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1. Introduction

It is well known that limiting cases in classical estimates for the eigenvalues of

the fundamental Dirac operator on a compact manifold without boundary [5, 8]

give rise to special geometries. Indeed, these limiting cases are characterized by the

existence of special spinor fields, such as Killing spinor fields which imply severe

restrictions on the holonomy [1]. Considering hypersurfaces bounding a domain, the

hypersurface Dirac operator has been introduced by E. Witten to prove the positive

mass theorem [15]. The spinorial background that has been developed to extend the

classical estimates to hypersurfaces has now become a powerful tool to investigate

extrinsic geometry and manifolds with boundary problems (see e.g. [10, 11]).

In this direction, the spectrum of the submanifold Dirac operator has been

studied in [9], where some estimates are obtained for odd codimensions. In this

paper, we first give new lower bounds for the eigenvalues of the submanifold Dirac

operator (Theorems 3.5 and 3.6) and discuss their limiting cases.

We start by restricting the spinor bundle of a Riemannian spin manifold to

a spin submanifold endowed with the induced metric. We then relate this bundle

to the twisted spinor bundle on the submanifold. For further study of the limiting

cases, we have to adapt the algebraic identifications of the spinor spaces and Clifford

multiplications given in [2].
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Defining appropriate Dirac operators and relating them with the help of

the spinorial Gauss formula, the submanifold Dirac operator DH is the natural

generalization of the hypersurface Dirac operator (see for example [14,16]). We

then get lower bounds for the eigenvalues of DH in terms of the norm of the mean

curvature vector, the Energy-Momentum tensor associated with an eigenspinor, and

an adapted conformal change of the metric.

Lower bounds also involve the scalar curvature of the submanifold as well as a

normal curvature term which only appears in codimension greater than one.

As a consequence of our definitions, the established estimates hold for all

codimensions (compare with [9]).

Our identifications allow to discuss the limiting cases in terms of special sections

of the spinor bundle. These particular spinor fields generalize the notion of Killing

spinors to the spinor bundle of the submanifold twisted with the normal spinor

bundle.

The main point of this paper is that such estimates (see also [9, 16, 17]) can

always be discussed in an intrinsic way by considering any auxiliary vector bun-

dle attached to a manifold instead of the normal bundle of a submanifold (see

Theorems 4.1–4.4).

2. Dirac Operators on Submanifolds

2.1. Algebraic preliminaries

In this section, we adapt algebraic material developped by C. Bär in [2]. Basic facts

concerning spinor representations can be found in classical books (see [3, 6, 12]

or [4]).

Let m and n be two integers, we start by constructing an irreducible represen-

tation of the complex Clifford algebra Clm+n from irreducible representations ρn
and ρm of Cln and Clm respectively. Let Σp be the space of complex spinors for

the representation ρp. Recall that if p is even, ρp is unique up to an isomorphism,

and if p is odd, there are two inequivalent irreducible representations of Clp; in this

case (ρjp,Σ
j
p), j = 0, 1, denotes the representation which sends the complex volume

form to (−1)j IdΣjp
. So we have to consider four cases according to the parity of m

and n.

First case: Assume that n and m are even. Define

γ : Rm ⊕ Rn −→ EndC(Σm ⊗ Σn)

(v, w) 7−→ ρm(v)⊗ (IdΣ+
n
− IdΣ−n

) + IdΣm ⊗ ρn(w) ,

where Σ±n is the ±1-eigenspace for the action of the complex volume form ωn of

Cln. Recall that ωn = i[
n+1

2 ]e1 · . . . · en, where (e1, . . . , en) stands for any positively

oriented orthonormal basis of Rn and ‘·’ denotes the Clifford multiplication in Cln.
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Then, for σ ∈ Σm, θ ∈ Σn, for any vectors v ∈ Rm and w ∈ Rn, we have:

γ(v + w)2(σ ⊗ θ) = ρm(v)2σ ⊗ (θ+ + θ−) + ρm(v)σ ⊗ (ρn(w)θ− − ρn(w)θ+)

+ ρm(v)σ ⊗ (ρn(w)θ+ − ρn(w)θ−) + σ ⊗ ρn(w)2θ

= −(|v|2 + |w|2)σ ⊗ θ .

Therefore, since γ(v+w)2 = −|v+w|2 Id, the map γ induces a non-trivial complex

representation of Clm+n of dimension 2
m+n

2 and so γ is equivalent to ρm+n.

