H̃
(∂T

xi
, X) +

m∑
a=1

g(IIfa(∂
T
xi
), IIfa(X)).

This ends the proof of the lemma. □

Proposition 6.3 For any p-form ω, the curvature term
∑n

s=1 es⌟R(es, X)ω is equal to

n∑
s=1

es⌟R(es, X)ω = −
m∑
a=1

IIfa(X)⌟II [p]fa
ω + II

nH̃
(X)⌟ω,

where {e1, · · · , en} and {f1, · · · , fm} are respectively orthonormal basis of TM and T⊥M .
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Proof. In order to compute the curvature term, we use the Gauß equation. Indeed, for any
X,Y, Z, T ∈ TM we have

R(X,Y, Z, T ) = −⟨II(X,Z), II(Y, T )⟩+ ⟨II(X,T ), II(Y, Z)⟩,

which can be equivalently written as

R(X,Y )Z = −
m∑
a=1

g(IIfa(X), Z)IIfa(Y ) +

m∑
a=1

g(IIfa(Y ), Z)IIfa(X).

Now, due to linearity, we can consider that ω of the form ei1 ∧ · · · ∧ eip . Then, we compute

n∑
s=1

es⌟R(es, X)ω

=
n∑

s=1

p∑
j=1

es⌟(ei1 ∧ · · · ∧R(es, X)eij ∧ · · · ∧ eip)

= −
m∑
a=1

n∑
s=1

p∑
j=1

g(IIfa(es), eij )es⌟(ei1 ∧ · · · ∧ IIfa(X)︸ ︷︷ ︸
j−th

∧ · · · ∧ eip)

+
m∑
a=1

n∑
s=1

p∑
j=1

g(IIfa(X), eij )es⌟(ei1 ∧ · · · ∧ IIfa(es)︸ ︷︷ ︸
j−th

∧ · · · ∧ eip)

= −
m∑
a=1

n∑
s=1

p∑
k,j=1
k ̸=j

(−1)k+1g(IIfa(es), eij )δsikei1 ∧ · · · ∧ êik ∧ · · · ∧ IIfa(X) ∧ · · · ∧ eip

−
m∑
a=1

n∑
s=1

p∑
j=1

(−1)j+1g(IIfa(es), eij )g(IIfa(X), es)ei1 ∧ · · · ∧ êij ∧ · · · ∧ eip

+

m∑
a=1

n∑
s=1

p∑
k,j=1
k ̸=j

(−1)k+1g(IIfa(X), eij )δsikei1 ∧ · · · ∧ êik ∧ · · · ∧ IIfa(es) ∧ · · · ∧ eip

+
m∑
a=1

n∑
s=1

p∑
j=1

(−1)j+1g(IIfa(X), eij )g(IIfa(es), es)ei1 ∧ · · · ∧ êij ∧ · · · ∧ eip .

By using the symmetry of the second fundamental form, the above computation reduces to

n∑
s=1

es⌟R(es, X)ω = −
m∑
a=1

p∑
k,j=1
k ̸=j

(−1)k+1g(IIfa(eik), eij )ei1 ∧ · · · ∧ êik ∧ · · · ∧ IIfa(X) ∧ · · · ∧ eip

−
m∑
a=1

p∑
j=1

(−1)j+1g(II2fa(X), eij )ei1 ∧ · · · ∧ êij ∧ · · · ∧ eip

+

m∑
a=1

p∑
k,j=1
k ̸=j

(−1)k+1g(IIfa(X), eij )ei1 ∧ · · · ∧ êik ∧ · · · ∧ IIfa(eik) ∧ · · · ∧ eip

+
m∑
a=1

p∑
j=1

(−1)j+1g(II
nH̃

(X), eij )ei1 ∧ · · · ∧ êij ∧ · · · ∧ eip .

Now, we prove that the first sum vanishes. Indeed, by decomposing with respect to k < j and
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k > j, it is equal to∑
k<j

(−1)k+1g(IIfa(eik), eij )ei1 ∧ · · · ∧ êik ∧ · · · ∧ IIfa(X) ∧ · · · ∧ eip

+
∑
k>j

(−1)k+1g(IIfa(eik), eij )ei1 ∧ · · · ∧ IIfa(X) ∧ · · · ∧ êik ∧ · · · ∧ eip

=
∑
k<j

(−1)k+j−1g(IIfa(eik), eij )IIfa(X) ∧ ei1 ∧ · · · ∧ êik ∧ · · · ∧ êij ∧ · · · ∧ eip

+
∑
k>j

(−1)k+jg(IIfa(eik), eij )IIfa(X) ∧ ei1 ∧ · · · ∧ êij ∧ · · · ∧ êik ∧ · · · ∧ eip

= 0.

In the same way, we prove that the third sum is equal to −
∑m

a=1 II
[p−1]
fa

(IIfa(X)⌟ω). Indeed, it is
equal to ∑

k<j

(−1)k+1g(IIfa(X), eij )(ei1 ∧ · · · ∧ êik ∧ · · · ∧ IIfa(eik) ∧ · · · ∧ eip)

+
∑
k>j

(−1)k+1g(IIfa(X), eij )(ei1 ∧ · · · ∧ IIfa(eik) ∧ · · · ∧ êik ∧ · · · ∧ eip)

=
∑
k<j

(−1)k+1+j−k−1g(IIfa(X), eij )(ei1 ∧ · · · ∧ IIfa(eik) ∧ · · · ∧ êij ∧ · · · ∧ eip)

+
∑
k>j

(−1)k+1+k−j−1g(IIfa(X), eij )(ei1 ∧ · · · ∧ êij ∧ · · · ∧ IIfa(eik) ∧ · · · ∧ eip)

=
∑
k<j

(−1)jg(IIfa(X), eij )(ei1 ∧ · · · ∧ IIfa(eik) ∧ · · · ∧ êij ∧ · · · ∧ eip)

+
∑
k>j

(−1)jg(IIfa(X), eij )(ei1 ∧ · · · ∧ êij ∧ · · · ∧ IIfa(eik) ∧ · · · ∧ eip)

= −II
[p−1]
fa

(IIfa(X)⌟ω).

In the last equality, we use the formula A[p](X1 ∧ · · · ∧Xp) =
∑p

i=1X1 ∧ · · · ∧A(Xi) ∧ · · · ∧Xp for
any vector fields X1, · · ·Xp in TM . Therefore, we deduce that

n∑
s=1

es⌟R(es, X)ω = −
m∑
a=1

II2fa(X)⌟ω −
m∑
a=1

II
[p−1]
fa

(IIfa(X)⌟ω) + II
nH̃

(X)⌟ω

= −
m∑
a=1

IIfa(X)⌟II [p]fa
ω + II

nH̃
(X)⌟ω.

In the last equality, we used the identity A[p−1](X⌟α) = X⌟A[p]α−A(X)⌟α. □
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