With respect to the inclusions of Clm and Cln in Clm+n corresponding to

Rm −→ Rm+n = Rm ⊕ Rn and Rn −→ Rm+n = Rm ⊕ Rn

v 7−→ (v, 0) w 7−→ (0, w) ,

we can write

ωm+n = i[
m+n+1

2 ]e1 · . . . · em+n

= i[
m+1

2 ]i[
n+1

2 ]e1 · . . . · em · em+1 · . . . · em+n

= ωm · ωn .

(2.1)

On the other hand, if σ ∈ Σm and θ ∈ Σn, then for all v ∈ Rm,

γ(v · ωn)(σ ⊗ θ) = ρm(v)σ ⊗ θ . (2.2)

Therefore, since m is even, we have

γ(ωm+n)(σ ⊗ θ) = ρm(ωm)σ ⊗ ρn(ωn)θ ,

so that

Σ+
m+n = Σ+

m ⊗ Σ+
n ⊕ Σ−m ⊗ Σ−n ,

Σ−m+n = Σ+
m ⊗ Σ−n ⊕ Σ−m ⊗ Σ+

n .

We can then define

Σ := Σm ⊗ Σn = Σ+
m+n ⊕ Σ−m+n .

Second case: Assume that m is odd and n is even. For j = 0, 1, set

γj : Rm ⊕ Rn −→ EndC(Σ
j
m ⊗ Σn)

(v, w) 7−→ ρjm(v)⊗ (IdΣ+
n
− IdΣ−n

) + IdΣjm
⊗ ρn(w) .

As before, the map γj induces a non-trivial complex representation of Clm+n of

dimension 2[m+n
2 ]. Since ωm+n = ωm ·ωn as in (2.1), we have γj(ωm+n) = (−1)j Id,

and therefore the representations γj and ρjm+n are equivalent. Note that

γj(v · ωn) = ρjm(v)⊗ IdΣn , ∀ v ∈ Rm . (2.3)
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Third case: Assume that m is even and n is odd. For j = 0, 1, set

γj : Rm ⊕ Rn −→ EndC(Σm ⊗ Σjn)

(v, 0) 7−→ i

(
0 −ρm(v)

ρm(v) 0

)
⊗ IdΣjn

(0, w) 7−→
(

IdΣ+
m

0

0 −IdΣ−m

)
⊗ ρjn(w) ,

where the matrices are given with respect to the decomposition Σm = Σ+
m ⊕ Σ−m.

Once again, γj is an irreducible complex representation of Clm+n. As in the previous

case, ωm+n = ωm · ωn and we see that γj(ωm+n) = (−1)j Id.

So we proved that γj is equivalent to ρjm+n and

γj(v · ωn) = (−1)j i ρm(v) ⊗ IdΣjn
, ∀ v ∈ Rm . (2.4)

Fourth case: Assume that m and n are odd. Define

Σ+ := Σ0
m ⊗ Σ0

n ,

Σ− := Σ0
m ⊗ Σ1

n ,

Σ := Σ+ ⊕ Σ− ,

and

γ : Rm ⊕ Rn −→ EndC(Σ)

(v, 0) 7−→ i

(
0 ρ0

m(v)⊗ τ−1

−ρ0
m(v)⊗ τ 0

)

(0, w) 7−→
(

0 −IdΣ0
m
⊗ τ−1 ◦ ρ1

n(w)

IdΣ0
m
⊗ τ ◦ ρ0

n(w) 0

)
,

where τ is an isomorphism from Σ0
n to Σ1

n satisfying

τ ◦ ρ0
n(w) ◦ τ−1 = −ρ1

n(w) , ∀w ∈ Rn .

Now, as in previous cases, we have γ(v+w)2 = −(|v|2 + |w|2) IdΣ for all v ∈ Rm and

w ∈ Rn. Moreover, since in the case where m and n are odd, ωm+n = −i ωm · ωn,
we can show that

γ(ωm+n) =

(
IdΣ+ 0

0 −IdΣ−

)
.

Therefore we conclude that γ is equivalent to ρm+n and Σ±m+n
∼= Σ±.

Besides, we have the relation

γ(v · ωn) = i

(
ρ0
m(v)⊗ IdΣ0

n
0

0 −ρ0
m(v) ⊗ IdΣ1

n

)
, ∀ v ∈ Rm . (2.5)
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2.2. Restriction of spinors to a submanifold

Let (M̃m+n, g) be a Riemannian spin manifold and letMm be an immersed oriented

submanifold in M̃ with the induced Riemannian structure. Assume that (Mm, g|M )

is spin. If NM is the normal vector bundle of M in M̃ , then there exists a spin

structure on NM , denoted by SpinN . Let SpinM ×M SpinN be the pull-back of

the product fibre bundle SpinM × SpinN over M ×M by the diagonal map. There

exists a principal bundle morphism Φ : SpinM ×M SpinN → SpinM̃|M , with

Φ((sM , sN )(a, a′)) = Φ((sM , sN ))(a · a′) (2.6)

for all (sM , sN ) in SpinM ×M SpinN and for all (a, a′) in Spin(m)× Spin(n), such

that the following diagram commutes:

SpinM ×M SpinN
Φ−→ SpinM̃|My

y
↘
M

↗

SOM ×M SON −→ SOM̃|M

where the lower horizontal arrow is just given by juxtaposition of bases (see [13]).

Now, let S := ΣM̃|M , where ΣM̃ is the spinor bundle of M̃ and

Σ :=

{
ΣM ⊗ ΣN if n or m is even ,

ΣM ⊗ ΣN ⊕ ΣM ⊗ ΣN otherwise .

Recall that there exists a hermitian inner product on S, denoted by 〈. , .〉, such

that Clifford multiplication by a vector of TM̃|M is skew-symmetric. In the follow-

ing, we write (. , .) = <e(〈. , .〉).

2.3. Identification of the restricted spinor bundle

From the preceding considerations, it is now possible to identify S with Σ. For

example, if m and n are even, we have the following isomorphism:

ΣM ⊗ ΣN −→ S

([sM , σ], [sN , η]) 7−→ [Φ(sM , sN), σ ⊗ η]

where the last equivalence class is given, for all (a, a′) ∈ Spin(m)× Spin(n), by

(Φ((sM , sN )(a, a′)), σ ⊗ η) ∼ (Φ(sM , sN ), γ(a · a′)(σ ⊗ η)) ,

with respect to (2.6). From now on, the inverse of this isomorphism will be denoted

by

ψ ∈ Γ(S) 7→ ψ? ∈ Γ(Σ) . (2.7)

With respect to 〈. , .〉 and the naturally induced hermitian inner product on Σ, this

isomorphism is unitary. This is why both inner products will be denoted by the

same symbol when using this identification.
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Let ω⊥ = ωn if n is even, and ω⊥ = −iωn if n is odd. Recall that in both

cases ω2
⊥ = (−1)n (compare with the definition of ω⊥ in [9] and note that it keeps

the same properties). From (2.2)–(2.5), it is easy to see that, with respect to the

representation γ defined in Sec. 2.1, Clifford multiplication by a vector field X

tangent to M satisfies

∀ψ ∈ Γ(S) , X ·
M
ψ? = (X · ω⊥ · ψ)? . (2.8)

2.4. The Gauss formula and the submanifold Dirac operator

Fix p ∈ M and denote by (e1, . . . , em, ν1, . . . , νn) a positively oriented local

orthonormal basis of TM̃|M such that (e1, . . . , em) (respectively (ν1, . . . , νn)) is a

positively oriented local orthonormal basis of TM (respectively NM). If ∇̃ denotes

the Levi–Civita connection of (M̃, g), then for all X ∈ Γ(TM), for all Y ∈ Γ(NM)

and for i = 1, . . . ,m, the Gauss formula can be written as

∇̃i(X + Y ) = ∇i(X + Y ) + h(ei, X)− h∗(ei, Y ) , (2.9)

where ∇i(X + Y ) = ∇Mi X + ∇Ni Y , and h∗(ei, .) is the transpose of the second

fundamental form h viewed as a linear map from TM to NM . Here ∇̃i stands

for ∇̃ei .
Denote also by ∇̃ and ∇ the induced spinorial covariant derivatives on Γ(S).

Therefore, on Γ(S), ∇ = ∇ΣM ⊗ Id + Id ⊗ ∇ΣN except for n and m odd where

∇ = (∇ΣM ⊗ Id + Id ⊗ ∇ΣN ) ⊕ (∇ΣM ⊗ Id + Id ⊗ ∇ΣN ). For ψ ∈ Γ(S), the

covariant derivative ∇ψ is understood via the relation (∇ψ)? = ∇ψ?.
As in [2], one can deduce from (2.9) the spinorial Gauss formula:

∀ψ ∈ Γ(S) , ∇̃iψ = ∇iψ +
1

2

m∑
j=1

ej · hij · ψ . (2.10)

Now, define the following Dirac operators

D̃ =

m∑
i=1

ei · ∇̃i , D =

m∑
i=1

ei · ∇i ,

and, H =
∑m

i=1 h(ei, ei) denoting the mean curvature vector field,

DH := (−1)nω⊥ · D̃ = (−1)nω⊥ ·D +
1

2
H · ω⊥ · ψ (2.11)

since H · ω⊥· = (−1)n−1ω⊥ ·H · and D̃ = D − 1
2H · by (2.10).

Remark 2.1. Another Dirac operator can be defined by using intrinsic Clifford

multiplication and twisting the Dirac operator on the submanifold with the normal

spinor bundle. This has been done by C. Bär in [2] by setting

DΣN
M : Γ(Σ) −→ Γ(Σ)

ϕ 7−→


∑

i ei ·
M
∇iϕ if m or n is even ,∑

i ei ·
M
∇iϕ⊕−

∑
i ei ·M ∇iϕ if m and n are odd .
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In fact, with the help of (2.8) and (2.11), we can relate DH and DΣN
M by

(DHψ)? =

(
(−1)nω⊥ ·Dψ +

1

2
H · ω⊥ · ψ

)?
= DΣN

M ψ? +
1

2
(H · ω⊥ · ψ)? , ∀ψ ∈ Γ(S) . (2.12)

It is known that DH is formally self-adjoint and that D2
H = D̃∗D̃, where D̃∗ is

the formal adjoint of D̃ w.r.t.
∫
M

(. , .)vg (see [9]).

3. Estimates for the Eigenvalues of the Submanifold Dirac Operator

3.1. Basic estimates

First, for any spinor field ψ ∈ Γ(S), define the function

RNψ := 2

m∑
i,j=1

(ei · ej · Id⊗ RNei,ejψ, ψ/|ψ|
2) (3.1)

on Mψ := {x ∈ M : ψ(x) 6= 0}, where RNei,ej stands for spinorial normal curvature

tensor. We start by giving a proof of the following result (see [9]):

Theorem 3.1 (Hijazi–Zhang). Let Mm ⊂ M̃m+n be a compact spin submanifold

of a Riemannian spin manifold (M̃, g). Consider a non-trivial spinor field ψ ∈ Γ(S)
such that DHψ = λψ. Assume that m ≥ 2 and

m(R+RNψ ) > (m− 1)‖H‖2 > 0

on Mψ, where R is the scalar curvature of (Mm, g|M ) and RNψ is given by (3.1).

Then one has

λ2 ≥ 1

4
inf
Mψ

(√
m

m− 1
(R +RNψ )− ‖H‖

)2

. (3.2)

Proof. For any function q, nowhere equal to 1
m , define the modified connection,

∇λi = ∇i +
1− q

2(1−mq) ei ·H ·+qλei · ω⊥ · .

Using the Lichnerowicz–Schrödinger formula (see [12]), we have

(D2ψ, ψ) = (∇∗∇ψ, ψ) +
1

4
(R +RNψ )|ψ|2 ,

and one can easily compute∫
M

|∇λψ|2vg =

∫
M

(1 +mq2 − 2q)

×
[
λ2 − 1

4

(
R+RNψ

(1 +mq2 − 2q)
− (m− 1)‖H‖2

(1−mq)2

)]
|ψ|2vg . (3.3)
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Then, assuming m(R+RNψ ) > (m−1)‖H‖2 > 0 on Mψ, we can choose q so that

(1−mq)2 =
(m− 1)‖H‖√

m
m−1 (R+RNψ )− ‖H‖

on Mψ . (3.4)

Inserting Eq. (3.4) in (3.3), and since the complement of Mψ in M is of zero-

measure, we conclude by observing that the left member of (3.3) is nonnegative.

Let κ1 be the lowest eigenvalue of the self-adjoint operator RN defined by

RN : Γ(S) −→ Γ(S) (3.5)

ϕ 7−→ 2

m∑
i,j=1

ei · ej · Id⊗ RNei,ejϕ . (3.6)

The hypothesis m(R+RNψ ) > (m−1)‖H‖2 > 0 in Theorem 3.1 can be strengthened

to give

Corollary 3.2. Under the same hypotheses as in Theorem 3.1, assume that m ≥ 2

and

m(R + κ1) > (m− 1)‖H‖2 > 0

on M, then

λ2 ≥ 1

4
inf
M

(√
m

m− 1
(R+ κ1)− ‖H‖

)2

. (3.7)

Recall that in the case of hypersurfaces, limiting cases are characterized by the

existence of a real Killing spinor on M and the fact that the mean curvature H is

constant (see [14] and [16]). A non-zero section ψ of S satisfying

∀X ∈ Γ(TM) , ∇Xψ? = − µ
m
X ·

M
ψ?

for a given real constant µ will be called a twisted (real) Killing spinor.

Proposition 3.3. If equality holds in (3.7), then (Mm, g|M ) admits a twisted

Killing spinor and ‖H‖ is constant.

Proof. Suppose the limiting case holds in (3.7), then the right hand side has to be

constant on M , and

λ2 =
1

4

(√
m

m− 1
(R+ κ1)− ‖H‖

)2

, ∇λψ = 0 , on M . (3.8)

Note that equality holds in (3.2) which yields RNψ = κ1. Hence ψ is an eigenspinor

for the operator RN with eigenvalue κ1. Using (3.8), we can show that |ψ| must be
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constant on M (therefore, Mψ = M) and compute

Dψ = −
m∑
i=1

ei ·
(

1− q
2(1−mq) ei ·H · ψ + qλei · ω⊥ · ψ

)

=
m(1− q)
2(1−mq)H · ψ +mqλω⊥ · ψ .

Then, by (2.11) and the fact that H · ω⊥· = (−1)n−1ω⊥ ·H ·,

0 = λω⊥ · ψ +
H

2
· ψ − m(1− q)

2(1−mq)H · ψ −mqλω⊥ · ψ

0 = (1−mq)2λω⊥ · ψ − (m− 1)
H

2
· ψ .

Since in the equality case,
√

m
m−1 (R+ κ1)−‖H‖ = 2|λ|, we can deduce the relation:

ω⊥ · ψ = sgn(λ)
H

‖H‖ · ψ .

With respect to the isomorphism “ ? ”, we can rewrite (3.8) as an intrinsic equa-

tion on Γ(Σ):

∀X ∈ Γ(TM) , ∇Xψ? = − µ
m
X ·

M
ψ?

with µ =
sgn(λ)

2

√
m

m− 1
(R+ κ1) .

Note that if there exists two smooth real functions f and κ on M and a non-zero

section ψ of S satisfying for all vector field X on M

∇Xψ? = − f
m
X ·

M
ψ? and RNψ = κψ ,

then, by computing the action of the curvature tensor on ψ?, we see that necessarily

1

2
Ric(X) ·

M
ψ? −

m∑
i=1

(ei · Id⊗ RNX,ei)ψ
?

= − 1

m
df ·

M
X ·

M
ψ? − df(X)ψ? + 2

m− 1

m2
f2X ·

M
ψ?

which implies

f2 =
m

4(m− 1)
(R+ κ) = constant .

Moreover, in the equality case, the fact that f is constant implies that ‖H‖ is

constant.

Remark 3.4. If the normal curvature tensor is zero, then µ has to be constant

and the manifold M must be Einstein with mean curvature vector being of con-

stant length. Besides, the equality case corresponds to that of Friedrich’s inequality.

Therefore µ is the first eigenvalue of the Dirac operator DΣN
M .
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3.2. Estimate involving the Energy-Momentum tensor

If ψ ∈ Γ(S) is a spinor field, we define the Energy-Momentum tensor Qψ associated

with ψ on Mψ by

Qψij =
1

2
(ei · ω⊥ · ∇jψ + ej · ω⊥ · ∇iψ, ψ/|ψ|2) .

Note that

Qψij =
1

2
(ei ·

M
∇jψ? + ej ·

M
∇iψ?, ψ?/|ψ?|2) .

Therefore, Qψ is the intrinsic Energy-Momentum tensor associated with ψ?.

Observe that this intrinsic Energy-Momentum tensor is the one that appears in

the Einstein–Dirac equation (see [7]). We prove the following (compare with [14])

Theorem 3.5. Let Mm ⊂ M̃m+n be a compact spin submanifold of a Riemannian

spin manifold (M̃, g). Consider a non-trivial spinor field ψ ∈ Γ(S) such that DHψ =

λψ. Assume that

R+ κ1 + 4|Qψ|2 > ‖H‖2 > 0

on Mψ. Then one has

λ2 ≥ 1

4
inf
Mψ

(√
R+ κ1 + 4|Qψ|2 − ‖H‖

)2

. (3.9)

Proof. For any real function q that never vanishes, consider the modified covariant

derivative defined on Γ(S) by

∇Qi = ∇i −
1

2mq
ei ·H ·+(−1)n+1qλei · ω⊥ ·+

∑
j

Qψijej · ω⊥ · .

As in the proof of Theorem 3.1, we compute∫
M

|∇Qψ|2vg =

∫
M

(1 +mq2)

[
λ2 − 1

4

(
R+RNψ + 4|Qψ|2

(1 +mq2)
− ‖H‖

2

mq2

)]
|ψ|2vg

− 1

4

∫
M

(1 +mq2)

[
2

mq(1 +mq2)

(
‖H‖2− 〈H · ψ, ω⊥ · ψ〉

2

|ψ|4

)]
|ψ|2vg .

(3.10)

To finish the proof of Theorem 3.5, if R+ κ1 + 4|Qψ|2 > ‖H‖2 > 0, we take

q =

√
‖H‖

m(
√
R+ κ1 + 4|Qψ|2 − ‖H‖)

,

and then observe that by the Cauchy–Schwarz inequality, we have

‖H‖2 − 〈H · ψ, ω⊥ · ψ〉
2

|ψ|4 ≥ 0 . (3.11)
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Suppose now that equality holds in (3.9). Then

∇Qψ = 0 , |λ| = 1

2

(√
R+ κ1 + 4|Qψ|2 − ‖H‖

)
and RNψ = κ1ψ .

Moreover,

‖H‖2 − 〈H · ψ, ω⊥ · ψ〉
2

|ψ|4 = 0 ,

so that, by the equality case in the Cauchy–Schwarz inequality,

ω⊥ · ψ = fH · ψ ,

for some real function f on M . As in the preceding section, and taking into account

the identification (2.7), we deduce that f = sgn(λ)
‖H‖ , and that the section ψ satisfies

∇iψ? = −
∑
j

Qψij ej ·
M
ψ? . (3.12)

Hence, we can say that ψ is a kind of Energy-Momentum spinor (see [14]). We will

call such a section a twisted EM-spinor. One can give an integrability condition

for the existence of twisted EM-spinors, by computing the action of the curvature

tensor on Γ(S):

(tr(Qψ))2 =
1

4
(R+ RNψ + 4|Qψ|2) .

This implies, with Eq. (3.12), that the section ψ? is an “eigenspinor” for DΣN
M asso-

ciated with the function ± 1
2

√
R+ κ1 + 4|Qψ|2. Note that this function is constant

if and only if ‖H‖ is constant.

3.3. Conformal lower bounds

Consider a conformal change of the metric ḡ = e2ug for a real function u on M̃ . Let

S −→ S̄
ψ 7−→ ψ̄

(3.13)

be the induced isometry between the two corresponding spinor bundles. Recall that

if ϕ, ψ are two sections of S, and Z any vector field on M̃ , we have

(ϕ, ψ) = (ϕ̄, ψ̄)ḡ and Z̄ ·̄ ψ̄ = Z · ψ ,

where Z̄ = e−uZ. We will also denote by ḡ = (e2ug)|M the restriction of ḡ to M .

Note that this isomorphism commutes with the isomorphism “ ? ” given by (2.7).

By conformal covariance of the Dirac operator, for ψ ∈ Γ(S), we have,

D̄(e−
(m−1)

2 uψ̄) = e−
(m+1)

2 uDψ , (3.14)

where D̄ stands for the Dirac operator w.r.t. to ḡ. On the other hand, the corres-

ponding mean curvature vector field is given by

H̃ = e−2u(H −m gradN u) . (3.15)
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Now, assume that gradN u = 0. If D̄H stands for the submanifold Dirac operator

w.r.t. to ḡ, Eqs. (3.14) and (3.15) imply that D̄H is a conformally covariant operator,

i.e.

D̄H(e−
(m−1)

2 uψ̄) = e−
(m+1)

2 u(DHψ) (3.16)

for any section ψ of S.
From now on, we will only consider regular conformal changes of the metric, i.e.

ḡ = e2ug with gradNu = 0, on M .

Theorem 3.6. Let Mm ⊂ M̃m+n be a compact spin submanifold of a Riemannian

spin manifold (M̃, g). Consider a non-trivial spinor field ψ ∈ Γ(S) such that DHψ =

λψ. For any regular conformal change of the metric ḡ = e2ug on M̃, assume that

R̄e
2u

+ κ1 + 4|Qψ|2 > ‖H‖2 > 0

on Mψ. Then one has

λ2 ≥ 1

4
inf
Mψ

(√
R̄e

2u
+ κ1 + 4|Qψ|2 − ‖H‖

)2

. (3.17)

Proof. For ψ ∈ Γ(S) an eigenspinor of DH with eigenvalue λ, let ϕ̄ := e−
n−1

2 uψ̄.

Then (3.16) gives D̄H ϕ̄ = λe−uϕ̄. Recall that

∇̄iψ̄ = ∇iψ −
1

2
ei · du · ψ −

1

2
ei(u)ψ̄ ,

and ei = e−uei. Now, it is straightforward to get Q̄ϕ̄
ī j̄

= e−uQψij , hence,

|Q̄ϕ̄|2 = e−2u|Qψ|2 . (3.18)

Equation (3.10), which is also true on (M̃, ḡ), applied to ϕ̄ yields∫
M

|∇̄Q̄ϕ̄|2vḡ =

∫
M

(1+mq2)

[
(λe−u)2 − 1

4

(
R̄+ R̄Nϕ̄ + 4|Q̄ϕ̄|2

(1 +mq2)
−
‖H̃‖2ḡ
mq2

)]
|ϕ̄|2ḡ vḡ

− 1

4

∫
M

(1+mq2)

[
2

mq(1+mq2)

(
‖H̃‖2ḡ−

〈H̃ ·̄ ϕ̄, ω⊥ ·̄ ϕ̄〉2ḡ
|ϕ|4ḡ

)]
|ϕ̄|2ḡ vḡ .

Since H̃ = e−uH̄, and R̄Nϕ̄ = e−2uRNψ , we have

∫
M

|∇̄Q̄ϕ̄|2vḡ =

∫
M

(1+mq2)e−2u

[
λ2 − 1

4

(
R̄e

2u
+ RN

ψ + 4|Qψ|2

(1 +mq2)
− ‖H‖

2

mq2

)]
|ϕ̄|2vḡ

−1

4

∫
M

(1+mq2)e−2u

[
2

mq(1+mq2)

(
‖H‖2−〈H · ψ, ω⊥ · ψ〉

2

|ψ|4

)]
|ϕ̄|2vḡ .
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As in the proof of Theorem 3.5, we finally take

q =

√√√√ ‖H‖

m(

√
R̄e

2u
+ κ1 + 4|Qψ|2 − ‖H‖)

and use the Cauchy–Schwarz inequality (3.11).

If the hypothesis in Theorem 3.6 is satisfied by an eigenfunction u1 associated

with the first eigenvalue µ1 of the Yamabe operator, then one has:

Corollary 3.7. Under the same conditions as in Theorem 3.6, assume that m ≥ 3

and µ1 + κ1 + 4|Qψ|2 > ‖H‖2 > 0 on Mψ, then

λ2 ≥ 1

4
inf
Mψ

(√
µ1 + κ1 + 4|Qψ|2 − ‖H‖

)2

.

Corollary 3.8. Under the same conditions as in Theorem 3.6, if M is a compact

surface of genus zero and 8π
Area(M) + κ1 + 4|Qψ|2 > ‖H‖2 > 0 on Mψ, then

λ2 ≥ 1

4
inf
Mψ

(√
8π

Area(M)
+ κ1 + 4|Qψ|2 − ‖H‖

)2

.

Now suppose that equality holds in (3.17). Then

∇̄Q̄ϕ̄ = 0 , ω⊥ · ψ = ε
H

‖H‖ · ψ where ε ∈ {±1} ,

|λ| = 1

2

(√
R̄e

2u
+ κ1 + 4|Qψ|2 − ‖H‖

)
and RNψ = κ1ψ .

Using (3.13) and (3.18), it follows ε = sgn(λ) and

∇iψ? =
1

2
ei ·
M

du ·
M
ψ? +

m

2
du(ei)ψ

? −
∑
j

Qψij ej ·
M
ψ? (3.19)

with du = 2d(ln(|ψ|))
m−1 . Non-trivial spinor fields satisfying (3.19) will be naturally

called twisted WEM-spinors (compare with [14]).

4. Final Remark

In this section, we show that the normal bundle of the submanifold can be replaced

by an auxiliary arbitrary vector bundle on the submanifold. Thus, all the preceding

computations could be done in an intrinsic way to obtain results for a twisted Dirac

operator on the manifold.

Let (Mm, g) be a compact Riemannian spin manifold. LetN →M be a Rieman-

nian vector bundle of rank n over M . Suppose that N is endowed with a metric

connection ∇N and a spin structure. Let ΣM (respectively ΣN) be the spinor

bundle of M (respectively N). Set

Σ := ΣM ⊗ ΣN .
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Recall that Clifford multiplication on Γ(Σ) by a tangent vector field X is given by:

∀ψ ∈ Γ(Σ) , X · ψ = (ρM (X)⊗ IdΣN )(ψ) .

Define the tensor-product connection ∇ on Γ(Σ) by

∇ = ∇ΣM ⊗ IdΣN + IdΣM ⊗∇ΣN ,

where ∇ΣM and ∇ΣN are the induced connections on Γ(ΣM) and Γ(ΣN) respec-

tively. Let DΣN
M be the twisted Dirac operator given by

DΣN
M =

m∑
i=1

ei · ∇i .

For any smooth real function f on M , define the modified twisted Dirac operator

by

Df = DΣN
M − f

2
.

For λ ∈ R, consider the following modified connections

∇̂λi = ∇i +
(1− q)f

2(1−mq) ei ·+qλei ·

∇̂Qi = ∇i −
f

2mq
ei ·+(−1)n+1qλei ·+

∑
j

Qψij ej ,

where Qψ is now the intrinsic Energy-Momentum tensor associated with ψ.

Note that these connections can be obtained from those defined in Sec. 3,

assuming that

H · ψ = fω⊥ · ψ .

In fact, this is the only way to give an intrinsic meaning to the modified connection

used before. Then the same computations as in the proofs of Theorems 3.1, 3.5 and

3.6, lead to the following assertions:

Let (Mm, g) be a compact Riemannian spin manifold with N →M an auxiliary

oriented Riemannian spin vector bundle of rank n. Let ψ ∈ Γ(Σ) be an eigenspinor

for the modified twisted Dirac operator Df , associated with the eigenvalue λ. Then,

Proposition 4.1. Assume that m ≥ 2 and m(R + κ1) > (m − 1)f2 > 0 on Mψ.

Then one has

λ2 ≥ 1

4
inf
Mψ

(√
m

m− 1
(R+ κ1)− |f |

)2

.

If equality holds, (Mm, g) admits a twisted Killing spinor.

Following the proof of Theorem 3.6, we can extend the previous theorem by

performing a conformal change of the metric on M . For the limiting case, just note

that Qψ = 1
m

tr(Qψ)g.
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Proposition 4.2. Assume that m ≥ 2 and m(R̄e2u + κ1) > (m− 1)f2 > 0 on Mψ

for any conformal change of the metric ḡ = e2ug on M. Then one has

λ2 ≥ 1

4
inf
Mψ

(√
m

m− 1
(R̄e2u + κ1)− |f |

)2

.

If equality holds, (Mm, ḡ) admits a twisted WEM-spinor, with Qψ = µ
m
g, where

µ2 =
1

4

m

m− 1
(R̄e2u + κ1) .

Proposition 4.3. Assume that R+ κ1 + 4|Qψ|2 > f2 > 0 on Mψ. Then one has

λ2 ≥ 1

4
inf
Mψ

(√
R+ κ1 + 4|Qψ|2 − |f |

)2

.

If equality holds, (Mm, g) admits a twisted EM-spinor.

Proposition 4.4. Assume that R̄e2u + κ1 + 4|Qψ|2 > f2 > 0 on Mψ for any

conformal change of the metric ḡ = e2ug on M. Then one has

λ2 ≥ 1

4
inf
Mψ

(√
R̄e2u + κ1 + 4|Qψ|2 − |f |

)2

.

If equality holds, (Mm, g) admits a twisted WEM-spinor.

Remark 4.5. Assuming the normal curvature tensor is zero and f is constant,

then the necessary conditions for the equality cases in Theorems 4.1, 4.2, 4.3 and

4.4 become sufficient conditions. Moreover, when m is odd, the considered Dirac

operator may have to be defined with the opposite Clifford multiplication according

to the sign of f .

Remark 4.6. We would like to thank Christian Bär for the following suggestion:

all inequalities which appear in the hypotheses of our theorems and propositions

can be taken in the large. This can be done by choosing an adapted function qε
depending continuously on a parameter ε > 0 instead of the function q in the proof

of the above theorems. We then obtain our inequalities when ε tends towards 0.
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